Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.016
Filtrar
1.
J Contam Hydrol ; 265: 104395, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39018629

RESUMEN

Microplastics (MPs) are emerging contaminants that are attracting increasing interest from researchers, and the safety of drinking water is greatly affected by their transportation during filtration. Polystyrene (PS) was selected as a representative MPs, and three filter media (quartz sand, zeolite, and anthracite) commonly found in water plants were used. The retention patterns of PS-MPs by various filter media under various background water quality conditions were methodically investigated with the aid of DLVO theory and colloidal filtration theory. The results show that the different structures and elemental compositions of the three filter media cause them to exhibit different surface roughnesses and surface potentials. A greater surface roughness of the filter media can provide more deposition sites for PS-MPs, and the greater surface roughness of zeolite and anthracite significantly enhances their ability to inhibit the migration of PS-MPs compared with that of quartz sand. However, surface roughness is not the only factor affecting the migration of MPs. The lower absolute value of the surface potential of anthracite causes the DLVO energy between it and PS-MPs to be significantly lower than that between zeolite and PS-MPs, which results in stronger retention of PS-MPs by anthracite, which has a lower surface roughness, than zeolite, which has a higher surface roughness. The transport of PS-MPs in the medium is affected by the combination of the surface roughness of the filter media and the DLVO energy. Under the same operating conditions, the retention efficiencies of the three filter materials for PS-MPs followed the order of quartz sand < zeolite < anthracite. Additionally, the conditions of the solution markedly influenced the transport ability of PS-MPs within the simulated filter column. The transport PS-MPs in the simulated filter column decreased with increasing solution ionic strength and cation valence. Naturally, dissolved organic matter promoted the transfer of PS-MPs in the filter layer, and humic acid had a much stronger facilitating impact than fulvic acid. The study findings might offer helpful insight for improving the ability of filter units ability to retain MPs.


Asunto(s)
Filtración , Microplásticos , Poliestirenos , Zeolitas , Zeolitas/química , Poliestirenos/química , Microplásticos/química , Cuarzo/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Arena/química , Purificación del Agua/métodos , Propiedades de Superficie
2.
Radiat Prot Dosimetry ; 200(11-12): 1220-1223, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016517

RESUMEN

The dosimetry of different minerals is carried out to investigate the dose received by the population in case of a nuclear accident. Retrospective dosimetry is a field where there is a continuous search to find new materials. Beach sand minerals, namely quartz and zircon, were exposed to beta and gamma radiation and studied separately. A comparison of the thermoluminescence (TL) output of different peaks of quartz for beta and gamma was studied. Comparison of quartz peaks with the TL output of zircon peaks was carried out. TL output for a constant dose of gamma is always higher compared to the TL output received due to beta.


Asunto(s)
Rayos gamma , Cuarzo , Dosimetría Termoluminiscente , Circonio , Cuarzo/química , Circonio/química , Dosimetría Termoluminiscente/métodos , Dosimetría Termoluminiscente/instrumentación , Partículas beta , Dosis de Radiación , Humanos , Monitoreo de Radiación/métodos , Liberación de Radiactividad Peligrosa , Silicatos
3.
Sensors (Basel) ; 24(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39001098

RESUMEN

The quartz tuning fork (QTF) is a promising instrument for biosensor applications due to its advanced properties such as high sensitivity to physical quantities, cost-effectiveness, frequency stability, and high-quality factor. Nevertheless, the fork's small size and difficulty in modifying the prongs' surfaces limit its wide use in experimental research. Our study presents the development of a QTF immunosensor composed of three active layers: biocompatible natural melanin nanoparticles (MNPs), glutaraldehyde (GLU), and anti-IgG layers, for the detection of immunoglobulin G (IgG). Frequency shifts of QTFs after MNP functionalization, GLU activation, and anti-IgG immobilization were measured with an Asensis QTF F-master device. Using QTF immunosensors that had been modified under optimum conditions, the performance of QTF immunosensors for IgG detection was evaluated. Accordingly, a finite element method (FEM)-based model was produced using the COMSOL Multiphysics software program (COMSOL License No. 2102058) to simulate the effect of deposited layers on the QTF resonance frequency. The experimental results, which demonstrated shifts in frequency with each layer during QTF surface functionalization, corroborated the simulation model predictions. A modelling error of 0.05% was observed for the MNP-functionalized QTF biosensor compared to experimental findings. This study validated a simulation model that demonstrates the advantages of a simulation-based approach to optimize QTF biosensors, thereby reducing the need for extensive laboratory work.


