Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(4): e1012174, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38630801

RESUMEN

As a type of parasitic agent, satellite RNAs (satRNAs) rely on cognate helper viruses to achieve their replication and transmission. During the infection of satRNAs, helper virus RNAs serve as templates for synthesizing viral proteins, including the replication proteins essential for satRNA replication. However, the role of non-template functions of helper virus RNAs in satRNA replication remains unexploited. Here we employed the well-studied model that is composed of cucumber mosaic virus (CMV) and its associated satRNA. In the experiments employing the CMV trans-replication system, we observed an unexpected phenomenon the replication proteins of the mild strain LS-CMV exhibited defective in supporting satRNA replication, unlike those of the severe strain Fny-CMV. Independent of translation products, all CMV genomic RNAs could enhance satRNA replication, when combined with the replication proteins of CMV. This enhancement is contingent upon the recruitment and complete replication of helper virus RNAs. Using the method developed for analyzing the satRNA recruitment, we observed a markedly distinct ability of the replication proteins from both CMV strains to recruit the positive-sense satRNA-harboring RNA3 mutant for replication. This is in agreement with the differential ability of both 1a proteins in binding satRNAs in plants. The discrepancies provide a convincing explanation for the variation of the replication proteins of both CMV strains in replicating satRNAs. Taken together, our work provides compelling evidence that the non-template functions of helper virus RNAs create an optimal replication environment to enhance satRNA proliferation.


Asunto(s)
Cucumovirus , Virus Helper , Satélite de ARN , ARN Viral , Replicación Viral , Virus Helper/genética , Virus Helper/fisiología , Cucumovirus/genética , Cucumovirus/metabolismo , Cucumovirus/fisiología , Satélite de ARN/metabolismo , Satélite de ARN/genética , ARN Viral/genética , ARN Viral/metabolismo , Enfermedades de las Plantas/virología , Nicotiana/virología , Nicotiana/metabolismo , Nicotiana/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética
2.
Sci Rep ; 13(1): 8721, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253808

RESUMEN

Aphis gossypii (Sternorrhyncha: Aphididae) aphids are vectors of important plant viruses among which cucumber mosaic virus (CMV) and potato virus Y (PVY). Virus-infected plants attract aphid vectors and affect their behavior and growth performance either positively or negatively depending on mode of transmission. Viruses cause changes in the composition and the amount of volatile organic compounds (VOCs) released by the plant that attract aphids. The aphid parasitoid Aphidius colemani (Hymenoptera: Aphelinidae) has been shown to have higher parasitism and survival rates on aphids fed on virus-infected than aphids fed on non-infected plants. We hypothesized that parasitoids distinguish virus-infected plants and are attracted to them regardless of the presence of their aphid hosts. Herein, we examined the attraction of the A. colemani parasitoid to infected pepper plants with each of CMV or PVY without the presence of aphids. The dynamic headspace technique was used to collect VOCs from non-infected and CMV or PVY-infected pepper plants. Identification was performed with gas chromatography-mass spectrometry (GC-MS). The response of the parasitoids on virus-infected vs non-infected pepper plants was tested by Y-tube olfactometer assays. The results revealed that parasitoids displayed a preference to CMV and PVY infected plants compared to those that were not infected.


Asunto(s)
Áfidos , Cucumovirus , Infecciones por Citomegalovirus , Himenópteros , Virus de Plantas , Compuestos Orgánicos Volátiles , Animales , Áfidos/fisiología , Cucumovirus/fisiología , Enfermedades de las Plantas
3.
PLoS Pathog ; 18(1): e1010267, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35081172

