Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
PLoS One ; 19(9): e0307477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39325812

RESUMEN

Across the United States, melons are a high demand crop reaching a net production of 2.7 million tons in 2020 with an economic value of $915 million dollars. The goal of this study was to characterize the bacterial diversity of cantaloupe rinds and soil from commercial melon fields at the point of harvest from two major production regions, Arizona, and California. Cantaloupes and composite soil samples were collected from three different commercial production fields, including Imperial Valley, CA, Central Valley, CA, and Yuma Valley, AZ, at the point of harvest over a three-month period, and 16S rRNA gene amplicon sequencing was used to assess bacterial diversity and community structure. The Shannon Diversity Index showed higher diversity among soil compared to the cantaloupe rind regardless of the sampling location. Regional diversity of soil differed significantly, whereas there was no difference in diversity on cantaloupe surfaces. Bray-Curtis Principal Coordinate Analysis (PCoA) dissimilarity distance matrix found the samples clustered by soil and melon individually, and then clustered tighter by region for the soil samples compared to the cantaloupe samples. Taxonomic analysis found total families among the regions to be 52 for the soil samples and 12 among cantaloupes from all three locations, but composition and abundance did vary between the three locations. Core microbiome analysis identified two taxa shared among soil and cantaloupe which were Bacillaceae and Micrococcaceae. This study lays the foundation for characterizing the cantaloupe microbiome at the point of harvest that provides the cantaloupe industry with those bacterial families that are potentially present entering post-harvest processing, which could assist in improving cantaloupe safety, shelf-life, cantaloupe quality and other critical aspects of cantaloupe post-harvest practices.


Asunto(s)
Bacterias , Cucumis melo , ARN Ribosómico 16S , Microbiología del Suelo , Arizona , Cucumis melo/microbiología , California , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Biodiversidad , Suelo/química , Microbiota/genética
2.
Sci Rep ; 14(1): 20242, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215137

RESUMEN

Fusarium oxysporum (Schl.) f.sp. melonis, which causes muskmelon wilt disease, is a destructive filamentous fungal pathogen, attracting more attention to the search for effective fungicides against this pathogen. In particular, Silver nanoparticles (AgNPs) have strong antimicrobial properties and they are not easy to develop drug resistance, which provides new ideas for the prevention and control of muskmelon Fusarium wilt (MFW). This paper studied the effects of AgNPs on the growth and development of muskmelon, the control efficacy on Fusarium wilt of muskmelon and the antifungal mechanism of AgNPs to F. oxysporum. The results showed that AgNPs could inhibit the growth of F. oxysporum on the PDA and in the PDB medium at 100-200 mg/L and the low concentration of 25 mg/L AgNPs could promote the seed germination and growth of muskmelon seedlings and reduce the incidence of muskmelon Fusarium wilt. Further studies on the antifungal mechanism showed that AgNPs could impair the development, damage cell structure, and interrupt cellular metabolism pathways of this fungus. TEM observation revealed that AgNPs treatment led to damage to the cell wall and membrane and accumulation of vacuoles and vessels, causing the leakage of intracellular contents. AgNPs treatment significantly hampered the growth of mycelia in the PDB medium, even causing a decrease in biomass. Biochemical properties showed that AgNPs treatment stimulated the generation of reactive oxygen species (ROS) in 6 h, subsequently producing malondialdehyde (MDA) and increasing protective enzyme activity. After 6 h, the protective enzyme activity decreased. These results indicated that AgNPs destroy the cell structure and affect the metabolisms, eventually leading to the death of fungus.


Asunto(s)
Antifúngicos , Fusarium , Nanopartículas del Metal , Enfermedades de las Plantas , Plata , Trichoderma , Fusarium/efectos de los fármacos , Nanopartículas del Metal/química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Plata/farmacología , Plata/química , Trichoderma/fisiología , Trichoderma/metabolismo , Antifúngicos/farmacología , Cucumis melo/microbiología
3.
Arch Virol ; 169(6): 126, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753067

RESUMEN

A novel mitovirus was identified in Fusarium oxysporum f. sp. melonis strain T-SD3 and designated as "Fusarium oxysporum mitovirus 3" (FoMV3). The virus was isolated from diseased muskmelon plants with the typical symptom of fusarium wilt. The complete genome of FoMV3 is 2269 nt in length with a predicted AU content of 61.40% and contains a single open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF was predicted to encode a polypeptide of 679 amino acids (aa) containing a conserved RNA-dependent RNA polymerase (RdRp) domain with a molecular mass of 77.39 kDa, which contains six conserved motifs with the highly conserved GDD tripeptide in motif IV. The 5'-untranslated region (UTR) and 3'-UTR of FoMV3 were predicted to fold into stem-loop structures. BLASTp analysis revealed that the RdRp of FoMV3 shared the highest aa sequence identity (83.85%) with that of Fusarium asiaticum mitovirus 5 (FaMV5, a member of the family Mitoviridae) infecting F. asiaticum, the causal agent of wheat fusarium head blight. Phylogenetic analysis further suggested that FoMV3 is a new member of the genus Unuamitovirus within the family Mitoviridae. This is the first report of a new mitovirus associated with F. oxysporum f. sp. melonis.