Asunto(s)
Técnicas Biosensibles , Inmunoglobulina G , Melaninas , Nanopartículas , Cuarzo , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Nanopartículas/química , Melaninas/química , Cuarzo/química , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Simulación por Computador , Anticuerpos Antiidiotipos/inmunología , Anticuerpos Antiidiotipos/química , Humanos
4.
Anal Chem ; 96(24): 9826-9833, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38829542

RESUMEN

The rapid and sensitive detection of Escherichia/Shigella genera is crucial for human disease and health. This study introduces a novel series of piezoelectric quartz crystal (SPQC) sensors for detecting Escherichia/Shigella genera. In this innovative biosensor, we propose a new target and novel method for synthesizing long-range DNA. The method relies on the amplification of two DNA probes, referred to as H and P amplification (HPA), resulting in the products of long-range DNA named Sn. The new target was screened from the 16S rRNA gene and utilized as a biomarker. The SPQC sensor operates as follows: the Capture probe is modified on the electrodes. In the presence of a Displace probe and target, the Capture can form a complex with the Displace probe. The resulting complex hybridizes with Sn, bridging the gap between the electrodes. Finally, silver wires are deposited between the electrodes using Sn as a template. This process results in a sensitive response from the SPQC. The detection limit of the SPQC sensor is 1 CFU/mL, and the detection time is within 2 h. This sensor would be of great benefit for food safety monitoring and clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Escherichia , Técnicas Biosensibles/métodos , Escherichia/genética , ADN Bacteriano/análisis , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Electrodos , Cuarzo/química , Límite de Detección , Sondas de ADN/química , Humanos , Técnicas de Amplificación de Ácido Nucleico , Técnicas Electroquímicas
5.
Water Res ; 257: 121682, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718654

RESUMEN

Photocatalyst-coated optical fibers (P-OFs) using UV-A LEDs offer a highly promising solution for the degradation of micropollutants within municipal, reuse, industrial or home distribution systems, by integrating P-OFs into water storage tanks. P-OFs have photocatalysts attached to bundles of optical fibers, enabling their direct deployment within tanks. This eliminates the necessity for photocatalyst slurries, which would require additional membrane or separation systems. However, a current limitation of P-OFs is light management, specifically light oversaturation of the coated photocatalysts and short light transmission distances along fibers. This study overcomes this limitation and reveals strategies to improve the light dissipation uniformity along P-OFs, and demonstrates the performance of P-OFs on degrading a model micropollutant, carbamazepine (CBZ). Key tunable variables of fibers and light emission conditions, including photocatalyst coating patchiness (p), minimum light incident angles (θm), radiant flux launched to fibers (Φi), and fiber diameters (D), were modeled to establish their relationships with the light dissipation uniformity in TiO2-coated quartz optical fibers (TiO2-QOFs). We then validated modeling insights by conducting experiments to examine how these variables influence the generation of evanescent waves which are localized energy on fiber surfaces, leading to either photocatalyst activation or the recapture of unused light back into fibers. We observed substantial enhancements in evanescent waves generation by decreasing p and increasing θm, resulting in uniform light dissipation which reduces light oversaturation and improves light transmission distances. Moreover, these optimizations led to a remarkable three-fold improvement in CBZ degradation rates and a 65% reduction in energy consumption. Such improvement substantially reduces the capital and operational cost and enhances practicality of energy-efficient photocatalysis without additional chemical oxidants for micropollutant degradation in water storage tanks.