RESUMEN

The 2b protein (2b) of cucumber mosaic virus (CMV), an RNA-silencing suppressor (RSS), is a major pathogenicity determinant of CMV. 2b is localized in the nucleus and cytoplasm, and its nuclear import is determined by two nuclear localization signals (NLSs); a carrier protein (importin [IMPα]) is predicted to be involved in 2b's nuclear transport. Cytoplasmic 2bs play a role in suppression of RNA silencing by binding to small RNAs and AGO proteins. A putative nuclear export signal (NES) motif was also found in 2b, but has not been proved to function. Here, we identified a leucine-rich motif in 2b's C-terminal half as an NES. We then showed that NES-deficient 2b accumulated abundantly in the nucleus and lost its RSS activity, suggesting that 2b exported from the nucleus can play a role as an RSS. Although two serine residues (S40 and S42) were previously found to be phosphorylated, we also found that an additional phosphorylation site (S28) alone can affect 2b's nuclear localization and RSS activity. Alanine substitution at S28 impaired the IMPα-mediated nuclear/nucleolar localization of 2b, and RSS activity was even stronger compared to wild-type 2b. In a subcellular fractionation assay, phosphorylated 2bs were detected in the nucleus, and comparison of the accumulation levels of nuclear phospho-2b between wild-type 2b and the NES mutant showed a greatly reduced level of the phosphorylated NES mutant in the nucleus, suggesting that 2bs are dephosphorylated in the nucleus and may be translocated to the cytoplasm in a nonphosphorylated form. These results suggest that 2b manipulates its nucleocytoplasmic transport as if it tracks down its targets, small RNAs and AGOs, in the RNA silencing pathway. We infer that 2b's efficient RSS activity is maintained by a balance of phosphorylation and dephosphorylation, which are coupled to importin/exportin-mediated shuttling between the nucleus and cytoplasm.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Cucumovirus/fisiología , Inmunidad de la Planta/fisiología , Interferencia de ARN/fisiología , Proteínas Virales/metabolismo , Carioferinas/metabolismo
4.
J Biomol Struct Dyn ; 40(22): 12165-12183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34463218

RESUMEN

The Replication Associated Proteins (RAP-1 and RAP-2) encoded by CMV ORF 1a and ORF 2a are required for the different stages of the viral replication cycle; being multi-functional, they are good inhibitory targets for anti-CMV compounds. As a new perspective for sustainable crop improvement, we investigated the natural plant-based antimicrobial phytoalexins for their anti-CMV potential. Here, we modeled and predicted the functional domains of RAP-1 and RAP-2, docked with a ligand library comprising 128 phytoalexins reported with broad-spectrum activity, determined their binding energies (BEs), molecular interactions, and inhibition constant (Ki), and compared with the reference plant antiviral compounds ribavirin, ningnanmycin, and benzothiadiazole (BTH). Further, the change in Gibb's free energy of binding (ΔG) and the per residue contribution of the selected top-scored ligand molecules was assessed by the prime MM-GBSA approach. Our results revealed RAP-1 as a discontinuous two-domain and RAP-2 as a multi-domain protein. The compounds glyceollidin (9.8 kcal/mol) and moracin D (7.8 kcal/mol) topped the list for RAP-1 and RAP-2 protein targets respectively and also, the lead molecules had energetically more favorable and comparative ΔG values than the top-scored plant antiviral agent ningnanmycin. The evaluation of in vitro toxicity and agrochemical-like properties showed the least toxicity of these anti-CMV compounds. Taken together, our results provide new insights in understanding the inhibitory effects of phytoalexins towards the RAP proteins and could be employed as new promising anti-CMV candidate compounds for their application in agriculture as biopesticides to combat the CMV disease incidence.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Cucumovirus , Cucumovirus/fisiología , Fitoalexinas , Antivirales/farmacología , Ligandos , Simulación por Computador , Simulación del Acoplamiento Molecular
5.
Nat Commun ; 12(1): 7087, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873158

RESUMEN

Cucumber mosaic virus (CMV) often accompanies a short RNA molecule called a satellite RNA (satRNA). When infected with CMV in the presence of Y-satellite RNA (Y-sat), tobacco leaves develop a green mosaic, then turn yellow. Y-sat has been identified in the fields in Japan. Here, we show that the yellow leaf colour preferentially attracts aphids, and that the aphids fed on yellow plants, which harbour Y-sat-derived small RNAs (sRNAs), turn red and subsequently develop wings. In addition, we found that leaf yellowing did not necessarily reduce photosynthesis, and that viral transmission was not greatly affected despite the low viral titer in the Y-sat-infected plants. Y-sat-infected plants can therefore support a sufficient number of aphids to allow for efficient virus transmission. Our results demonstrate that Y-sat directly alters aphid physiology via Y-sat sRNAs to promote wing formation, an unprecedented survival strategy that enables outward spread via the winged insect vector.


