Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 381
Filtrar
1.
Mar Environ Res ; 199: 106621, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38909538

RESUMEN

The seabed of the Antarctic continental shelf hosts most of Antarctica's known species, including taxa considered indicative of vulnerable marine ecosystems (VMEs). Nonetheless, the potential impact of climatic and environmental change, including marine icescape transition, on Antarctic shelf zoobenthos, and their blue carbon-associated function, is still poorly characterised. To help narrow knowledge gaps, four continental shelf study areas, spanning a southern polar gradient, were investigated for zoobenthic (principally epi-faunal) carbon storage (a component of blue carbon), and potential environmental influences, employing a functional group approach. Zoobenthic carbon storage was highest at the two southernmost study areas (with a mean estimate of 41.6 versus 7.2 g C m-2) and, at each study area, increased with morphotaxa richness, overall faunal density, and VME indicator density. Functional group mean carbon content varied with study area, as did each group's percentage contribution to carbon storage and faunal density. Of the environmental variables explored, sea-ice cover and primary production, both likely to be strongly impacted by climate change, featured in variable subsets most highly correlating with assemblage and carbon storage (by functional groups) structures. The study findings can underpin biodiversity- and climate-considerate marine spatial planning and conservation measures in the Southern Ocean.


Asunto(s)
Biodiversidad , Carbono , Cambio Climático , Regiones Antárticas , Carbono/metabolismo , Carbono/análisis , Animales , Ecosistema , Monitoreo del Ambiente , Organismos Acuáticos , Secuestro de Carbono , Cubierta de Hielo/química
2.
Mar Pollut Bull ; 204: 116529, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38824705

RESUMEN

In the Arctic Ocean, variations in the colored dissolved organic matter (CDOM) have important value and significance. This study proposed and evaluated a novel method by combining the Google Earth Engine with a multilayer back-propagation neural network to retrieve CDOM concentration. This model performed well on the testing data and independent validation data (R2 = 0.76, RMSE = 0.37 m-1, MAPD = 35.43 %), and it was applied to Moderate Resolution Imaging Spectroradiometer (MODIS) images. The CDOM distribution in the Arctic Ocean and its main sea areas was first depicted during the ice-free period from 2002 to 2021, with average CDOM concentration in the range of 0.25 and 0.31 m-1. High CDOM concentration appeared in coastal areas affected by rivers on the Siberian side. The CDOM concentration was highly correlated with salinity (r = -0.92) and discharge (r > 0.68), while melting sea ice diluted seawater and CDOM concentration.


Asunto(s)
Monitoreo del Ambiente , Océanos y Mares , Tecnología de Sensores Remotos , Agua de Mar , Regiones Árticas , Monitoreo del Ambiente/métodos , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Salinidad , Cubierta de Hielo/química
3.
Environ Pollut ; 354: 124181, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38768677

RESUMEN

Through a comprehensive investigation into the historical profiles of black carbon derived from ice cores, the spatial distributions of light-absorbing impurities in snowpit samples, and carbon isotopic compositions of black carbon in snowpit samples of the Third Pole, we have identified that due to barriers of the Himalayas and remove of wet deposition, local sources rather than those from seriously the polluted South Asia are main contributors of light-absorbing impurities in the inner part of the Third Pole. Therefore, reducing emissions from residents of the Third Pole themselves is a more effective way of protecting the glaciers of the inner Third Pole in terms of reducing concentrations of light-absorbing particles in the atmosphere and on glaciers.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Cubierta de Hielo/química , Asia , Hollín/química , Atmósfera/química , Nieve/química , Sur de Asia , Himalayas
4.
Environ Res ; 257: 119251, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38815714

RESUMEN

The bioavailable diverse dissolved organic matter (DOM) present in glacial meltwater significantly contributes to downstream carbon cycling in mountainous regions. However, the comprehension of molecular-level characteristics of riverine DOM, from tributary to downstream and their fate in glacier-fed desert rivers remains limited. Herein, we employed spectroscopic and high-resolution mass spectrometry techniques to study both optical and molecular-level characteristics of DOM in the Tarim River catchment, northwest China. The results revealed that the DOC values in the downstream were higher than those in the tributaries, yet they remained comparable to those found in other glacier-fed streams worldwide. Five distinct components were identified using EEM-PARAFAC analysis in both tributary and downstream samples. The dominance of three protein-like components in tributary samples, contrasting with a higher presence of humic-like components in downstream samples, which implied that the dilution and alterations of the glacier DOM signature and overprinting with terrestrial-derived DOM. Molecular composition revealed that thousands of compounds with higher molecular weight and increased aromaticity were transformed, generated and introduced from terrestrial inputs during downstream transportation. The twofold rise in polycyclic aromatic and polyphenolic compounds observed downstream compared to tributaries indicated a greater influx of terrestrial organic matter introduced into the downstream during water transportation. The study suggests that the glacier-sourced DOM experienced minimal photodegradations, with limited influence from human activities, while also being shaped by terrestrial inputs during its transit in the alpine-arid region. This unique scenario offers valuable insights into comprehending the fate of DOM originating from glacial meltwater in arid mountainous regions.


Asunto(s)
Cubierta de Hielo , Ríos , China , Ríos/química , Cubierta de Hielo/química , Monitoreo del Ambiente/métodos , Compuestos Orgánicos/análisis , Contaminantes Químicos del Agua/análisis , Sustancias Húmicas/análisis , Espectrometría de Masas , Clima Desértico
5.
Sci Total Environ ; 933: 173187, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38750762

RESUMEN

Cryoconite holes (water and sediment-filled depressions), found on glacier surfaces worldwide, serve as reservoirs of microbes, carbon, trace elements, and nutrients, transferring these components downstream via glacier hydrological networks. Through targeted amplicon sequencing of carbon and nitrogen cycling genes, coupled with functional inference-based methods, we explore the functional diversity of these mini-ecosystems within Antarctica and the Himalayas. These regions showcase distinct environmental gradients and experience varying rates of environmental change influenced by global climatic shifts. Analysis revealed a diverse array of photosynthetic microorganisms, including Stramenopiles, Cyanobacteria, Rhizobiales, Burkholderiales, and photosynthetic purple sulfur Proteobacteria. Functional inference highlighted the high potential for carbohydrate, amino acid, and lipid metabolism in the Himalayan region, where organic carbon concentrations surpassed those in Antarctica by up to 2 orders of magnitude. Nitrogen cycling processes, including fixation, nitrification, and denitrification, are evident, with Antarctic cryoconite exhibiting a pronounced capacity for nitrogen fixation, potentially compensating for the limited nitrate concentrations in this region. Processes associated with the respiration of elemental sulfur and inorganic sulfur compounds such as sulfate, sulfite, thiosulfate, and sulfide suggest the presence of a complete sulfur cycle. The Himalayan region exhibits a higher potential for sulfur cycling, likely due to the abundant sulfate ions and sulfur-bearing minerals in this region. The capability for complete iron cycling through iron oxidation and reduction reactions was also predicted. Methanogenic archaea that produce methane during organic matter decomposition and methanotrophic bacteria that utilize methane as carbon and energy sources co-exist in the cryoconite, suggesting that these niches support the complete cycling of methane. Additionally, the presence of various microfauna suggests the existence of a complex food web. Collectively, these results indicate that cryoconite holes are self-sustaining ecosystems that drive elemental cycles on glaciers and potentially control carbon, nitrogen, sulfur, and iron exports downstream.


Asunto(s)
Cubierta de Hielo , Cubierta de Hielo/química , Regiones Antárticas , Ciclo del Nitrógeno , Ciclo del Carbono , Ecosistema , Carbono/metabolismo , Nitrógeno/análisis
6.
J Environ Manage ; 358: 120810, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593738

RESUMEN

The rise in oil trade and transportation has led to a continuous increase in the risk of oil spills, posing a serious worldwide concern. However, there is a lack of numerical models for predicting oil spill transport in freshwater, especially under icy conditions. To tackle this challenge, we developed a prediction system for oil with ice modeling by coupling the General NOAA Operational Modeling Environment (GNOME) model with the Great Lakes Operational Forecast System (GLOFS) model. Taking Lake Erie as a pilot study, we used observed drifter data to evaluate the performance of the coupled model. Additionally, we developed six hypothetical oil spill cases in Lake Erie, considering both with and without ice conditions during the freezing, stable, and melting seasons spanning from 2018 to 2022, to investigate the impacts of ice cover on oil spill processes. The results showed the effective performance of the coupled model system in capturing the movements of a deployed drifter. Through ensemble simulations, it was observed that the stable season with high-concentration ice had the most significant impact on limiting oil transport compared to the freezing and melting seasons, resulting in an oil-affected open water area of 49 km2 on day 5 with ice cover, while without ice cover it reached 183 km2. The stable season with high-concentration ice showed a notable reduction in the probability of oil presence in the risk map, whereas this reduction effect was less prominent during the freezing and melting seasons. Moreover, negative correlations between initial ice concentration and oil-affected open water area were consistent, especially on day 1 with a linear regression R-squared value of 0.94, potentially enabling rapid prediction. Overall, the coupled model system serves as a useful tool for simulating oil spills in the world's largest freshwater system, particularly under icy conditions, thus enhancing the formulation of effective emergency response strategies.


Asunto(s)
Cubierta de Hielo , Lagos , Contaminación por Petróleo , Cubierta de Hielo/química , Modelos Teóricos , Monitoreo del Ambiente
7.
An Acad Bras Cienc ; 95(suppl 3): e20220158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38055510

RESUMEN

This article compares isotopic, ionic and climatic data from two firn cores from the West Antarctic Ice Sheet (WAIS). The IC-02 (88°01'21.3"S , 82°04'21.7"W) and the IC-05 (82°30'30.8"S , 79°28'02.7"W) closer to the coast. The IC-02 had 488 samples analyzed covering 14.58 meters depth while the IC-05 had 602 samples analyzed covering 19.73 meters depth. The time interval for both ice cores is 25 years ranging from 1978 to 2003. Sodium, sulfate and chloride were analyzed via ion chromatography using three DionexTM ionic chromatographers at the laboratories of Centro Polar e Climático (CPC) and at the Climate Change Institute. Stable isotope data was determined using cavity ring-down spectroscopy in a Picarro® spectrometer at the CPC. Annual accumulation was greater at IC-05 with an average of 0.35 m.eq.w.a-1 compared to 0.25 m.eq.w.a-1 at the IC-02. Stable isotope data was approximately 1.3 times more negative at the IC-02 which also presented higher d values. Na+ and Cl- were in higher concentrations at the IC-05 however Cl/Na was greater in the IC-02. The Cl excess was found to be derived from fractionation of sea salt aerosols and not related to volcanism. This work presents new insights regarding the chemical differences between ice cores.


Asunto(s)
Isótopos , Sodio , Regiones Antárticas , Iones , Cubierta de Hielo/química
8.
Microb Genom ; 9(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37937832

RESUMEN

The rapid warming of the Arctic is threatening the demise of its glaciers and their associated ecosystems. Therefore, there is an urgent need to explore and understand the diversity of genomes resident within glacial ecosystems endangered by human-induced climate change. In this study we use genome-resolved metagenomics to explore the taxonomic and functional diversity of different habitats within glacier-occupied catchments. Comparing different habitats within such catchments offers a natural experiment for understanding the effects of changing habitat extent or even loss upon Arctic microbiota. Through binning and annotation of metagenome-assembled genomes (MAGs) we describe the spatial differences in taxon distribution and their implications for glacier-associated biogeochemical cycling. Multiple taxa associated with carbon cycling included organisms with the potential for carbon monoxide oxidation. Meanwhile, nitrogen fixation was mediated by a single taxon, although diverse taxa contribute to other nitrogen conversions. Genes for sulphur oxidation were prevalent within MAGs implying the potential capacity for sulphur cycling. Finally, we focused on cyanobacterial MAGs, and those within cryoconite, a biodiverse microbe-mineral granular aggregate responsible for darkening glacier surfaces. Although the metagenome-assembled genome of Phormidesmis priestleyi, the cyanobacterium responsible for forming Arctic cryoconite was represented with high coverage, evidence for the biosynthesis of multiple vitamins and co-factors was absent from its MAG. Our results indicate the potential for cross-feeding to sustain P. priestleyi within granular cryoconite. Taken together, genome-resolved metagenomics reveals the vulnerability of glacier-associated microbiota to the deletion of glacial habitats through the rapid warming of the Arctic.


Asunto(s)
Cubierta de Hielo , Microbiota , Humanos , Cubierta de Hielo/química , Cubierta de Hielo/microbiología , Metagenoma , Microbiota/genética , Biodiversidad , Azufre
9.
Nature ; 622(7983): 528-536, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37853149

RESUMEN

Melting of the Greenland ice sheet (GrIS) in response to anthropogenic global warming poses a severe threat in terms of global sea-level rise (SLR)1. Modelling and palaeoclimate evidence suggest that rapidly increasing temperatures in the Arctic can trigger positive feedback mechanisms for the GrIS, leading to self-sustained melting2-4, and the GrIS has been shown to permit several stable states5. Critical transitions are expected when the global mean temperature (GMT) crosses specific thresholds, with substantial hysteresis between the stable states6. Here we use two independent ice-sheet models to investigate the impact of different overshoot scenarios with varying peak and convergence temperatures for a broad range of warming and subsequent cooling rates. Our results show that the maximum GMT and the time span of overshooting given GMT targets are critical in determining GrIS stability. We find a threshold GMT between 1.7 °C and 2.3 °C above preindustrial levels for an abrupt ice-sheet loss. GrIS loss can be substantially mitigated, even for maximum GMTs of 6 °C or more above preindustrial levels, if the GMT is subsequently reduced to less than 1.5 °C above preindustrial levels within a few centuries. However, our results also show that even temporarily overshooting the temperature threshold, without a transition to a new ice-sheet state, still leads to a peak in SLR of up to several metres.


Asunto(s)
Modelos Climáticos , Congelación , Calentamiento Global , Cubierta de Hielo , Elevación del Nivel del Mar , Temperatura , Calentamiento Global/estadística & datos numéricos , Groenlandia , Cubierta de Hielo/química , Factores de Tiempo
10.
Environ Sci Pollut Res Int ; 30(50): 109659-109670, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37776433

RESUMEN

Understanding the origins of Tibetan Plateau (TP) glacier dust is vital for glacier dynamics and regional climate understanding. In May 2016, snow pit samples were collected from glaciers on the TP: Qiyi (QY) in the north, Yuzhufeng (YZF) in the center, and Xiaodongkemadi (XDK) in the south. Rare earth element (REE) concentrations were analyzed using inductively coupled plasma mass spectrometry (ICP-MS), and near-surface PM10 concentrations were extracted from a dataset of Chinese near-surface PM10. Two tracing approaches were used: direct REE tracing and an indirect approach combining potential source contribution function (PSCF) and concentration-weighted trajectory (CWT). Both methods yielded consistent results. Pre-monsoon, TP surface soils, Taklimakan Desert, and Qaidam Basin contributed to glacier dust. Notably, central and southern glaciers showed Thar Desert influence, unlike the northern ones. Taklimakan and Thar Deserts were major contributors due to their substantial contribution and high dust concentration. Taklimakan dust, influenced by terrain and westerly winds, affected central and southern glaciers more than northern ones. Westerlies carried Thar Desert dust to the TP after it was uplifted by updrafts in northwest India, significantly affecting southern glaciers. Furthermore, comparing the two tracer methods, the indirect approach combining PSCF and CWT proved more effective for short-term dust source tracing.