Asunto(s)
Fibras Ópticas , Cuarzo , Titanio , Contaminantes Químicos del Agua , Titanio/química , Cuarzo/química , Contaminantes Químicos del Agua/química , Catálisis , Purificación del Agua/métodos , Carbamazepina/química
6.
Dent Mater ; 40(8): e1-e10, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821838

RESUMEN

OBJECTIVE: Although glass fibers are more common, quartz fibers (QFs) are also considered as the ideal reinforcing material in dentistry, due to their superior mechanical strength, high purity, and good photoconductive properties. However, the relatively inert surfaces limit their further applications. Therefore, the aim of this study is to modify the fiber surface properties to improve the interfacial interactions with polymeric resins. METHODS: In this study, we systematically introduced four different surface modification strategies onto short quartz fibers (SQFs) for the preparation of dental composites. Particularly, the acid etching was a facile way to create mechanical interlocking structures. In addition, the silanization process, the sol-gel treatment, and the polymer grafting were further proposed to increase the surface roughness and the reactive sites. The effect of surface modifications on the fiber surface morphological changes, mechanical properties, water stability, and in vitro cell viability of dental composites were investigated. RESULTS: Among all surface-modified SQFs, SQFs-POSS (SQFs modified with methacrylate-POSS) exhibited the roughest surface morphology and highest grafting rates compared with other three materials. Furthermore, all these SQFs were applied as reinforcements to make dimethacrylate-based dental resin composites. Of all fillers, SQFs-POSS demonstrated the best reinforcing effect, providing significantly higher improvements of 55.7 %, 114.3 %, and 164.7 % for flexural strength, flexural modulus, and breaking energy, respectively, over those of SQFs-filled composite. The related reinforcing mechanism was further investigated. The SQFs-POSS-filled composite also exhibited the best water stability performance and in vitro cell viability. SIGNIFICANCE: This work provided valuable insights into the optimization of filler-matrix interaction through fiber surface modifications. Specifically, SQFs-POSS markedly outperformed other formulations in terms of the physicochemical performance and in vitro cytotoxicity, which offers possibilities for developing high-performance dental composites for clinical applications in restorative dentistry.


Asunto(s)
Supervivencia Celular , Resinas Compuestas , Ensayo de Materiales , Cuarzo , Propiedades de Superficie , Resinas Compuestas/química , Cuarzo/química , Técnicas In Vitro , Animales , Ratones , Resinas Acrílicas/química , Materiales Dentales/química
7.
Talanta ; 277: 126279, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810382

RESUMEN

N6-methyladenosine (6mA) plays a pivotal role in diverse biological processes, including cancer, bacterial toxin secretion, and bacterial drug resistance. However, to date there has not been a selective, sensitive, and simple method for quantitative detection of 6mA at single base resolution. Herein, we present a series piezoelectric quartz crystal (SPQC) sensor based on the specific recognition of transcription-activator-like effectors (TALEs) for locus-specific detection of 6mA. Detection sensitivity is enhanced through the use of a hybridization chain reaction (HCR) in conjunction with silver staining. The limit of detection (LOD) of the sensor was 0.63 pM and can distinguish single base mismatches. We demonstrate the applicability of the sensor platform by quantitating 6mA DNA at a specific site in biological matrix. The SPQC sensor presented herein offers a promising platform for in-depth study of cancer, bacterial toxin secretion, and bacterial drug resistance.


Asunto(s)
Adenina , Técnicas Biosensibles , ADN , Adenina/análogos & derivados , Adenina/análisis , Adenina/química , Adenina/metabolismo , ADN/química , ADN/análisis , Técnicas Biosensibles/métodos , Límite de Detección , Humanos , Cuarzo/química
8.
J Environ Radioact ; 275: 107430, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615506