Asunto(s)
Áfidos/genética , Cucumovirus/genética , Proteínas de Insectos/genética , Insectos Vectores/genética , Satélite de ARN/genética , ARN Viral/genética , Animales , Áfidos/fisiología , Áfidos/virología , Cucumovirus/fisiología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Proteínas de Insectos/metabolismo , Insectos Vectores/fisiología , Insectos Vectores/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Hojas de la Planta/parasitología , Hojas de la Planta/virología , Plantas Modificadas Genéticamente , Satélite de ARN/fisiología , ARN Viral/fisiología , Nicotiana/genética , Nicotiana/parasitología , Nicotiana/virología , Virión/genética , Virión/fisiología , Replicación Viral/genética , Replicación Viral/fisiología
6.
Plant Physiol ; 187(4): 2865-2876, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34606612

RESUMEN

Virus-induced gene silencing (VIGS) is a versatile and attractive approach for functional gene characterization in plants. Although several VIGS vectors for maize (Zea mays) have been previously developed, their utilities are limited due to low viral infection efficiency, insert instability, short maintenance of silencing, inadequate inoculation method, or abnormal requirement of growth temperature. Here, we established a Cucumber mosaic virus (CMV)-based VIGS system for efficient maize gene silencing that overcomes many limitations of VIGS currently available for maize. Using two distinct strains, CMV-ZMBJ and CMV-Fny, we generated a pseudorecombinant-chimeric (Pr) CMV. Pr CMV showed high infection efficacy but mild viral symptoms in maize. We then constructed Pr CMV-based vectors for VIGS, dubbed Pr CMV VIGS. Pr CMV VIGS is simply performed by mechanical inoculation of young maize leaves with saps of Pr CMV-infected Nicotiana benthamiana under normal growth conditions. Indeed, suppression of isopentenyl/dimethylallyl diphosphate synthase (ZmIspH) expression by Pr CMV VIGS resulted in non-inoculated leaf bleaching as early as 5 d post-inoculation (dpi) and exhibited constant and efficient systemic silencing over the whole maize growth period up to 105 dpi. Furthermore, utilizing a ligation-independent cloning (LIC) strategy, we developed a modified Pr CMV-LIC VIGS vector, allowing easy gene cloning for high-throughput silencing in maize. Thus, our Pr CMV VIGS system provides a much-improved toolbox to facilitate efficient and long-duration gene silencing for large-scale functional genomics in maize, and our pseudorecombination-chimera combination strategy provides an approach to construct efficient VIGS systems in plants.


Asunto(s)
Cucumovirus/fisiología , Silenciador del Gen , Genómica , Zea mays/virología , Quimera , Nicotiana/fisiología
7.
Commun Biol ; 4(1): 947, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34373580

RESUMEN

Land plant genomes carry tens to hundreds of Resistance (R) genes to combat pathogens. The induction of antiviral R-gene-mediated resistance often results in a hypersensitive response (HR), which is characterized by virus containment in the initially infected tissues and programmed cell death (PCD) of the infected cells. Alternatively, systemic HR (SHR) is sometimes observed in certain R gene-virus combinations, such that the virus systemically infects the plant and PCD induction follows the spread of infection, resulting in systemic plant death. SHR has been suggested to be the result of inefficient resistance induction; however, no quantitative comparison has been performed to support this hypothesis. In this study, we report that the average number of viral genomes that establish cell infection decreased by 28.7% and 12.7% upon HR induction by wild-type cucumber mosaic virus and SHR induction by a single-amino acid variant, respectively. These results suggest that a small decrease in the level of resistance induction can change an HR to an SHR. Although SHR appears to be a failure of resistance at the individual level, our simulations imply that suicidal individual death in SHR may function as an antiviral mechanism at the population level, by protecting neighboring uninfected kin plants.