Asunto(s)
Cubierta de Hielo , Metales de Tierras Raras , Tibet , Cubierta de Hielo/química , Estaciones del Año , Polvo/análisis , Monitoreo del Ambiente/métodos , Metales de Tierras Raras/análisis
11.
Chemosphere ; 340: 139757, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37574091

RESUMEN

Relics of World War One (WW1) were buried in alpine glaciers around 100 years ago. Today, these are emerging from the ice due to widespread glacier retreat, and are in direct contact with glacial meltwater-fed streams. To address a possible emergent contamination, we quantified major and trace elements (M-TEs) by mass spectrometry in water and larvae of Diamesa zernyi from three glacial streams fed by glaciers differently impacted by the Italian Austro-Hungarian war, in the Adamello-Presanella mountain range (Italian Alps): Lares and Presena, the two main battlefields, and Amola, 8 km from the front. M-TEs in stream water were interpreted using the crustal enrichment factor (EFc) while larval uptake was quantified by adopting the bioaccumulation factor (BAF). Despite low M-TEs concentrations in the water, in a range between 1 ng L-1 (Ag, Ta) and 1-2 mg L-1 (Al, Fe, Mg), low to moderate enrichments (10 ≥ EFc≥ 6) were observed for Sb and U in Presena and for Ag, As, Bi, Cd, Li, Mo, Pb, Sb and U in Lares. In addition, M-TE mass concentrations in larvae were up to ninety thousand times higher than in water, from 20 to 50 ng g-1 dry weight (d.w.; for Bi, Sb, Ta, Tl) to 1-4 mg g-1 d.w. (for Al, Fe, Na, and Mg). Larvae from Lares accumulated the largest amount of metals and metalloids, including those mostly used in the manufacture of artillery shells (As, Cu, Ni, Pb, Sb; BAFs from 375 to about 11,500). This was expected as most of the WW1 battles in this mountain range were fought on the Lares glacier, where the greatest number of war relics are emerging. These results provide preliminary evidence of water contamination and bioaccumulation of metals and metalloids by glacial fauna as a possible legacy of WW1 in the Alps.


Asunto(s)
Chironomidae , Oligoelementos , Animales , Agua/análisis , Plomo/análisis , Monitoreo del Ambiente/métodos , Cubierta de Hielo/química , Italia , Oligoelementos/análisis
12.
J Phycol ; 59(5): 939-949, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37572353

RESUMEN

Cryoconite, the dark sediment on the surface of glaciers, often aggregates into oval or irregular granules serving as biogeochemical factories. They reduce a glacier's albedo, act as biodiversity hotspots by supporting aerobic and anaerobic microbial communities, constitute one of the organic matter (OM) sources on glaciers, and are a feeder for micrometazoans. Although cryoconite granules have multiple roles on glaciers, their formation is poorly understood. Cyanobacteria are ubiquitous and abundant engineers of cryoconite hole ecosystems. This study tested whether cyanobacteria may be responsible for cryoconite granulation as a sole biotic element. Incubation of Greenlandic, Svalbard, and Scandinavian cyanobacteria in different nutrient availabilities and substrata for growth (distilled water alone and water with quartz powder, furnaced cryoconite without OM, or powdered rocks from glacial catchment) revealed that cyanobacteria bind mineral particles into granules. The structures formed in the experiment resembled those commonly observed in natural cryoconite holes: they contained numerous cyanobacterial filaments protruding from aggregated mineral particles. Moreover, all examined strains were confirmed to produce extracellular polymeric substances (EPS), which suggests that cryoconite granulation is most likely due to EPS secretion by gliding cyanobacteria. In the presence of water as the only substrate for growth, cyanobacteria formed mostly carpet-like mats. Our data empirically prove that EPS-producing oscillatorialean cyanobacteria isolated from the diverse community of cryoconite microorganisms can form granules from mineral substrate and that the presence of the mineral substrate increases the probability of the formation of these important and complex biogeochemical microstructures on glaciers.


Asunto(s)
Cianobacterias , Microbiota , Cubierta de Hielo/química , Cubierta de Hielo/microbiología , Clima Frío , Cianobacterias/metabolismo , Minerales/metabolismo , Agua
13.
Mar Environ Res ; 190: 106083, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37422995

RESUMEN

The carbonate chemistry of sea ice plays a critical role in global ocean carbon cycles, particularly in polar regions which are subject to significant climate change-induced sea ice variation. However, less is known about the interaction of carbonate system between sea ice and its adjacent seawaters due to sparse sampling and disparities in reported results. Here we provide an insight into this issue by collecting and measuring dissolved inorganic carbon (DIC) and associated environmental parameters in Arctic sea ice during a cruise in the summer of 2014. Our observations show that DIC in Arctic summer sea ice has a mean concentration of 463.3 ± 213.0 µmol/kg and appears to be controlled mainly by the fraction of brine water in the ice. The low Chl a and nutrients content in sea ice indicate minor contribution of biological uptake to sea-ice DIC in the western Arctic Ocean. The DIC concentration in surface water (<100 m depth) decreased from a mean of 2108.3 ± 45.4 µmol/kg in 1994 to a mean of 2052.4 ± 98.6 µmol/kg in 2014, due to the enhanced sea ice melting that dilutes the DIC concentrations of surrounding seawaters.


Asunto(s)
Cubierta de Hielo , Agua de Mar , Cubierta de Hielo/química , Agua de Mar/química , Cambio Climático , Regiones Árticas , Agua , Carbono
16.
Huan Jing Ke Xue ; 44(1): 512-519, 2023 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-36635839

RESUMEN

Soil microorganisms dominate the biogeochemical cycles of elements in glacier forelands, which continue to expand due to the climate warming. We analyzed the soil microbial functional characteristics among three types of glacier forelands on the Tibetan Plateau: Yulong Glacier (Y), a temperate glacier; Tianshan Urumqi Glacier No.1 (T), a sub-continental glacier; and Laohugou Glacier No.12 (L), a continental glacier. Here, soil microbial functional genes were quantified using quantitative microbial element cycling technology (QMEC). We found that, in the three glacier forelands, the abundances of soil microbial functional genes related to hemicellulose degradation and reductive acetyl-CoA pathway were highest compared with other carbon-related functional genes. The main nitrogen cycling genes were involved in ammonification. The functional genes of the phosphorus cycle and sulfur cycle were related to organic phosphate mineralization and sulfur oxidation. Furthermore, the soils of the temperate glacier foreland with better hydrothermal conditions had the most complex microbial functional gene structure and the highest functional potentials, followed by those of the soils of continental glacier foreland with the driest environment. These significant differences in soil microbial functional genes among the three types of glacier forelands verified the impacts of geographic difference on microbial functional characteristics, as well as providing a basis for the study of soil microbial functions and biogeochemical cycles in glacier forelands.


Asunto(s)
Cubierta de Hielo , Microbiología del Suelo , Tibet , Cubierta de Hielo/química , Suelo/química , Azufre/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(36): e2120770119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037334

RESUMEN

The last two decades have seen a dramatic decline and strong year-to-year variability in Arctic winter sea ice, especially in the Barents-Kara Sea (BKS), changes that have been linked to extreme midlatitude weather and climate. It has been suggested that these changes in winter sea ice arise largely from a combined effect of oceanic and atmospheric processes, but the relative importance of these processes is not well established. Here, we explore the role of atmospheric circulation patterns on BKS winter sea ice variability and trends using observations and climate model simulations. We find that BKS winter sea ice variability is primarily driven by a strong anticyclonic anomaly over the region, which explains more than 50% of the interannual variability in BKS sea-ice concentration (SIC). Recent intensification of the anticyclonic anomaly has warmed and moistened the lower atmosphere in the BKS by poleward transport of moist-static energy and local processes, resulting in an increase in downwelling longwave radiation. Our results demonstrate that the observed BKS winter sea-ice variability is primarily driven by atmospheric, rather than oceanic, processes and suggest a persistent role of atmospheric forcing in future Arctic winter sea ice loss.


Asunto(s)
Atmósfera , Cubierta de Hielo , Regiones Árticas , Clima , Cubierta de Hielo/química , Océanos y Mares , Estaciones del Año , Tiempo
18.
Science ; 377(6606): 654-659, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35926027

RESUMEN

The oxygen concentrations of oceanic deep-water and atmospheric carbon dioxide (pCO2) are intrinsically linked through organic carbon remineralization and storage as dissolved inorganic carbon in the deep sea. We present a high-resolution reconstruction of relative changes in oxygen concentration in the deep North Atlantic for the past 1.5 million years using the carbon isotope gradient between epifaunal and infaunal benthic foraminifera species as a proxy for paleo-oxygen. We report a significant (>40 micromole per kilogram) reduction in glacial Atlantic deep-water oxygenation at ~960 thousand to 900 thousand years ago that coincided with increased continental ice volume and a major change in ocean thermohaline circulation. Paleo-oxygen results support a scenario of decreasing deep-water oxygen concentrations, increased respired carbon storage, and a reduction in glacial pCO2 across the Middle Pleistocene Transition.


Asunto(s)
Cubierta de Hielo , Oxígeno , Agua de Mar , Dióxido de Carbono/análisis , Foraminíferos , Cubierta de Hielo/química , Cubierta de Hielo/microbiología , Oxígeno/análisis , Agua de Mar/química , Agua de Mar/microbiología
19.
Sci Total Environ ; 848: 157784, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35926601

RESUMEN

Accelerated melting of mountain glaciers due to global warming has a significant impact on downstream biogeochemical evolution because a large amount of labile dissolved organic matter (DOM) is released. However, the DOM evolution processes from glacier to downstream are not well understood. To investigate these processes, samples from the glacial surface and terminating runoff of a mountain glacier on the Tibetan Plateau were collected simultaneously throughout the melting season. The samples were analyzed to determine the dissolved organic carbon (DOC) contents and chemical compositions by means of a combination of fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results indicate that the DOC concentrations were higher in the snow samples than in the glacial runoff samples, although a significantly higher concentration of inorganic ions was found in the glacial runoff samples, suggesting the dominant source of DOM in the glacial runoff was the glacier. The EEM-PARAFAC revealed four fluorescent components in both the snow and glacial runoff samples. However, significantly different ratios between the four components of these two categories of samples suggested chemical, physical and/or biological evolution of DOM during transport. Molecular chemical composition analyses by FT-ICR MS revealed that the DOM composition varied dramatically between the glacier and the glacial runoff. More than 50 % of the molecules were transformed from aliphatic and peptide-like compounds in the snow samples into highly unsaturated and phenolic-like compounds in the glacial runoff samples. The potential chemical transformation of DOM was likely related to biological and/or photolytic evolution during transport. Our results suggest that chemical evolution of glacial DOM could occur during the downstream transport, which is expected to be useful for further research exploring the fate of DOM and carbon cycling from the cryospheric environment and evaluating the biogeochemical effects.


Asunto(s)
Materia Orgánica Disuelta , Cubierta de Hielo , Carbono , Cubierta de Hielo/química , Iones , Tibet
20.
Proc Natl Acad Sci U S A ; 119(35): e2201871119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994649

RESUMEN

The stability of widespread methane hydrates in shallow subsurface sediments of the marine continental margins is sensitive to temperature increases experienced by upper intermediate waters. Destabilization of methane hydrates and ensuing release of methane would produce climatic feedbacks amplifying and accelerating global warming. Hence, improved assessment of ongoing intermediate water warming is crucially important, especially that resulting from a weakening of Atlantic meridional overturning circulation (AMOC). Our study provides an independent paleoclimatic perspective by reconstructing the thermal structure and imprint of methane oxidation throughout a water column of 1,300 m. We studied a sediment sequence from the eastern equatorial Atlantic (Gulf of Guinea), a region containing abundant shallow subsurface methane hydrates. We focused on the early part of the penultimate interglacial and present a hitherto undocumented and remarkably large intermediate water warming of 6.8 °C in response to a brief episode of meltwater-induced, modest AMOC weakening centered at 126,000 to 125,000 y ago. The warming of intermediate waters to 14 °C significantly exceeds the stability field of methane hydrates. In conjunction with this warming, our study reveals an anomalously low δ13C spike throughout the entire water column, recorded as primary signatures in single and pooled shells of multitaxa foraminifers. This extremely negative δ13C excursion was almost certainly the result of massive destabilization of methane hydrates. This study documents and connects a sequence of climatic events and climatic feedback processes associated with and triggered by the penultimate climate warming that can serve as a paleoanalog for modern ongoing warming.


Asunto(s)
Calentamiento Global , Cubierta de Hielo , Metano , Cubierta de Hielo/química , Metano/química , Oxidación-Reducción , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...