RESUMEN

Clay colloids in the subsurface environment have a strong adsorption capacity for radionuclides, and the mobile colloids will carry the nuclides for migration, which would promote the movability of radionuclides in the groundwater environment and pose a threat to the ecosphere. The investigations of the adsorption/desorption behaviors of radionuclides in colloids and porous media are significant for the evaluation of the geological disposal of radioactive wastes. To illustrate the adsorption/desorption behaviors of 241Am(Ⅲ) in Na-montmorillonite colloid and/or quartz sand systems at different pH (5, 7 and 9), ionic strengths (0, 0.1 and 5 mM), colloid concentrations (300 and 900 mg/L), nuclide concentrations (500, 800, 1100 and 1400 Bq/mL) and grain sizes (40 and 60 mesh), a series of batch sorption-desorption experiments were conducted. Combining the analysis of the physical and chemical properties of Na-montmorillonite with the Freundlich model, the influencing mechanism of different controlling factors is discussed. The experimental results show that the adsorption/desorption behaviors of 241Am(Ⅲ) in Na-montmorillonite colloid and/or quartz sand strongly are influenced by the pH value and ionic strength of a solution, the colloid concentration as well as quartz sand grain size. The adsorption and desorption isotherms within all the experimental conditions could be well-fitted by the Freundlich model and the correlation coefficients (R2) are bigger than 0.9. With the increase in pH, the adsorption partition coefficient (Kd) at 241Am(Ⅲ)-Na-montmorillonite colloid two-phase system and 241Am(Ⅲ)-Na-montmorillonite colloid-quartz sand three-phase system presents a trend which increases firstly followed by decreasing, due to the changes in the morphology of Am with pH. The Kd of 241Am(Ⅲ) adsorption on montmorillonite colloid and quartz sand decreases with increasing in ionic strength, which is mainly attributed to the competitive adsorption, surface complexation and the reduction of surface zeta potential. Additionally, the Kd increases with increasing colloid concentrations because of the increase in adsorption sites. When the mean grain diameter changes from 0.45 to 0.3 mm, the adsorption variation trends of 241Am(Ⅲ) remain basically unchanged. The research results obtained in this work are meaningful and helpful in understanding the migration behaviors of radionuclides in the underground environment.


Asunto(s)
Americio , Bentonita , Coloides , Cuarzo , Bentonita/química , Concentración Osmolar , Adsorción , Concentración de Iones de Hidrógeno , Coloides/química , Cuarzo/química , Americio/química , Americio/análisis , Contaminantes Radiactivos del Agua/química , Contaminantes Radiactivos del Agua/análisis , Contaminantes Radiactivos del Suelo/análisis , Contaminantes Radiactivos del Suelo/química , Modelos Químicos , Tamaño de la Partícula , Arena/química
9.
Anal Chem ; 96(17): 6756-6763, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38625745

RESUMEN

Pathogenic bacteria significantly contribute to elevated morbidity and mortality rates, highlighting the urgent need for early and precise detection. Currently, there is a paucity of effective broad-spectrum methods for detecting pathogenic bacteria. We have developed an innovative proton-responsive series piezoelectric quartz crystal (PR-SPQC) platform for the broad-spectrum identification of pathogenic bacteria. This was achieved by retrieving and aligning sequences from the NCBI GenBank database to identify and validate 16S rRNA oligonucleotide sequences that are signatures of pathogenic bacteria but absent in humans or fungi. The hyperbranched rolling circle amplification, activated exclusively by the screened target, exponentially generates protons that are detected by SPQC through a 2D polyaniline (PANI) film. The PR-SPQC platform demonstrates broad-spectrum capabilities in detecting pathogenic bacteria, with a detection limit of 2 CFU/mL within 90 min. Clinical testing of blood samples yielded satisfactory results. With its advantages in miniaturization, cost efficiency, and suitability for point-of-care testing, PR-SPQC has the potential to be extensively used for the rapid identification of diverse pathogenic bacteria within clinical practice and public health sectors.