Asunto(s)
Cucumovirus/fisiología , Regulación de la Expresión Génica de las Plantas , Genes prv/fisiología , Nicotiana/virología , Enfermedades de las Plantas/genética , Cucumovirus/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Nicotiana/genética
8.
BMC Plant Biol ; 21(1): 67, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514310

RESUMEN

BACKGROUND: Most plant viruses rely on vectors for their transmission and spread. One of the outstanding biological questions concerning the vector-pathogen-symbiont multi-trophic interactions is the potential involvement of vector symbionts in the virus transmission process. Here, we used a multi-factorial system containing a non-persistent plant virus, cucumber mosaic virus (CMV), its primary vector, green peach aphid, Myzus persicae, and the obligate endosymbiont, Buchnera aphidicola to explore this uncharted territory. RESULTS: Based on our preliminary research, we hypothesized that aphid endosymbiont B. aphidicola can facilitate CMV transmission by modulating plant volatile profiles. Gene expression analyses demonstrated that CMV infection reduced B. aphidicola abundance in M. persicae, in which lower abundance of B. aphidicola was associated with a preference shift in aphids from infected to healthy plants. Volatile profile analyses confirmed that feeding by aphids with lower B. aphidicola titers reduced the production of attractants, while increased the emission of deterrents. As a result, M. persicae changed their feeding preference from infected to healthy plants. CONCLUSIONS: We conclude that CMV infection reduces the B. aphidicola abundance in M. persicae. When viruliferous aphids feed on host plants, dynamic changes in obligate symbionts lead to a shift in plant volatiles from attraction to avoidance, thereby switching insect vector's feeding preference from infected to healthy plants.


Asunto(s)
Áfidos/virología , Buchnera/fisiología , Capsicum/virología , Cucumovirus/fisiología , Enfermedades de las Plantas/virología , Simbiosis , Animales , Áfidos/efectos de los fármacos , Áfidos/microbiología , Áfidos/fisiología , Capsicum/microbiología , Capsicum/parasitología , Conducta Alimentaria , Interacciones Huésped-Parásitos , Insectos Vectores/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Rifampin/farmacología , Compuestos Orgánicos Volátiles/metabolismo
9.
Mol Plant Pathol ; 22(1): 19-30, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33073913

RESUMEN

Systemic acquired resistance (SAR) is a broad-spectrum disease resistance response that can be induced upon infection from pathogens or by chemical treatment, such as with benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH). SAR involves priming for more robust activation of defence genes upon pathogen attack. Whether priming for SAR would involve components of RNA silencing remained unknown. Here, we show that upon leaf infiltration of water, BTH-primed Arabidopsis thaliana plants accumulate higher amounts of mRNA of ARGONAUTE (AGO)2 and AGO3, key components of RNA silencing. The enhanced AGO2 expression is associated with prior-to-activation trimethylation of lysine 4 in histone H3 and acetylation of histone H3 in the AGO2 promoter and with induced resistance to the yellow strain of cucumber mosaic virus (CMV[Y]). The results suggest that priming A. thaliana for enhanced defence involves modification of histones in the AGO2 promoter that condition AGO2 for enhanced activation, associated with resistance to CMV(Y). Consistently, the fold-reduction in CMV(Y) coat protein accumulation by BTH pretreatment was lower in ago2 than in wild type, pointing to reduced capacity of ago2 to activate BTH-induced CMV(Y) resistance. A role of AGO2 in pathogen-induced SAR is suggested by the enhanced activation of AGO2 after infiltrating systemic leaves of plants expressing a localized hypersensitive response upon CMV(Y) infection. In addition, local inoculation of SAR-inducing Pseudomonas syringae pv. maculicola causes systemic priming for enhanced AGO2 expression. Together our results indicate that defence priming targets the AGO2 component of RNA silencing whose enhanced expression is likely to contribute to SAR.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Argonautas/metabolismo , Cucumovirus/fisiología , Enfermedades de las Plantas/inmunología , Pseudomonas syringae/fisiología , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Resistencia a la Enfermedad , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología
11.
J Integr Plant Biol ; 63(2): 353-364, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33085164