Asunto(s)
Virus Fúngicos , Fusarium , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , Fusarium/virología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Virus Fúngicos/clasificación , Virus ARN/genética , Virus ARN/aislamiento & purificación , Virus ARN/clasificación , Secuenciación Completa del Genoma , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Cucumis melo/virología , Cucumis melo/microbiología , Secuencia de Aminoácidos , Regiones no Traducidas 5' , Regiones no Traducidas 3' , Secuencia de Bases
4.
Epidemiol Infect ; 152: e78, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38705587

RESUMEN

In September 2023, the UK Health Security Agency identified cases of Salmonella Saintpaul distributed across England, Scotland, and Wales, all with very low genetic diversity. Additional cases were identified in Portugal following an alert raised by the United Kingdom. Ninety-eight cases with a similar genetic sequence were identified, 93 in the United Kingdom and 5 in Portugal, of which 46% were aged under 10 years. Cases formed a phylogenetic cluster with a maximum distance of six single nucleotide polymorphisms (SNPs) and average of less than one SNP between isolates. An outbreak investigation was undertaken, including a case-control study. Among the 25 UK cases included in this study, 13 reported blood in stool and 5 were hospitalized. One hundred controls were recruited via a market research panel using frequency matching for age. Multivariable logistic regression analysis of food exposures in cases and controls identified a strong association with cantaloupe consumption (adjusted odds ratio: 14.22; 95% confidence interval: 2.83-71.43; p-value: 0.001). This outbreak, together with other recent national and international incidents, points to an increase in identifications of large outbreaks of Salmonella linked to melon consumption. We recommend detailed questioning and triangulation of information sources to delineate consumption of specific fruit varieties during Salmonella outbreaks.


Asunto(s)
Brotes de Enfermedades , Intoxicación Alimentaria por Salmonella , Humanos , Portugal/epidemiología , Masculino , Adulto , Femenino , Reino Unido/epidemiología , Persona de Mediana Edad , Niño , Adolescente , Estudios de Casos y Controles , Adulto Joven , Anciano , Preescolar , Intoxicación Alimentaria por Salmonella/epidemiología , Intoxicación Alimentaria por Salmonella/microbiología , Cucumis melo/microbiología , Salmonella/genética , Salmonella/aislamiento & purificación , Salmonella/clasificación , Lactante , Anciano de 80 o más Años , Filogenia
5.
J Food Prot ; 87(10): 100299, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38734412

RESUMEN

Field-packing of cantaloupes involves numerous food contact surfaces that can contamination melons with foodborne pathogens; the soil on these surfaces increases throughout the harvest day. Data are lacking on the cross-contamination risk from contaminated food contact surfaces under the dry conditions typical of cantaloupe field-packing operations. This study sought to evaluate the survival of Salmonella and Listeria monocytogenes on cantaloupe field-pack food contact surfaces using both a wet and dry inoculum to provide insights into managing foodborne pathogen contamination risks. Five clean or fouled materials (cotton gloves, nitrile gloves, rubber gloves, cotton rags, and stainless steel) were inoculated with a cocktail of either Salmonella or L. monocytogenes. A wet inoculum was spot inoculated (100 µL) onto coupons. A dry inoculum was prepared by mixing wet inoculum with 100 g of sterile sand and shaking the coupons with the inoculated sand for 2 min. Coupons were held at 35°C (35% RH) and enumerated at 0, 2, 4, 6, and 8 h. Significant differences in pathogen concentrations over time were calculated, and the GInaFiT add-in tool for Excel was used to build Log-linear, Weibull, and Biphasic die-off models. Depending on the material type, coupon condition, and inoculum type, Salmonella and L. monocytogenes reductions over 8 h ranged from 0.3 to 3.3 and -0.4 to 4.2 log10 CFU/coupon, respectively. For all material types, Salmonella reductions were highest on wet-inoculated clean coupons; L. monocytogenes varied by material type. Weibull and biphasic models were a better fit of respective pathogen die-off curves than linear models. Overall, faster die-off rates were seen for wet inoculated and clean materials. Since pathogen populations remained viable over the study duration and both inoculum type and coupon condition impacted survival, frequent sanitation or replacement of food contact surfaces during the operational day is needed to reduce the risk of cross-contamination.


Asunto(s)
Recuento de Colonia Microbiana , Cucumis melo , Contaminación de Alimentos , Microbiología de Alimentos , Listeria monocytogenes , Salmonella , Cucumis melo/microbiología , Contaminación de Alimentos/análisis , Humanos , Embalaje de Alimentos/métodos
6.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791411

RESUMEN

Melon (Cucumis melo L.) is a global commercial crop that is sensitive to seed-borne wilt infections caused by Fusarium oxysporum f. sp. melonis (Fom). To address the challenge of detecting Fom contamination, we designed a probe-based real-time PCR method, TDCP2, in combination with rapid or column-based DNA extraction protocols to develop reliable molecular detection methods. Utilizing TDCP2, the detection rate reached 100% for both artificially Fom-inoculated (0.25-25%) and pod-inoculated melon seeds in conjunction with DNA samples from either the rapid or column-based extraction protocol. We performed analyses of precision, recall, and F1 scores, achieving a maximum F1 score of 1 with TDCP2, which highlights the robustness of the method. Additionally, intraday and interday assays were performed, which revealed the high reproducibility and stability of column-based DNA extraction protocols combined with TDCP2. These metrics confirm the reliability of our developed protocols, setting a foundation for future enhancements in seed pathology diagnostics and potentially broadening their applicability across various Fom infection levels. In the future, we hope that these methods will reduce food loss by improving the control and management of melon diseases.


Asunto(s)
Fusarium , Enfermedades de las Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas , Fusarium/genética , Fusarium/aislamiento & purificación , Semillas/microbiología , Enfermedades de las Plantas/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Cucurbitaceae/microbiología , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , Cucumis melo/microbiología , Reproducibilidad de los Resultados
7.
PLoS One ; 19(4): e0293861, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603714

RESUMEN

The goal of this study was to characterize the bacterial diversity on different melon varieties grown in different regions of the US, and determine the influence that region, rind netting, and variety of melon has on the composition of the melon microbiome. Assessing the bacterial diversity of the microbiome on the melon rind can identify antagonistic and protagonistic bacteria for foodborne pathogens and spoilage organisms to improve melon safety, prolong shelf-life, and/or improve overall plant health. Bacterial community composition of melons (n = 603) grown in seven locations over a four-year period were used for 16S rRNA gene amplicon sequencing and analysis to identify bacterial diversity and constituents. Statistically significant differences in alpha diversity based on the rind netting and growing region (p < 0.01) were found among the melon samples. Principal Coordinate Analysis based on the Bray-Curtis dissimilarity distance matrix found that the melon bacterial communities clustered more by region rather than melon variety (R2 value: 0.09 & R2 value: 0.02 respectively). Taxonomic profiling among the growing regions found Enterobacteriaceae, Bacillaceae, Microbacteriaceae, and Pseudomonadaceae present on the different melon rinds at an abundance of ≥ 0.1%, but no specific core microbiome was found for netted melons. However, a core of Pseudomonadaceae, Bacillaceae, and Exiguobacteraceae were found for non-netted melons. The results of this study indicate that bacterial diversity is driven more by the region that the melons were grown in compared to rind netting or melon type. Establishing the foundation for regional differences could improve melon safety, shelf-life, and quality as well as the consumers' health.


Asunto(s)
Bacillaceae , Cucumis melo , Cucurbitaceae , Estados Unidos , Cucurbitaceae/microbiología , Cucumis melo/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Enterobacteriaceae
8.
Microb Biotechnol ; 17(3): e14437, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38465735

RESUMEN

Escherichia coli O157:H7 causes >73,000 foodborne illnesses in the United States annually, many of which have been associated with fresh ready-to-eat produce including cantaloupe melons. In this study, we created a produce-associated bacterial (PAB) library containing >7500 isolates and screened them for the ability to inhibit the growth of E. coli O157:H7 using an in vitro fluorescence-based growth assay. One isolate, identified by 16S and whole-genome sequence analysis as Enterobacter asburiae, was able to inhibit the growth of E. coli by ~30-fold in vitro and produced zones of inhibition between 13 and 21 mm against 12 E. coli outbreak strains in an agar spot assay. We demonstrated that E. asburiae AEB30 was able to grow, persist and inhibit the growth of E. coli on cantaloupe melons under simulated pre- and post-harvest conditions. Analysis of the E. asburiae AEB30 genome revealed an operon encoding a contact-dependent growth inhibition (CDI) system that when mutated resulted in the loss of E. coli growth inhibition. These data suggest that E. asburiae AEB30 is a potential biocontrol agent to prevent E. coli contamination of cantaloupe melons in both pre- and post-harvest environments and that its mode of action is via a CDI system.