Asunto(s)
Bacterias , Técnicas de Amplificación de Ácido Nucleico , Protones , Bacterias/aislamiento & purificación , Bacterias/genética , Humanos , ARN Ribosómico 16S/genética , Cuarzo/química , Límite de Detección
10.
J Nat Prod ; 87(4): 1084-1091, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38517947

RESUMEN

Investigation of the secondary metabolites of Streptomyces virginiae CMB-CA091 isolated from the quartz-rich (tepui) soil of a cave in Venezuela yielded two new dimeric phenazine glycosides, tepuazines A and B (1 and 2); three new monomeric phenazine glycosides, tepuazines C-E (3-5); and a series of known analogues, baraphenazine G (6), phenazinolin D (7), izumiphenazine C (8), 4-methylaminobenzoyl-l-rhamnopyranoside (9), and 2-acetamidophenol (10). Structures were assigned to 1-10 on the basis of detailed spectroscopic analysis and biosynthetic considerations, with 1 and 2 featuring a rare 2-oxabicyclo[3.3.1]nonane-like ring C/D bridge shared with only a handful of known Streptomyces natural products. We propose a plausible convergent biosynthetic relationship linking all known members of this structure class that provides a rationale for the observed ring C/D configuration.


Asunto(s)
Glicósidos , Fenazinas , Microbiología del Suelo , Streptomyces , Streptomyces/química , Fenazinas/química , Glicósidos/química , Glicósidos/aislamiento & purificación , Estructura Molecular , Venezuela , Cuevas , Cuarzo/química
11.
Sensors (Basel) ; 23(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139667

RESUMEN

A gas sensor array was developed and evaluated using four high-frequency quartz crystal microbalance devices (with a 30 MHz resonant frequency in fundamental mode). The QCM devices were coated with ethyl cellulose (EC), polymethylmethacrylate (PMMA), Apiezon L (ApL), and Apiezon T (ApT) sensing films, and deposited by the ultrasonic atomization method. The objective of this research was to propose a non-invasive technique for acetone biomarker detection, which is associated with diabetes mellitus disease. The gas sensor array was exposed to methanol, ethanol, isopropanol, and acetone biomarkers in four different concentrations, corresponding to 1, 5, 10, and 15 µL, at temperature of 22 °C and relative humidity of 20%. These samples were used because human breath contains them and they are used for disease detection. Moreover, the gas sensor responses were analyzed using principal component analysis and discriminant analysis, achieving the classification of the acetone biomarker with a 100% membership percentage when its concentration varies from 327 to 4908 ppm, and its identification from methanol, ethanol, and isopropanol.


Asunto(s)
Diabetes Mellitus , Tecnicas de Microbalanza del Cristal de Cuarzo , Humanos , Acetona/análisis , 2-Propanol , Metanol , Biomarcadores , Etanol , Cuarzo/química , Diabetes Mellitus/diagnóstico
12.
Sensors (Basel) ; 23(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37420848

RESUMEN

Suspended particulate matter (PMx) is one of the most important environmental pollutants. Miniaturized sensors capable of measuring and analyzing PMx are crucial in environmental research fields. The quartz crystal microbalance (QCM) is one of the most well-known sensors that could be used to monitor PMx. In general, in environmental pollution science, PMx is divided into two main categories correlated to particle diameter (e.g., PM < 2.5 µm and PM < 10 µm). QCM-based systems are capable of measuring this range of particles, but there is an important issue that limits the application. In fact, if particles with different diameters are collected on QCM electrodes, the response will be a result of the total mass of particles; there are no simple methods to discriminate the mass of the two categories without the use of a filter or manipulation during sampling. The QCM response depends on particle dimensions, fundamental resonant frequency, the amplitude of oscillation, and system dissipation properties. In this paper, we study the effects of oscillation amplitude variations and fundamental frequency (10, 5, and 2.5 MHz) values on the response, when particle matter with different sizes (2 µm and 10 µm) is deposited on the electrodes. The results showed that the 10 MHz QCM was not capable of detecting the 10 µm particles, and its response was not influenced by oscillation amplitude. On the other hand, the 2.5 MHz QCM detected the diameters of both particles, but only if a low amplitude value was used.