RESUMEN

The vacuole is a unique plant organelle that plays an important role in maintaining cellular homeostasis under various environmental stress conditions. However, the effects of biotic stress on vacuole structure has not been examined using three-dimensional (3D) visualization. Here, we performed 3D electron tomography to compare the ultrastructural changes in the vacuole during infection with different viruses. The 3D models revealed that vacuoles are remodeled in cells infected with cucumber mosaic virus (CMV) or tobacco necrosis virus A Chinese isolate (TNV-AC ), resulting in the formation of spherules at the periphery of the vacuole. These spherules contain neck-like channels that connect their interior with the cytosol. Confocal microscopy of CMV replication proteins 1a and 2a and TNV-AC auxiliary replication protein p23 showed that all of these proteins localize to the tonoplast. Electron microscopy revealed that the expression of these replication proteins alone is sufficient to induce spherule formation on the tonoplast, suggesting that these proteins play prominent roles in inducing vacuolar membrane remodeling. This is the first report of the 3D structures of viral replication factories built on the tonoplasts. These findings contribute to our understanding of vacuole biogenesis under normal conditions and during assembly of plant (+) RNA virus replication complexes.


Asunto(s)
Imagenología Tridimensional , Membranas Intracelulares/metabolismo , Enfermedades de las Plantas/virología , Virus de Plantas/fisiología , Vacuolas/metabolismo , Cucumovirus/fisiología , Cucumovirus/ultraestructura , Tomografía con Microscopio Electrónico , Membranas Intracelulares/ultraestructura , Epidermis de la Planta/citología , Epidermis de la Planta/ultraestructura , Epidermis de la Planta/virología , Virus de Plantas/ultraestructura , Fracciones Subcelulares/metabolismo , Nicotiana/citología , Tombusviridae/fisiología , Tombusviridae/ultraestructura , Vacuolas/ultraestructura , Proteínas Virales/metabolismo , Replicación Viral/fisiología
12.
BMC Microbiol ; 20(1): 72, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228456

RESUMEN

BACKGROUND: Plant viruses move through plasmodesmata (PD) to infect new cells. To overcome the PD barrier, plant viruses have developed specific protein(s) to guide their genomic RNAs or DNAs to path through the PD. RESULTS: In the present study, we analyzed the function of Pepper vein yellows virus P4 protein. Our bioinformatic analysis using five commonly used algorithms showed that the P4 protein contains an transmembrane domain, encompassing the amino acid residue 117-138. The subcellular localization of P4 protein was found to target PD and form small punctates near walls. The P4 deletion mutant or the substitution mutant constructed by overlap PCR lost their function to produce punctates near the walls inside the fluorescent loci. The P4-YFP fusion was found to move from cell to cell in infiltrated leaves, and P4 could complement Cucumber mosaic virus movement protein deficiency mutant to move between cells. CONCLUSION: Taking together, we consider that the P4 protein is a movement protein of Pepper vein yellows virus.


Asunto(s)
Biología Computacional/métodos , Nicotiana/virología , Virus de Plantas/fisiología , Proteínas Virales/metabolismo , Algoritmos , Cucumovirus/fisiología , Mutación , Hojas de la Planta/virología , Plasmodesmos/metabolismo , Plasmodesmos/virología , Dominios Proteicos , Nicotiana/metabolismo , Proteínas Virales/química , Proteínas Virales/genética
13.
Virol J ; 17(1): 49, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32264933