Asunto(s)
Cucumis melo , Cucurbitaceae , Enterobacter , Escherichia coli O157 , Microbiología de Alimentos , Cucumis melo/microbiología , Cucurbitaceae/microbiología , Recuento de Colonia Microbiana
9.
J Appl Microbiol ; 134(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37852677

RESUMEN

AIMS: To identify biocontrol agents to prevent the growth of Salmonella serotype Enterica on cantaloupe melons during the pre- and postharvest periods. METHODS AND RESULTS: We created a produce-associated bacterial library containing 8736 isolates and screened it using an in-vitro fluorescence inhibition assay to identify bacteria that inhibit the growth of S. Enterica. One isolate, Pantoea agglomerans ASB05, was able to grow, persist, and inhibit the growth of S. Enterica on intact cantaloupe melons under simulated pre- and postharvest conditions. We also demonstrated that the growth inhibition of S. Enterica by P. agglomerans ASB05 was due to the production of a phenazine type antibiotic. CONCLUSIONS: Pantoea agglomerans ASB05 is an effective biocontrol agent for the prevention of S. Enterica growth on intact cantaloupe melons in both the pre- and postharvest environments.


Asunto(s)
Cucumis melo , Cucurbitaceae , Pantoea , Salmonella enterica , Cucumis melo/microbiología , Serogrupo
10.
Int J Food Microbiol ; 400: 110266, 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37263173

RESUMEN

Ultrasound technology has been focused on due to its unique advantages in biofilm removal compared with traditional antibacterial methods. Herein, the anti-biofilm properties of low-frequency ultrasound (LFUS) were studied against Enterohemorrhagic Escherichia coli O157: H7 (E. coli O157:H7). After ultrasonication (20 kHz, 300 W) for 5 min, the removal rate of biofilm from polystyrene sheets reached up to 99.999 %. However, the bacterial cells could not be inactivated completely even extending the duration of ultrasonic irradiation to 30 min. Fortunately, this study indicated that LFUS could efficiently weaken the metabolic capacity and biofilm-forming ability of bacterial cells separated from biofilm. It could be associated with the removal of cell surface appendages and damage to cell membrane induced by mechanical vibration and acoustic cavitation. Besides, the genetic analysis proved that the transcription level of genes involved in curli formation was significantly down-regulated during ultrasonic irradiation, thus impeding the process of irreversible adhesion and cells aggregation. Finally, the actual application effect of LFUS was also evaluated in different fresh produces model. The results of this study would provide a theoretical basis for the further application of ultrasound in the food preservation.


Asunto(s)
Biopelículas , Escherichia coli O157 , Microbiología de Alimentos , Ondas Ultrasónicas , Escherichia coli O157/citología , Escherichia coli O157/efectos de la radiación , Biopelículas/efectos de la radiación , Viabilidad Microbiana , Cucumis sativus/microbiología , Cucumis sativus/efectos de la radiación , Cucumis melo/microbiología , Cucumis melo/efectos de la radiación , Lactuca/microbiología , Lactuca/efectos de la radiación , Contaminación de Alimentos
11.
Theor Appl Genet ; 136(1): 4, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36651949

RESUMEN

KEY MESSAGE: Identified a recessive gene (Cmpmr2F) associated with resistance to infection by the powdery mildew causing agent Podosphaera xanthii race 2F. Powdery mildew (PM) is one of the most destructive fungal diseases of melon, which significantly reduces the crop yield and quality. Multiple studies are being performed for in-depth genetic understandings of PM-susceptibility or -resistance mechanisms in melon plants, but the holistic knowledge of the precise genetic basis of PM-resistance is unexplored. In this study, we characterized the recessive gene "Cmpmr2F" and found its association with resistance against the PM causative agent "Podosphaera xanthii race 2F." Fine genetic mapping revealed the major-effect region of a 26.25-kb interval on chromosome 12, which harbored the Cmpmr2F gene corresponding to the MELO3C002403, encoding allantoate amidohydrolase. The functional gene annotation, expression pattern, and sequence alignment analyses were carried out using two contrast parent lines of melon "X055" PM-susceptible and "PI 124112" PM-resistant. Further, gene silencing of Cmpmr2F using virus-induced gene silencing (VIGS) significantly increased PM-resistance in the susceptible plant. In contrast to the previously reported studies, we identified that Cmpmr2F-silenced plants showed no impairment in growth due to less apparent negative effects in silenced melon plants. So, it is believed that the Cmpmr2F gene has great potential for further breeding studies to increase the P. xanthii race 2F resistance in melon. In short, our study provides new genetic resources and a solid foundation for further functional analysis of PM-resistance genes in melon, as well as powerful molecular markers for marker-assisted breeding aimed at developing new melon varieties resistant to PM infection.


Asunto(s)
Cucumis melo , Cucurbitaceae , Cucumis melo/genética , Cucumis melo/microbiología , Cucurbitaceae/genética , Genes Recesivos , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética
12.
Nat Commun ; 13(1): 7897, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550124

RESUMEN

The genomic sequences segregating in experimental populations are often highly divergent from the community reference and from one another. Such divergence is problematic under various short-read-based genotyping strategies. In addition, large structural differences are often invisible despite being strong candidates for causal variation. These issues are exacerbated in specialty crop breeding programs with fewer, lower-quality sequence resources. Here, we examine the benefits of complete genomic information, based on long-read assemblies, in a biparental mapping experiment segregating at numerous disease resistance loci in the non-model crop, melon (Cucumis melo). We find that a graph-based approach, which uses both parental genomes, results in 19% more variants callable across the population and raw allele calls with a 2 to 3-fold error-rate reduction, even relative to single reference approaches using a parent genome. We show that structural variation has played a substantial role in shaping two Fusarium wilt resistance loci with known causal genes. We also report on the genetics of powdery mildew resistance, where copy number variation and local recombination suppression are directly interpretable via parental genome alignments. Benefits observed, even in this low-resolution biparental experiment, will inevitably be amplified in more complex populations.


Asunto(s)
Cucumis melo , Cucurbitaceae , Genotipo , Cucurbitaceae/genética , Variaciones en el Número de Copia de ADN , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética , Cucumis melo/genética , Cucumis melo/microbiología
13.
Sci Rep ; 11(1): 21057, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702930

RESUMEN

Nutrient disorder and presence of disease-causing agents in soilless media negatively influence the growth of muskmelon. To combat these issues, use of environmentally-friendly sanitation techniques is crucial for increased crop productivity. The study was conducted under greenhouse and field conditions to investigate the effect of two different sanitation techniques: steaming and formalin fumigation on various media's characteristics and their impact on muskmelon yield. Media: jantar, guar, wheat straw and rice hull and peat moss of 10% air-filled porosity and sanitized with formalin and steaming. Steaming of guar, jantar, and wheat straw increased the phosphorus (P) and potassium (K) concentrations by 13.80-14.86% and 6.22-8.45% over formalin fumigation. Likewise, P and K concentrations in muskmelon were higher under steaming. Steaming significantly inhibited the survival of Fusarium wilt sp. melonis, root knot nematode sp. meloidogyne and nitrifying bacteria in media than formalin fumigation. In conclusion, steaming decreased the prevalence of nitrifying bacteria and pathogens which thus improved the NO3--N:NH4+-N ratios, P and K nutritional balance both in the media and muskmelon transplants. Hence, steaming as an environment-friendly approach is recommended for soilless media. Further, optimization of steaming for various composts with different crops needs to be investigated with steaming teachnique.


Asunto(s)
Producción de Cultivos , Cucumis melo , Formaldehído/farmacología , Fumigación , Fusarium/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Cucumis melo/crecimiento & desarrollo , Cucumis melo/microbiología
14.
Food Microbiol ; 99: 103797, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34119092

RESUMEN

Postharvest treatments with sanitizers and fungicides are applied to increase the quality, safety and shelf life of fresh produce including cantaloupes (also known as rockmelons). The primary role of sanitizers during cantaloupe washing is to prevent cross contamination of potentially pathogenic bacteria in washwater. Postharvest fungicide sprays or dips are employed to inhibit spoilage-causing fungi. While assessing the compatibility of these antimicrobials based on the measurement of active ingredients levels provides some indication of antimicrobial capacity, there is limited data on whether the interaction between these chemicals in wash water modifies their overall efficacy against relevant microorganisms. The aim of this research was to determine how chlorine- and peroxyacetic acid-based sanitizers interact with commercial guazatine- and imazalil-based fungicide formulations used on cantaloupes, and whether mixing these augments or suppresses anti-microbial activity against relevant human pathogens and spoilage fungi in wash water. The results were unpredictable: while most combinations were antimicrobial, the chlorine-based sanitizer when mixed with the guazatine-based fungicide had significantly reduced efficacy against pathogenic Salmonella spp. (~2.7 log) and the fungal spoilage organisms, Trichothecium roseum and Rhizopus stolonifera. Mixing the chlorine-based sanitizer with an imazalil-based fungicide produced a range of outcomes with antagonistic, indifferent and synergistic interactions observed for the fungal species tested. The peroxyacetic acid-based sanitizer led to indifferent interactions with the guazatine-based fungicide, while antagonism and synergy were observed when mixed with the imazalil-based fungicide. This study demonstrates that mixing postharvest agrichemicals used in the cantaloupe industry may increase the risk of microbial contamination and thereby potentially compromise food safety and quality.


Asunto(s)
Cucumis melo/microbiología , Desinfectantes/farmacología , Conservación de Alimentos/métodos , Fungicidas Industriales/farmacología , Cloro/química , Cloro/farmacología , Desinfectantes/química , Interacciones Farmacológicas , Contaminación de Alimentos/prevención & control , Conservación de Alimentos/instrumentación , Frutas/microbiología , Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Fungicidas Industriales/química , Guanidinas/química , Guanidinas/farmacología , Viabilidad Microbiana/efectos de los fármacos , Ácido Peracético/química , Ácido Peracético/farmacología , Salmonella/efectos de los fármacos , Salmonella/crecimiento & desarrollo
15.
Theor Appl Genet ; 134(8): 2577-2586, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33950283

RESUMEN

KEY MESSAGE: This is the first identification of QTLs underlying resistance to Pseudoperonospora cubensis in Cucumis melo using a genetically characterized isolate. Pseudoperonospora cubensis, causal organism of cucurbit downy mildew (CDM), is one of the largest threats to cucurbit production in the eastern USA. Currently, no Cucumis melo (melon) cultivars have significant levels of resistance. Additionally, little is understood about the genetic basis of resistance in C. melo. Recombinant inbred lines (RILs; N = 169) generated from a cross between the resistant melon breeding line MR-1 and susceptible cultivar Ananas Yok'neam were phenotyped for CDM resistance in both greenhouse and growth chamber studies. A high-density genetic linkage map with 5,663 binned SNPs created from the RIL population was utilized for QTL mapping. Nine QTLs, including two major QTLs, were associated with CDM resistance. Of the major QTLs, qPcub-10.1 was stable across growth chamber and greenhouse tests, whereas qPcub-8.2 was detected only in growth chamber tests. qPcub-10.1 co-located with an MLO-like protein coding gene, which has been shown to confer resistance to powdery mildew and Phytophthora in other plants. This is the first screening of C. melo germplasm with a genetically characterized P. cubensis isolate.


Asunto(s)
Ascomicetos/fisiología , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Cucumis melo/genética , Resistencia a la Enfermedad/inmunología , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo , Cucumis melo/crecimiento & desarrollo , Cucumis melo/microbiología , Resistencia a la Enfermedad/genética , Ligamiento Genético , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Reproducción
16.
Plant Cell ; 33(4): 1319-1340, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33793825

RESUMEN

In plants, chitin-triggered immunity is one of the first lines of defense against fungi, but phytopathogenic fungi have developed different strategies to prevent the recognition of chitin. Obligate biotrophs such as powdery mildew fungi suppress the activation of host responses; however, little is known about how these fungi subvert the immunity elicited by chitin. During epiphytic growth, the cucurbit powdery mildew fungus Podosphaera xanthii expresses a family of candidate effector genes comprising nine members with an unknown function. In this work, we examine the role of these candidates in the infection of melon (Cucumis melo L.) plants, using gene expression analysis, RNAi silencing assays, protein modeling and protein-ligand predictions, enzymatic assays, and protein localization studies. Our results show that these proteins are chitinases that are released at pathogen penetration sites to break down immunogenic chitin oligomers, thus preventing the activation of chitin-triggered immunity. In addition, these effectors, designated effectors with chitinase activity (EWCAs), are widely distributed in pathogenic fungi. Our findings reveal a mechanism by which fungi suppress plant immunity and reinforce the idea that preventing the perception of chitin by the host is mandatory for survival and development of fungi in plant environments.


Asunto(s)
Ascomicetos/patogenicidad , Quitina/metabolismo , Quitinasas/metabolismo , Cucumis melo/microbiología , Inmunidad de la Planta/fisiología , Ascomicetos/citología , Ascomicetos/genética , Ascomicetos/metabolismo , Pared Celular/metabolismo , Quitina/inmunología , Quitinasas/química , Quitinasas/genética , Cucumis melo/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Interacciones Huésped-Patógeno/fisiología , Familia de Multigenes , Filogenia , Enfermedades de las Plantas/microbiología
17.
Int J Food Microbiol ; 348: 109201, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-33930836

RESUMEN

Salmonella enterica is frequently implicated in foodborne disease outbreaks associated with fresh-cut fruits. In the U.S., more than one third of fruit-related outbreaks have been linked to two S. enterica serotypes Newport and Typhimurium. Approximately 80% of fruit-related human salmonellosis cases were associated with tomatoes, cantaloupes and cucumbers. In this study, we investigated the population dynamics of S. Newport and S. Typhimurium on fresh-cut tomato, cantaloupe, cucumber and apple under short-term storage conditions. We further compared the transcriptomic profiles of a S. Newport strain on fresh-cut tomato and cantaloupe using high-throughput RNA-seq. We demonstrated that both S. enterica Newport and Typhimurium survived well on various fresh-cut fruit items under refrigeration storage conditions, independent of inoculation levels. However, S. enterica displayed variable survival behaviors on different types of fruits. For example, at 7 d storage, the population of S. enterica reduced less than 0.2 log (p > 0.05) on fresh-cut tomato and cantaloupe, in contrast to ~0.5 log (p < 0.05) on cucumber and apple. RNA-seq analysis suggested that S. enterica mediates its survival on fresh-cut fruits through differentially regulating genes involved in specific carbon utilization and metabolic pathways. Several known bacterial virulence factors (e.g., pag gene) were found to be differentially regulated on fresh-cut tomato and cantaloupe, suggesting a link between the events of food contamination and subsequent human infection. Findings from this study contribute to a better understanding of S. enterica survival mechanisms on fresh-cut produce.


Asunto(s)
Almacenamiento de Alimentos/métodos , Enfermedades Transmitidas por los Alimentos/microbiología , Frutas/microbiología , Infecciones por Salmonella/transmisión , Salmonella enterica/crecimiento & desarrollo , Recuento de Colonia Microbiana , Cucumis melo/microbiología , Cucumis sativus/microbiología , Brotes de Enfermedades , Metabolismo Energético/genética , Contaminación de Alimentos , Microbiología de Alimentos , Humanos , Solanum lycopersicum/microbiología , Malus/microbiología , Infecciones por Salmonella/microbiología , Salmonella enterica/genética , Salmonella enterica/patogenicidad , Serogrupo , Transcriptoma
18.
Foodborne Pathog Dis ; 18(7): 469-476, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33900863

RESUMEN

Cantaloupes contaminated with pathogens have led to many high-profile outbreaks and illnesses. Since bacterial virulence genes (VGs) can act in tandem with antibiotic-resistance and mobile genetic elements, there is a need to evaluate these gene reservoirs in fresh produce, such as cantaloupes. The goal of this study was to assess the distribution of antibiotic-resistance, virulence, and mobile genetic elements genes (MGEGs) in cantaloupe farm environments. A total of 200 samples from cantaloupe melons (n = 99), farm workers' hands (n = 66), and production water (n = 35) were collected in México. Each sample was assayed for the presence of 14 antibiotic-resistance genes, 15 VGs, and 5 MGEGs by polymerase chain reaction. Our results indicated that tetracycline (tetA and tetB) (18% of cantaloupe, 45% of hand samples) and sulfonamide (sul1) (30% of cantaloupe, 71% of hand samples) resistance genes were frequently detected. The colistin resistance gene (mcr1) was detected in 10% of cantaloupe and 23% of farm workers' hands. Among VGs, Salmonella genes invA and spiA were the most abundant. There was a significantly higher likelihood of detecting antibiotic-resistance, virulence, and MGEGs on hands compared with water samples. These results demonstrate a diverse pool of antibiotic-resistance and VGs in cantaloupe production.


Asunto(s)
Farmacorresistencia Microbiana , Granjas , Contaminación de Alimentos/análisis , Salmonella/aislamiento & purificación , Antibacterianos/farmacología , Cucumis melo/microbiología , Farmacorresistencia Bacteriana , Microbiología Ambiental , Manipulación de Alimentos/métodos , Microbiología de Alimentos , México , Pruebas de Sensibilidad Microbiana , Salmonella/genética , Salmonella/patogenicidad , Virulencia
19.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33397695

RESUMEN

Inoculation studies are important when assessing microbial survival and growth in food products. These studies typically involve the pregrowth of multiple strains of a target pathogen under a single condition; this emphasizes strain diversity. To gain a better understanding of the impacts of strain diversity ("nature") and pregrowth conditions ("nurture") on subsequent bacterial growth in foods, we assessed the growth and survival of Salmonella enterica (n = 5), Escherichia coli (n = 6), and Listeria (n = 5) inoculated onto tomatoes, precut lettuce, and cantaloupe rind, respectively. Pregrowth conditions included (i) 37°C to stationary phase (baseline), (ii) low pH, (iii) high salt, (iv) reduced water activity, (v) log phase, (vi) minimal medium, and (vii) 21°C. Inoculated tomatoes were incubated at 21°C; lettuce and cantaloupe were incubated at 7°C. Bacterial counts were assessed over three phases, including initial reduction (phase 1), change in bacterial numbers over the first 24 h of incubation (phase 2), and change over the 7-day incubation (phase 3). E. coli showed overall decline in counts (<1 log) over the 7-day period, except for a <1-log increase after pregrowth in high salt and to mid-log phase. In contrast, S. enterica and Listeria showed regrowth after an initial reduction. Pregrowth conditions had a substantial and significant effect on all three phases of S. enterica and E. coli population dynamics on inoculated produce, whereas strain did not show a significant effect. For Listeria, both pregrowth conditions and strain affected changes in phase 2 but not phases 1 and 3.IMPORTANCE Our findings suggest that inclusion of multiple pregrowth conditions in inoculation studies can best capture the range of growth and survival patterns expected for Salmonella enterica and Escherichia coli present on produce. This is particularly important for fresh and fresh-cut produce, where stress conditions encountered by pathogens prior to contamination can vary widely, making selection of a typical pregrowth condition virtually impossible. Pathogen growth and survival data generated using multiple pregrowth conditions will allow for more robust microbial risk assessments that account more accurately for uncertainty.


Asunto(s)
Cucumis melo/microbiología , Escherichia coli/crecimiento & desarrollo , Lactuca/microbiología , Listeria/crecimiento & desarrollo , Salmonella enterica/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Recuento de Colonia Microbiana , Microbiología de Alimentos
20.
Foodborne Pathog Dis ; 18(1): 49-55, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32762548

RESUMEN

Salmonella enterica serovar Typhimurium is a pathogen harbored by livestock and shed in their feces, which serves as an acquisition source for adult house flies. This study used a green fluorescent protein (GFP) expressing strain of Salmonella Typhimurium to assess its acquisition by and survival within house flies, and transmission from and between flies in the presence or absence of cantaloupe. Female house flies were exposed to manure inoculated with either sterile phosphate-buffered saline or GFP-Salmonella Typhimurium for 12 h, then used in four experiments each performed over 24 h. Experiment 1 assessed the survival of GFP-Salmonella Typhimurium within inoculated flies. Experiment 2 determined transmission of GFP-Salmonella Typhimurium from inoculated flies to cantaloupe. Experiment 3 assessed fly acquisition of GFP-Salmonella Typhimurium from inoculated cantaloupe. Experiment 4 evaluated transmission of GFP-Salmonella Typhimurium between inoculated flies and uninoculated flies in the presence and absence of cantaloupe. GFP-Salmonella Typhimurium survived in inoculated flies but bacterial abundance decreased between 0 and 6 h without cantaloupe present and between 0 and 6 h and 6 and 24 h with cantaloupe present. Uninoculated flies acquired GFP-Salmonella Typhimurium from inoculated cantaloupe and bacterial abundance increased in cantaloupe and flies from 6 to 24 h. More uninoculated flies exposed to inoculated flies acquired GFP-Salmonella Typhimurium when cantaloupe was present than when absent. We infer that the presence of a shared food source facilitated the transfer of GFP-Salmonella Typhimurium from inoculated to uninoculated flies. Our study demonstrated that house flies acquired, harbored, and excreted viable GFP-Salmonella Typhimurium and transferred bacteria to food and each other. Understanding the dynamics of bacterial acquisition and transmission of bacteria between flies and food helps in assessing the risk flies pose to food safety and human health.


Asunto(s)
Cucumis melo/microbiología , Moscas Domésticas/microbiología , Salmonella typhimurium/patogenicidad , Animales , Femenino , Contaminación de Alimentos/análisis , Microbiología de Alimentos/métodos , Proteínas Fluorescentes Verdes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...