Asunto(s)
Tecnicas de Microbalanza del Cristal de Cuarzo , Cuarzo , Microesferas , Cuarzo/química
13.
Sensors (Basel) ; 23(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37299893

RESUMEN

With the miniaturization and high-frequency requirements of quartz crystal sensors, microscopic issues affecting operating performance, e.g., the surface roughness, are receiving more and more attention. In this study, the activity dip caused by surface roughness is revealed, with the physical mechanism clearly demonstrated. Firstly, the surface roughness is considered as a Gaussian distribution, and the mode coupling properties of an AT-cut quartz crystal plate are systematically investigated under different temperature environments with the aid of two-dimensional thermal field equations. The resonant frequency, frequency-temperature curves, and mode shapes of the quartz crystal plate are obtained through the partial differential equation (PDE) module of COMSOL Multiphysics software for free vibration analysis. For forced vibration analysis, the admittance response and phase response curves of quartz crystal plate are calculated via the piezoelectric module. The results from both free and forced vibration analyses demonstrate that surface roughness reduces the resonant frequency of quartz crystal plate. Additionally, mode coupling is more likely to occur in a crystal plate with a surface roughness, leading to activity dip when temperature varies, which decreases the stability of quartz crystal sensors and should be avoided in device fabrication.


Asunto(s)
Cuarzo , Vibración , Cuarzo/química
14.
Chemosphere ; 336: 139247, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37330067

RESUMEN

Biomass-pyrogenic smoke-derived dissolved organic matter (SDOMs) percolating into the underground environment profoundly impacts the transport and fate of environmental pollutants in groundwater systems. Herein, SDOMs were produced by pyrolyzing wheat straw at 300-900 °C to explore their transport properties and effects on Cu2+ mobility in quartz sand porous media. The results indicated that SDOMs exhibited high mobility in saturated sand. Meanwhile, the mobility of SDOMs was enhanced at a higher pyrolysis temperature due to the decrease in their molecular sizes and the declined H-bonding interactions between SDOM molecules and sand grains. Furthermore, the transport of SDOMs was elevated as pH values were raised from 5.0 to 9.0, which resulted from the strengthened electrostatic repulsion between SDOMs and quartz sand particles. More importantly, SDOMs could facilitate Cu2+ transport in the quartz sand, which stemmed from forming soluble Cu-SDOM complexes. Intriguingly, the promotional function of SDOMs for the mobility of Cu2+ was strongly dependent on the pyrolysis temperature. Generally, SDOMs generated at higher temperatures exhibited superior effects. The phenomenon was mainly due to the differences in the Cu-binding capacities of various SDOMs (e.g., cation-π attractive interactions). Our findings highlight that the high-mobility SDOM can considerably affect heavy metal ions' environmental fate and transport.


Asunto(s)
Metales Pesados , Cuarzo , Cuarzo/química , Dióxido de Silicio/química , Arena , Materia Orgánica Disuelta , Biomasa , Humo , Porosidad , Cationes
15.
ACS Appl Mater Interfaces ; 15(14): 17922-17937, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37010879

RESUMEN

Mining practices, chiefly froth flotation, are being critically reassessed to replace their use of biohazardous chemical reagents in favor of biofriendly alternatives as a path toward green processes. In this regard, this study aimed at evaluating the interactions of peptides, as potential floatation collectors, with quartz using phage display and molecular dynamics (MD) simulations. Quartz-selective peptide sequences were initially identified by phage display at pH = 9 and further modeled by a robust simulation scheme combining classical MD, replica exchange MD, and steered MD calculations. Our residue-specific analyses of the peptides revealed that positively charged arginine and lysine residues were favorably attracted by the quartz surface at basic pH. The negatively charged residues at pH 9 (i.e., aspartic acid and glutamic acid) further showed affinity toward the quartz surface through electrostatic interactions with the positively charged surface-bound Na+ ions. The best-binding heptapeptide combinations, however, contained both positively and negatively charged residues in their composition. The flexibility of peptide chains was also shown to directly affect the adsorption behavior of the peptide. While attractive intrapeptide interactions were dominated by a weak peptide-quartz binding, the repulsive self-interactions in the peptides improved the binding propensity to the quartz surface. Our results showed that MD simulations are fully capable of revealing mechanistic details of peptide adsorption to inorganic surfaces and are an invaluable tool to accelerate the rational design of peptide sequences for mineral processing applications.