RESUMEN

BACKGROUND: In Raphanus sativus (Japanese radish), strain D8 of cucumber mosaic virus (CMV-D8) establishes a systemic infection and induces mild mosaic on upper, non-inoculated leaves, whereas strain Y of CMV (CMV-Y) causes only a local infection in the inoculated leaves. Here, we further analyzed the specific viral factor(s) of CMV-D8 that is (are) indispensable for systemic infection in Japanese radish. METHODS: To identify which genomic RNA(s) is (are) involved in systemic infection in radish, we carried out a pseudorecombination analysis between CMV-D8 and CMV-Y. With recombination analyses between CMV-D8 and CMV-Y using mutant/recombinant RNA2s, chimeric and point-mutated RNA3s, we identified viral factors that are indispensable for systemic infection. RESULTS: Viral RNA2 and RNA3 of CMV-D8 facilitated efficient virus spread into the upper, non-inoculated plant tissues of radish (cv. Tokinashi), but not those of CMV-Y. Recombinant RNA2s demonstrated that the 2b protein (2b) and the C-terminus of the 2a protein (2a) of CMV-D8 have a crucial role in systemic infection. In addition, we used chimeric and point-mutated RNA3s to that Pro17 and Pro129 in the coat protein (CP) of CMV-D8 are involved in efficient systemic infection and that Ser51 in the 3a protein (3a) of CMV-D8 has positive effects on systemic spread. The results suggested that these viral factors facilitate systemic infection of CMV-D8 in Japanese radish. CONCLUSION: The C-terminal region of 2a, the entire region of 2b, and supplementary function of either Ser51 in 3a or Pro17/Pro 129 in CP confer systemic infectivity on CMV-D8 in radish. These results further elucidate the complex interaction of viral proteins of CMV to complete systemic infection as a host-specific manner.


Asunto(s)
Cucumovirus/genética , Cucumovirus/fisiología , Proteínas de Movimiento Viral en Plantas/genética , Raphanus/virología , Proteínas Virales/genética , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , ARN Viral/genética , Virus Reordenados/genética , Nicotiana/virología
14.
Microb Pathog ; 138: 103828, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31682997

RESUMEN

Cucumber mosaic virus (CMV) caused huge agricultural impact on Passiflora edulis. However, the interactions between CMV and P. edulis are poorly unknown, which lead to lack of prevention and control measures. In this study, we identified the infection of CMV in P. edulis through modern small RNA sequencing (sRNA-seq) technology combined with traditional electron microscope and polymerase chain reaction (PCR) methods. We also confirmed CMV infection adversely affected or modulated the contents of phytochemicals and further injured the development of P. edulis; inversely, P. edulis modulated its resistance to CMV stress by increasing the levels of secondary metabolites and the activities of antioxidant enzymes components. This is of significant importance to understand the interaction between virus infection and plant host.


Asunto(s)
Cucumovirus/fisiología , Interacciones Huésped-Patógeno , Passiflora/química , Passiflora/virología , Fitoquímicos/química , Enfermedades de las Plantas/virología , Antioxidantes/química , Antioxidantes/metabolismo , Frutas/virología , Fenotipo , Fitoquímicos/análisis , Hojas de la Planta/virología , Análisis de Secuencia de ARN
15.
Mol Plant Pathol ; 20(12): 1748-1758, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31560831

RESUMEN

In some plant-virus interactions plants show a sign of healing from virus infection, a phenomenon called symptom recovery. It is assumed that the meristem exclusion of the virus is essential to this process. The discovery of RNA silencing provided a possible mechanism to explain meristem exclusion and recovery. Here we show evidence that silencing is not the reason for meristem exclusion in Nicotiana benthamiana plants infected with Cymbidium ringspot virus (CymRSV). Transcriptome analysis followed by in situ hybridization shed light on the changes in gene expression in the shoot apical meristem (SAM) on virus infection. We observed the down-regulation of meristem-specific genes, including WUSCHEL (WUS). However, WUS was not down-regulated in the SAM of plants infected with meristem-invading viruses such as turnip vein-clearing virus (TVCV) and cucumber mosaic virus (CMV). Moreover, there is no connection between loss of meristem function and fast shoot necrosis since TVCV necrotized the shoot while CMV did not. Our findings suggest that the observed transcriptional changes on virus infection in the shoot are key factors in tip necrosis and symptom recovery. We observed a lack of GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE (GAPDH) expression in tissues around the meristem, which likely stops virus replication and spread into the meristem.