Asunto(s)
Péptidos , Cuarzo , Cuarzo/química , Péptidos/química , Secuencia de Aminoácidos , Simulación de Dinámica Molecular , Minerales , Adsorción
16.
Anal Chem ; 95(13): 5507-5513, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36961992

RESUMEN

Quartz-crystal-microbalance (QCM) biosensor is a typical label-free biosensor, and its sensitivity can be greatly improved by removing electrodes and wires that would be otherwise attached to the surfaces of the quartz resonator. The wireless-electrodeless QCM biosensor was then developed using a microelectro-mechanical systems (MEMS) process, although challenges remain in the sensitivity, the coupling efficiency, and the miniaturization (or mass production). In this study, we establish a MEMS process to obtain a large number of identical ultrasensitive and highly efficient sensor chips with dimensions of 6 mm square. The fundamental shear resonance frequency of the thinned AT-cut quartz resonator packaged in the microchannel exceeds 160 MHz, which is excited by antennas deposited on inner walls of the microchannel, significantly improving the electro-mechanical coupling efficiency in the wireless operation. The high sensitivity of the developed MEMS QCM biosensors is confirmed by the immunoglobulin G (IgG) detection using protein A and ZZ-tag displaying a bionanocapsule (ZZ-BNC), where we find that the ZZ-BNC can provide more effective binding sites and higher affinity to the target molecules, indicating a further enhancement in the sensitivity of the MEMS QCM biosensor. We then perform the label-free C-reactive protein (CRP) detection using the ZZ-BNC-functionalized MEMS QCM biosensor, which achieves a detection limit of 1 ng mL-1 or less even with direct detection.


Asunto(s)
Técnicas Biosensibles , Sistemas Microelectromecánicos , Cuarzo/química , Proteína C-Reactiva , Miniaturización , Técnicas Biosensibles/métodos , Tecnicas de Microbalanza del Cristal de Cuarzo/métodos
17.
Biosensors (Basel) ; 13(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36979568

RESUMEN

In this study, a double resonator piezoelectric cytometry (DRPC) technology based on quartz crystal microbalance (QCM) was first employed to identify HeLa cell pyroptosis and apoptosis by monitoring cells' mechanical properties in a real-time and non-invasive manner. AT and BT cut quartz crystals with the same frequency and surface conditions were used concurrently to quantify the cells-exerted surface stress (ΔS). It is the first time that cells-exerted surface stress (ΔS) and cell viscoelasticity have been monitored simultaneously during pyroptosis and apoptosis. The results showed that HeLa pyroptotic cells exerted a tensile stress on quartz crystal along with an increase in the elastic modulus (G'), viscous modulus (G″), and a decrease of the loss tangent (G″/G'), whereas apoptotic cells exerted increasing compressive stress on quartz crystal along with a decrease in G', G″ and an increase in G″/G'. Furthermore, engineered GSDMD-/--DEVD- HeLa cells were used to investigate drug-induced disturbance and testify the mechanical responses during the processes of pyroptosis and non-pyroptosis. These findings demonstrated that the DRPC technology can serve as a precise cytomechanical sensor capable of identifying pyroptosis and apoptosis, providing a novel method in cell death detection and paving the road for pyroptosis and apoptosis related drug evaluation and screening.


Asunto(s)
Apoptosis , Cuarzo , Humanos , Células HeLa , Cuarzo/química , Módulo de Elasticidad , Tecnicas de Microbalanza del Cristal de Cuarzo
18.
Anal Chem ; 95(14): 6138-6144, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36987565

RESUMEN

A noninvasive method for disease diagnosis that does not require complex specialized laboratory facilities and chemical reagents is particularly attractive in the current medical environment. Here, we develop a noninvasive skin respiration sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) that can monitor the skin elimination rate of carbon dioxide (CO2). A 3.8 mW distributed feedback laser emitting at 2.0 µm is used as an excitation source, and a three-dimensional (3D)-printed acoustic detection module is designed to apply to the skin as a sensor head. The performance of the noninvasive skin respiration sensor is assessed in terms of detection sensitivity, linearity, long-term stability, and water effect. A minimum detection limit of 35 ppb is achieved at the optimal integration time of 670 s. The skin respiration measurements from eight healthy volunteers are recorded, and the real-time results are analyzed.


Asunto(s)
Dióxido de Carbono , Técnicas Fotoacústicas , Humanos , Cuarzo/química , Técnicas Fotoacústicas/métodos , Rayos Láser , Análisis Espectral/métodos
19.
Sci Total Environ ; 873: 162344, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36813196

RESUMEN

Microplastics and antibiotics were frequently detected in the effluent of sand filtration, while the presence of microplastics may change the interactions between the antibiotics and the quartz sands. However, the influence of microplastics on the transport of antibiotics in sand filtration has not been revealed. In this study, ciprofloxacin (CIP) and sulfamethoxazole (SMX) were respectively grafted on AFM probes to determine the adhesion forces to the representative microplastics (PS and PE) and the quartz sand. CIP and SMX exhibited low and high mobilities in the quartz sands, respectively. Compositional analysis of the adhesion forces indicated that the lower mobility of CIP in sand filtration columns could be attributed to the electrostatic attraction between the quartz sand and CIP compared with repulsion for SMX. Moreover, the significant hydrophobic interaction between the microplastics and the antibiotics could be responsible for the competitive adsorption of the antibiotics to the microplastics from the quartz sands; meanwhile, the π-π interaction further enhanced the adsorption of PS to the antibiotics. As a result of the high mobility of microplastics in the quartz sands, the carrying effect of microplastics enhanced the transport of antibiotics in the sand filtration columns regardless of their original mobilities. This study provided insights into the mechanism of the microplastics on enhancing the transport of antibiotics in sand filtration systems from the perspective of the molecular interaction.


Asunto(s)
Antibacterianos , Arena , Antibacterianos/química , Cuarzo/química , Plásticos/química , Microplásticos , Porosidad , Ciprofloxacina/química , Sulfametoxazol , Análisis Espectral
20.
J Biomed Mater Res A ; 111(4): 440-450, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36537182

RESUMEN

Polymer-protein hybrids can be deployed to improve protein solubility and stability in denaturing environments. While previous work used robotics and active machine learning to inform new designs, further biophysical information is required to ascertain structure-function behavior. Here, we show the value of tandem small-angle x-ray scattering (SAXS) and quartz crystal microbalance with dissipation (QCMD) experiments to reveal detailed polymer-protein interactions with horseradish peroxidase (HRP) as a test case. Of particular interest was the process of polymer-protein complex formation under thermal stress whereby SAXS monitors formation in solution while QCMD follows these dynamics at an interface. The radius of gyration (Rg ) of the protein as measured by SAXS does not change significantly in the presence of polymer under denaturing conditions, but thickness and dissipation changes were observed in QCMD data. SAXS data with and without thermal stress were utilized to create bead models of the potential complexes and denatured enzyme, and each model fit provided insight into the degree of interactions. Additionally, QCMD data demonstrated that HRP deforms by spreading upon surface adsorption at low concentration as shown by longer adsorption times and smaller frequency shifts. In contrast, thermally stressed and highly inactive HRP had faster adsorption kinetics. The combination of SAXS and QCMD serves as a framework for biophysical characterization of interactions between proteins and polymers which could be useful in designing polymer-protein hybrids.


Asunto(s)
Polímeros , Tecnicas de Microbalanza del Cristal de Cuarzo , Dispersión del Ángulo Pequeño , Rayos X , Difracción de Rayos X , Proteínas/química , Peroxidasa de Rábano Silvestre , Cuarzo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...