Asunto(s)
Cucumovirus/fisiología , Regulación de la Expresión Génica de las Plantas , Nicotiana/virología , Enfermedades de las Plantas/virología , Transcriptoma , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Meristema/virología , Enfermedades de las Plantas/genética , Brotes de la Planta , Interferencia de ARN , Nicotiana/genética , Nicotiana/metabolismo
16.
Nucleic Acids Res ; 47(15): 8255-8271, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31269212

RESUMEN

As a class of parasitic, non-coding RNAs, satellite RNAs (satRNAs) have to compete with their helper virus for limited amounts of viral and/or host resources for efficient replication, by which they usually reduce viral accumulation and symptom expression. Here, we report a cucumber mosaic virus (CMV)-associated satRNA (sat-T1) that ameliorated CMV-induced symptoms, accompanied with a significant reduction in the accumulation of viral genomic RNAs 1 and 2, which encode components of the viral replicase. Intrans replication assays suggest that the reduced accumulation is the outcome of replication competition. The structural basis of sat-T1 responsible for the inhibition of viral RNA accumulation was determined to be a three-way branched secondary structure that contains two biologically important hairpins. One is indispensable for the helper virus inhibition, and the other engages in formation of a tertiary pseudoknot structure that is essential for sat-T1 survival. The secondary structure containing the pseudoknot is the first RNA element with a biological phenotype experimentally identified in CMV satRNAs, and it is structurally conserved in most CMV satRNAs. Thus, this may be a generic method for CMV satRNAs to inhibit the accumulation of the helper virus via the newly-identified RNA structure.


Asunto(s)
Satélite del Virus del Mosaico del Pepino/metabolismo , Cucumovirus/fisiología , Virus Helper/fisiología , Nicotiana/virología , Enfermedades de las Plantas/virología , ARN Viral/metabolismo , Secuencia de Bases , Satélite del Virus del Mosaico del Pepino/química , Satélite del Virus del Mosaico del Pepino/genética , Cucumovirus/genética , Virus Helper/genética , Mutación , Conformación de Ácido Nucleico , ARN Viral/química , ARN Viral/genética , Replicación Viral/genética
17.
Biochem Biophys Res Commun ; 517(1): 118-124, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31311650

RESUMEN

WRKY transcription factors are key regulators in regulating abiotic or biotic stress response in Arabidopsis. Previous studies showed that WRKY30 expression was induced by oxidative stress treatment, fungal elicitor, SA and ABA. However, functions of WRKY30 on viral defense are not well studied. Here, we found that Arabidopsis WRKY DNA binding protein 30 (WRKY30) plays essential roles in regulating Cucumber mosaic virus (CMV) resistance. The expression of WRKY30 was induced by CMV infection and wrky30 mutant displayed more susceptibility (including higher oxidative damages, induced reactive oxygen species synthesis and more PSII photochemistry compromise), while WRKY30 overexpression plants (WRKY30OX) exhibited more resistance to CMV infection. Moreover BRs-induced CMV tolerance is partly dependent on WRKY30. And WRKY30 expression increased after BL treatment. All these demonstrated that WRKY30 works as a positive regulator in plant CMV resistance process.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cucumovirus/fisiología , Proteínas de Unión al ADN/genética , Enfermedades de las Plantas/genética , Factores de Transcripción/genética , Arabidopsis/virología , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/virología , Regulación hacia Arriba
18.
J Sci Food Agric ; 99(12): 5541-5549, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31106435

RESUMEN

BACKGROUND: The production of fruit and vegetables rich in health-promoting components in an eco-friendly context represents the winning answer to the world population demand for food. In this study, the effects of different treatments on the yield and fruit chemical characteristics of tomato (Solanum lycopersicum L.) are reported. The treatments included three inducers of plant defence responses (chitosan, Trichoderma harzianum T-22 and Bacillus subtilis QST713) applied alone or before Cucumber mosaic virus infection. Fruit production and antioxidant compounds were investigated by ultrahigh-performance liquid chromatography (UHPLC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: Compared to control fruit harvested from untreated and healthy plants, treatment with QST713 increased the fruit number. Furthermore, plant treatments with T22, QST713 and chitosan alone enhanced fruit carotenoids (lutein and ß-carotene), ascorbic acid and phenolic acids (caffeoyl glucoside and p-coumaroyl glucoside). In parallel, compared to fruit harvested from only CMV-infected plants, treatments with T22, QST713 and chitosan before CMV enhanced fruit ascorbic acid and flavonoids (quercetin 3-O-xylosyl-rutinoside and rutin). CONCLUSION: Antioxidant compounds of tomato fruit can increase with the application of the plant defence inducers, thus protecting both the consumer and plant health. © 2019 Society of Chemical Industry.


Asunto(s)
Antioxidantes/química , Cucumovirus/fisiología , Enfermedades de las Plantas/virología , Solanum lycopersicum/química , Solanum lycopersicum/virología , Inoculantes Agrícolas/fisiología , Ácido Ascórbico/análisis , Bacillus subtilis/fisiología , Carotenoides/análisis , Cromatografía Liquida , Frutas/química , Frutas/microbiología , Frutas/virología , Solanum lycopersicum/microbiología , Espectrometría de Masas en Tándem , Trichoderma/fisiología
19.
Sci Rep ; 9(1): 3187, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816193

RESUMEN

As obligate intracellular phytopathogens, plant viruses must take advantage of hosts plasmodesmata and phloem vasculature for their local and long-distance transports to establish systemic infection in plants. In contrast to well-studied virus local transports, molecular mechanisms and related host genes governing virus systemic trafficking are far from being understood. Here, we performed a forward genetic screening to identify Arabidopsis thaliana mutants with enhanced susceptibility to a 2b-deleted mutant of cucumber mosaic virus (CMV-2aT∆2b). We found that an uncharacterized Piezo protein (AtPiezo), an ortholog of animal Piezo proteins with mechanosensitive (MS) cation channel activities, was required for inhibiting systemic infection of CMV-2aT∆2b and turnip mosaic virus tagged a green fluorescent protein (GFP) (TuMV-GFP). AtPiezo is induced by virus infection, especially in the petioles of rosette leaves. Thus, we for the first time demonstrate the biological function of Piezo proteins in plants, which might represent a common antiviral strategy because many monocot and dicot plant species have a single Piezo ortholog.


Asunto(s)
Arabidopsis , Enfermedades de las Plantas/genética , Arabidopsis/genética , Arabidopsis/virología , Cucumovirus/fisiología , Pruebas Genéticas/métodos , Interacciones Huésped-Patógeno , Potyvirus/fisiología
20.
Planta ; 249(6): 1811-1822, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30840177

RESUMEN

MAIN CONCLUSION: This study shows that NgRBP suppresses both local and systemic RNA silencing induced by sense- or double-stranded RNA, and the RNA binding activity is essential for its function. To counteract host defence, many plant viruses encode viral suppressors of RNA silencing targeting various stages of RNA silencing. There is increasing evidence that the plants also encode endogenous suppressors of RNA silencing (ESR) to regulate this pathway. In this study, using Agrobacterium infiltration assays, we characterized NgRBP, a glycine-rich RNA-binding protein from Nicotiana glutinosa, as an ESR. Our results indicated that NgRBP suppressed both local and systemic RNA silencing induced by sense- or double-stranded RNA. We also demonstrated that NgRBP could promote Potato Virus X (PVX) infection in N. benthamiana. NgRBP knockdown by virus-induced gene silencing enhanced PVX and Cucumber mosaic virus resistance in N. glutinosa. RNA immunoprecipitation and electrophoretic mobility shift assays showed that NgRBP bound to GFP mRNA, dsRNA rather than siRNA. These findings provide the evidence that NgRBP acts as an ESR and the RNA affinity of NgRBP plays the key role in its ESR activity. NgRBP responds to multiple signals such as ABA, MeJA, SA, and Tobacco mosaic virus infection. Therefore, it could participate in the regulation of gene expression under specific conditions.


Asunto(s)
Nicotiana/genética , Enfermedades de las Plantas/virología , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/metabolismo , Agrobacterium , Secuencia de Aminoácidos , Arginina , Cucumovirus/fisiología , Genes Reporteros , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Unión al ARN/genética , Alineación de Secuencia , Nicotiana/virología , Virus del Mosaico del Tabaco/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA