Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(4): e1012139, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38578790

RESUMEN

Alpha herpesviruses naturally infect the peripheral nervous system, and can spread to the central nervous system, causing severe debilitating or deadly disease. Because alpha herpesviruses spread along synaptic circuits, and infected neurons exhibit altered electrophysiology and increased spontaneous activity, we hypothesized that alpha herpesviruses use activity-dependent synaptic vesicle-like regulated secretory mechanisms for egress and spread from neurons. Using live-cell fluorescence microscopy, we show that Pseudorabies Virus (PRV) particles use the constitutive Rab6 post-Golgi secretory pathway to exit from the cell body of primary neurons, independent of local calcium signaling. Some PRV particles colocalize with Rab6 in the proximal axon, but we did not detect colocalization/co-transport in the distal axon. Thus, the specific secretory mechanisms used for viral egress from axons remains unclear. To address the role of neuronal activity more generally, we used a compartmentalized neuron culture system to measure the egress and spread of PRV from axons, and pharmacological and optogenetics approaches to modulate neuronal activity. Using tetrodotoxin to silence neuronal activity, we observed no inhibition, and using potassium chloride or optogenetics to elevate neuronal activity, we also show no increase in virus spread from axons. We conclude that PRV egress from neurons uses constitutive secretory mechanisms: generally, activity-independent mechanisms in axons, and specifically, the constitutive Rab6 post-Golgi secretory pathway in cell bodies.


Asunto(s)
Alphaherpesvirinae , Herpesvirus Suido 1 , Seudorrabia , Animales , Cuerpo Celular/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Axones , Alphaherpesvirinae/metabolismo , Neuronas , Herpesvirus Suido 1/metabolismo , Seudorrabia/metabolismo , Exocitosis
2.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338696

RESUMEN

Tumor cells release exosomes, extracellular vesicle containing various bioactive molecules such as protein, DNA and RNA. The analysis of RNA molecules packaged in exosomes may provide new potential diagnostic or prognostic tumor biomarkers. The treatment of radioiodine-refractory aggressive thyroid cancer is still an unresolved clinical challenge, and the search for biomarkers that are detectable in early phase of the disease has become a fundamental goal for thyroid cancer research. By using transcriptome analysis, this study aimed to analyze the gene expression profiles of exosomes secreted by a non-tumorigenic thyroid cell line (Nthy-ori 3.1-exo) and a papillary thyroid cancer (TPC-1-exo) cell line, comparing them with those of cell bodies (Nthy-ori 3.1-cells and TPC-1-cells). A total of 9107 transcripts were identified as differentially expressed when comparing TPC-1-exo with TPC-1-cells and 5861 when comparing Nthy-ori 3.1-exo with Nthy-ori 3.1-cells. Among them, Sialic acid-binding immunoglobulin-like lectins 10 and 11 (SIGLEC10, SIGLEC11) and Keratin-associated protein 5 (KRTAP5-3) transcripts, genes known to be involved in cancer progression, turned out to be up-regulated only in TPC-1-exo. Gene ontology analysis revealed significantly enriched pathways, and only in TPC-1-exo were the differential expressed genes associated with an up-regulation in epigenetic processes. These findings provide a proof of concept that some mRNA species are specifically packaged in tumor-cell-derived exosomes and may constitute a starting point for the identification of new biomarkers for thyroid tumors.


Asunto(s)
Exosomas , Neoplasias de la Tiroides , Humanos , ARN/metabolismo , Exosomas/metabolismo , Cuerpo Celular/metabolismo , Cuerpo Celular/patología , Radioisótopos de Yodo/metabolismo , Línea Celular Tumoral , Neoplasias de la Tiroides/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular
3.
Curr Biol ; 33(18): 3851-3864.e7, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37586371

RESUMEN

Axonal transport is key to neuronal function. Efficient transport requires specific motor-cargo association in the soma, yet the mechanisms regulating this early step remain poorly understood. We found that EBP-1, the C. elegans ortholog of the canonical-microtubule-end-binding protein EB1, promotes the specific association between kinesin-3/KIF1A/UNC-104 and dense core vesicles (DCVs) prior to their axonal delivery. Using single-neuron, in vivo labeling of endogenous cargo and EBs, we observed reduced axonal abundance and reduced secretion of DCV cargo, but not other KIF1A/UNC-104 cargoes, in ebp-1 mutants. This reduction could be traced back to fewer exit events from the cell body, where EBP-1 colocalized with the DCV sorting machinery at the trans Golgi, suggesting that this is the site of EBP-1 function. EBP-1 calponin homology (CH) domain was required for directing microtubule growth on the Golgi, and mammalian EB1 interacted with KIF1A in an EBH-domain-dependent manner. Loss- and gain-of-function experiments suggest a model in which both kinesin-3 binding and guidance of microtubule growth at the trans Golgi by EBP-1 promote motor-cargo association at sites of DCV biogenesis. In support of this model, tethering either EBP-1 or a kinesin-3/KIF1A/UNC-104-interacting domain from an unrelated protein to the Golgi restored the axonal abundance of DCV proteins in ebp-1 mutants. These results uncover an unexpected role for a microtubule-associated protein and provide insights into how specific kinesin-3 cargo is delivered to the axon.


Asunto(s)
Caenorhabditis elegans , Cinesinas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cinesinas/metabolismo , Cuerpo Celular/metabolismo , Vesículas de Núcleo Denso , Neuronas/metabolismo , Axones/metabolismo , Mamíferos
4.
Cell Death Dis ; 14(5): 309, 2023 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149633

RESUMEN

To establish functional circuitry, neurons settle down in a particular spatial domain by spacing their cell bodies, which requires proper positioning of the soma and establishing of a zone with unique connections. Deficits in this process are implicated in neurodevelopmental diseases. In this study, we examined the function of EphB6 in the development of cerebral cortex. Overexpression of EphB6 via in utero electroporation results in clumping of cortical neurons, while reducing its expression has no effect. In addition, overexpression of EphrinB2, a ligand of EphB6, also induces soma clumping in the cortex. Unexpectedly, the soma clumping phenotypes disappear when both of them are overexpressed in cortical neurons. The mutual inhibitory effect of EphB6/ EphrinB2 on preventing soma clumping is likely to be achieved via interaction of their specific domains. Thus, our results reveal a combinational role of EphrinB2/EphB6 overexpression in controlling soma spacing in cortical development.


Asunto(s)
Efrina-B2 , Receptor EphB6 , Receptor EphB6/metabolismo , Efrina-B2/genética , Efrina-B2/metabolismo , Cuerpo Celular/metabolismo , Neuronas/metabolismo
5.
Sci Rep ; 12(1): 20195, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36424523

RESUMEN

Understanding the physiology of the retina, and especially of the highly polarized photoreceptors, is essential not only to broaden our knowledge of the processes required for normal vision, but also to develop effective therapies to prevent or slow retinal degenerative diseases. However, the molecular analysis of photoreceptors is a challenge due to the heterogeneity of the retinal tissue and the lack of easy and reliable methods for cell separation. Here we present the ReLayS method-a simple technique for the separation of photoreceptor segments (PS) containing both inner and outer segments, outer nuclear layer (ONL), and inner retina (InR) that contains the remaining retinal layers. The layer-specific material isolated from a mouse half-retina with the ReLayS method was sufficient for protein isolation and Western blotting or RNA isolation and real-time PCR studies. The separation of PS, ONL, and InR was successfully validated by Western blotting and real-time PCR using proteins and genes with known expression profiles within the retina. Furthermore, the separation of the PS from the ONL enabled the detection of light-driven translocation of transducin from the PS to the soma. ReLayS is a simple and useful method to address protein and possibly metabolites distribution in photoreceptor compartments in various situations including development, ageing, and degenerative diseases.


Asunto(s)
Cuerpo Celular , Retina , Ratones , Animales , Cuerpo Celular/metabolismo , Retina/metabolismo , Células Fotorreceptoras/metabolismo , Transducina/metabolismo
6.
Cereb Cortex ; 32(11): 2321-2331, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-34546353

RESUMEN

Soma spacing and dendritic arborization during brain development are key events for the establishment of proper neural circuitry and function. Transcription factor Satb2 is a molecular node in regulating the development of the cerebral cortex, as shown by the facts that Satb2 is required for the regionalization of retrosplenial cortex, the determination of callosal neuron fate, and the regulation of soma spacing and dendritic self-avoidance of cortical pyramidal neurons. In this study, we explored downstream effectors that mediate the Satb2-implicated soma spacing and dendritic self-avoidance. First, RNA-seq analysis of the cortex revealed differentially expressed genes between control and Satb2 CKO mice. Among them, EphA7 transcription was dramatically increased in layers II/III of Satb2 CKO cortex. Overexpression of EphA7 in the late-born cortical neurons of wild-type mice via in utero electroporation resulted in soma clumping and impaired self-avoidance of affected pyramidal neurons, which resembles the phenotypes caused by knockdown of Satb2 expression. Importantly, the phenotypes by Satb2 knockdown was rescued by reducing EphA7 expression in the cortex. Finally, ChIP and luciferase reporter assays indicated a direct suppression of EphA7 expression by Satb2. These findings provide new insights into the complexity of transcriptional regulation of the morphogenesis of cerebral cortex.


Asunto(s)
Corteza Cerebral , Neuronas , Animales , Cuerpo Celular/metabolismo , Corteza Cerebral/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz , Ratones , Neuronas/metabolismo , Células Piramidales/metabolismo , Receptor EphA7 , Factores de Transcripción/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34670838

RESUMEN

To form synaptic connections and store information, neurons continuously remodel their proteomes. The impressive length of dendrites and axons imposes logistical challenges to maintain synaptic proteins at locations remote from the transcription source (the nucleus). The discovery of thousands of messenger RNAs (mRNAs) near synapses suggested that neurons overcome distance and gain autonomy by producing proteins locally. It is not generally known, however, if, how, and when localized mRNAs are translated into protein. To investigate the translational landscape in neuronal subregions, we performed simultaneous RNA sequencing (RNA-seq) and ribosome sequencing (Ribo-seq) from microdissected rodent brain slices to identify and quantify the transcriptome and translatome in cell bodies (somata) as well as dendrites and axons (neuropil). Thousands of transcripts were differentially translated between somatic and synaptic regions, with many scaffold and signaling molecules displaying increased translation levels in the neuropil. Most translational changes between compartments could be accounted for by differences in RNA abundance. Pervasive translational regulation was observed in both somata and neuropil influenced by specific mRNA features (e.g., untranslated region [UTR] length, RNA-binding protein [RBP] motifs, and upstream open reading frames [uORFs]). For over 800 mRNAs, the dominant source of translation was the neuropil. We constructed a searchable and interactive database for exploring mRNA transcripts and their translation levels in the somata and neuropil [MPI Brain Research, The mRNA translation landscape in the synaptic neuropil. https://public.brain.mpg.de/dashapps/localseq/ Accessed 5 October 2021]. Overall, our findings emphasize the substantial contribution of local translation to maintaining synaptic protein levels and indicate that on-site translational control is an important mechanism to control synaptic strength.


Asunto(s)
Axones/metabolismo , Cuerpo Celular/metabolismo , Dendritas/metabolismo , Neuronas/metabolismo , Biosíntesis de Proteínas , Análisis de Secuencia de ARN/métodos , Animales , Proteoma , ARN Mensajero/genética , Transcriptoma
8.
Biosystems ; 207: 104463, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34166730

RESUMEN

As shown by Hofmeyr, the processes in the living cell can be divided into three classes of efficient causes that produce each other, so making the cell closed to efficient causation, the hallmark of an organism. They are the enzyme catalysts of covalent metabolic chemistry, the intracellular milieu that drives the supramolecular processes of chaperone-assisted folding and self-assembly of polypeptides and nucleic acids into functional catalysts and transporters, and the membrane transporters that maintain the intracellular milieu, in particular its electrolyte composition. Each class of efficient cause can be modelled as a relational diagram in the form of a mapping in graph-theoretic form, and a minimal model of a self-manufacturing system that is closed to efficient causation can be constructed from these three mappings using the formalism of relational biology. This fabrication-assembly or (F,A)-system serves as an alternative to Robert Rosen's replicative metabolism-repair or (M,R)-system, which has been notoriously problematic to realise in terms of real biochemical processes. A key feature of the model is the explicit incorporation of formal cause, which arrests the infinite regress that plagues all relational models of the cell. The (F,A)-system is extended into a detailed relational model of the self-manufacturing cell that has a clear biochemical realisation. This (F,A) cell model allows the interpretation and visualisation of concepts such as the metabolism and repair components of Rosen's (M,R)-system, John von Neumann's universal constructor, Howard Pattee's symbol-function split via the symbol-folding transformation, Marcello Barbieri's genotype-ribotype-phenotype ontology, and Tibor Gánti's chemoton.


Asunto(s)
Cuerpo Celular/metabolismo , Membrana Celular/metabolismo , Modelos Biológicos , Biología de Sistemas/métodos , Animales , Humanos , Biología de Sistemas/tendencias
9.
STAR Protoc ; 2(2): 100462, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33912849

RESUMEN

Actin-rich protrusions are membrane extensions generated by actin polymerization that drive mesenchymal-like cell migration. Characterization of protrusions proteome is crucial for understanding their function. We present a complete step-by-step protocol based on microporous filter-based fractionation of protrusive cellular domains coupled with sample preparation for quantitative proteomics, mass spectrometric data acquisition, and data analysis. This protocol enables purification, quantification, and analysis of the distribution of proteins present in protrusions and cell bodies. For complete details on the use and execution of this protocol, please refer to Dermit et al. (2020).


Asunto(s)
Cuerpo Celular , Extensiones de la Superficie Celular , Proteómica , Cuerpo Celular/química , Cuerpo Celular/metabolismo , Línea Celular Tumoral , Extensiones de la Superficie Celular/química , Extensiones de la Superficie Celular/metabolismo , Humanos
10.
Acta Biochim Biophys Sin (Shanghai) ; 53(1): 1-9, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33258872

RESUMEN

Thousands of nerve injuries occur in the world each year. Axon regeneration is a very critical process for the restoration of the injured nervous system's function. However, the precise molecular mechanism or signaling cascades that control axon regeneration are not clearly understood, especially in mammals. Therefore, there is almost no ideal treatment method to repair the nervous system's injury until now. Mammalian axonal regeneration requires multiple signaling pathways to coordinately regulate gene expression in soma and assembly of the cytoskeleton protein in the growth cone. A better understanding of their molecular mechanisms, such as axon regeneration regulatory signaling cascades, will be helpful in developing new treatment strategies for promoting axon regeneration. In this review, we mainly focus on describing these regeneration-associated signaling cascades, which regulate axon regeneration.


Asunto(s)
Axones/metabolismo , Regeneración Nerviosa/genética , Animales , Cuerpo Celular/metabolismo , Sistema Nervioso Central/lesiones , Conos de Crecimiento/metabolismo , Invertebrados , Mamíferos , Transducción de Señal
11.
Stroke ; 51(12): 3701-3712, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33138691

RESUMEN

BACKGROUND AND PURPOSE: Cerebral endothelial cells (CECs) and axons of neurons interact to maintain vascular and neuronal homeostasis and axonal remodeling in normal and ischemic brain, respectively. However, the role of exosomes in the interaction of CECs and axons in brain under normal conditions and after stroke is unknown. METHODS: Exosomes were isolated from CECs of nonischemic rats and is chemic rats (nCEC-exos and isCEC-exos), respectively. A multicompartmental cell culture system was used to separate axons from neuronal cell bodies. RESULTS: Axonal application of nCEC-exos promotes axonal growth of cortical neurons, whereas isCEC-exos further enhance axonal growth than nCEC-exos. Ultrastructural analysis revealed that CEC-exos applied into distal axons were internalized by axons and reached to their parent somata. Bioinformatic analysis revealed that both nCEC-exos and isCEC-exos contain abundant mature miRNAs; however, isCEC-exos exhibit more robust elevation of select miRNAs than nCEC-exos. Mechanistically, axonal application of nCEC-exos and isCEC-exos significantly elevated miRNAs and reduced proteins in distal axons and their parent somata that are involved in inhibiting axonal outgrowth. Blockage of axonal transport suppressed isCEC-exo-altered miRNAs and proteins in somata but not in distal axons. CONCLUSIONS: nCEC-exos and isCEC-exos facilitate axonal growth by altering miRNAs and their target protein profiles in recipient neurons.


Asunto(s)
Axones/metabolismo , Isquemia Encefálica/metabolismo , Cuerpo Celular/metabolismo , Células Endoteliales/metabolismo , Exosomas/metabolismo , MicroARNs/metabolismo , Proyección Neuronal , Neuronas/metabolismo , Animales , Axones/ultraestructura , Cuerpo Celular/ultraestructura , Técnicas de Cultivo de Célula , Corteza Cerebral/citología , Dispositivos Laboratorio en un Chip , Masculino , Neovascularización Fisiológica , Neuronas/ultraestructura , Cultivo Primario de Células , Ratas
12.
Cell ; 183(6): 1600-1616.e25, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33248024

RESUMEN

Rapid phasic activity of midbrain dopamine neurons is thought to signal reward prediction errors (RPEs), resembling temporal difference errors used in machine learning. However, recent studies describing slowly increasing dopamine signals have instead proposed that they represent state values and arise independent from somatic spiking activity. Here we developed experimental paradigms using virtual reality that disambiguate RPEs from values. We examined dopamine circuit activity at various stages, including somatic spiking, calcium signals at somata and axons, and striatal dopamine concentrations. Our results demonstrate that ramping dopamine signals are consistent with RPEs rather than value, and this ramping is observed at all stages examined. Ramping dopamine signals can be driven by a dynamic stimulus that indicates a gradual approach to a reward. We provide a unified computational understanding of rapid phasic and slowly ramping dopamine signals: dopamine neurons perform a derivative-like computation over values on a moment-by-moment basis.


Asunto(s)
Dopamina/metabolismo , Transducción de Señal , Potenciales de Acción/fisiología , Animales , Axones/metabolismo , Calcio/metabolismo , Señalización del Calcio , Cuerpo Celular/metabolismo , Señales (Psicología) , Neuronas Dopaminérgicas/fisiología , Fluorometría , Masculino , Ratones Endogámicos C57BL , Modelos Neurológicos , Estimulación Luminosa , Recompensa , Sensación , Factores de Tiempo , Área Tegmental Ventral/metabolismo , Realidad Virtual
13.
Sci Rep ; 10(1): 15210, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32939029

RESUMEN

We evaluated the changes in substance P (SP)-expressing trigeminal neurons (TNs) innervating the cornea following ocular surface inflammation. Ocular surface inflammation was induced in Sprague-Dawley rats using 0.1% benzalkonium chloride (BAK). The corneal staining score, corneal epithelial apoptosis, conjunctival goblet cells, and density of corneal subbasal nerve plexus (SNP) were assessed, and the mRNA levels of SP, interleukin (IL)-1ß, IL-6, and tumour necrosis factor-α were measured in corneas and ipsilateral trigeminal ganglia (TG). SP-immunoreactivity (IR) was measured in corneal intraepithelial nerves and TNs. The cell size of corneal TNs in the TG was calculated. All parameters were observed immediately (BAK group), at 1 week (1 w group), and 2 months (2 m group) after 2 weeks of BAK application. BAK caused an increase in the corneal staining score and the number of apoptotic cells, loss of conjunctival goblet cells, reduced density of corneal SNP, and upregulated expression of SP and inflammatory cytokines in both the cornea and TG in the BAK group but those changes were not observed in the 2 m group. On the other hand, SP-IR% and mean cell size of corneal TNs increased significantly in the BAK, 1 w, and 2 m groups, compared to the control. Our data suggest that following ocular surface inflammation, large-sized corneal TNs which normally do not express SP, expressed it and this phenotype switching lasted even after the inflammation disappeared. Long-lasting phenotypic switch, as well as changes in the expression level of certain molecules should be addressed in future studies on the mechanism of corneal neuropathic pain.


Asunto(s)
Compuestos de Benzalconio/efectos adversos , Conjuntivitis/genética , Queratitis/genética , Sustancia P/genética , Ganglio del Trigémino/metabolismo , Animales , Apoptosis , Cuerpo Celular/metabolismo , Conjuntivitis/inducido químicamente , Conjuntivitis/metabolismo , Modelos Animales de Enfermedad , Epitelio Corneal/citología , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/metabolismo , Células Caliciformes/citología , Células Caliciformes/efectos de los fármacos , Células Caliciformes/metabolismo , Interleucina-1beta/genética , Interleucina-6/genética , Queratitis/inducido químicamente , Queratitis/metabolismo , Ratas , Ratas Sprague-Dawley , Sustancia P/metabolismo , Factor de Necrosis Tumoral alfa/genética
14.
J Vis Exp ; (161)2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32744525

RESUMEN

The last decade has been characterized by breakthroughs in fluorescence microscopy techniques illustrated by spatial resolution improvement but also in live-cell imaging and high-throughput microscopy techniques. This led to a constant increase in the amount and complexity of the microscopy data for a single experiment. Because manual analysis of microscopy data is very time consuming, subjective, and prohibits quantitative analyses, automation of bioimage analysis is becoming almost unavoidable. We built an informatics workflow called Substructure Analyzer to fully automate signal analysis in bioimages from fluorescent microscopy. This workflow is developed on the user-friendly open-source platform Icy and is completed by functionalities from ImageJ. It includes the pre-processing of images to improve the signal to noise ratio, the individual segmentation of cells (detection of cell boundaries) and the detection/quantification of cell bodies enriched in specific cell compartments. The main advantage of this workflow is to propose complex bio-imaging functionalities to users without image analysis expertise through a user-friendly interface. Moreover, it is highly modular and adapted to several issues from the characterization of nuclear/cytoplasmic translocation to the comparative analysis of different cell bodies in different cellular sub-structures. The functionality of this workflow is illustrated through the study of the Cajal (coiled) Bodies under oxidative stress (OS) conditions. Data from fluorescence microscopy show that their integrity in human cells is impacted a few hours after the induction of OS. This effect is characterized by a decrease of coilin nucleation into characteristic Cajal Bodies, associated with a nucleoplasmic redistribution of coilin into an increased number of smaller foci. The central role of coilin in the exchange between CB components and the surrounding nucleoplasm suggests that OS induced redistribution of coilin could affect the composition and the functionality of Cajal Bodies.


Asunto(s)
Cuerpo Celular/metabolismo , Microscopía Fluorescente/métodos , Flujo de Trabajo , Núcleo Celular , Humanos , Proteínas Nucleares
15.
Methods Mol Biol ; 2134: 139-148, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32632866

RESUMEN

Leptospira spp. swim in liquid and crawl on surfaces with two periplasmic flagella. The periplasmic flagella attach to the protoplasmic cylinder via basal rotary motors (flagellar motors) and transform the ends of the cell body into spiral or hook shape. The rotations of the periplasmic flagella are thought to gyrate the cell body and rotate the protoplasmic cylinder for propelling the cell; however, the motility mechanism has not been fully elucidated. Since the motility is a critical virulence factor for pathogenic leptospires, the kinematic insight is valuable to understand the mechanism of infection. This chapter describes microscopic methodologies to measure the motility of Leptospira, focusing on rotation of the helical cell body.


Asunto(s)
Cuerpo Celular/ultraestructura , Leptospira/ultraestructura , Microscopía/métodos , Cuerpo Celular/metabolismo , Movimiento Celular/fisiología , Flagelos/metabolismo , Flagelos/ultraestructura , Leptospira/metabolismo , Periplasma/metabolismo , Periplasma/fisiología , Factores de Virulencia/metabolismo
16.
Neuron ; 107(3): 454-469.e6, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32574560

RESUMEN

Neuroscience relies on techniques for imaging the structure and dynamics of neural circuits, but the cell bodies of individual neurons are often obscured by overlapping fluorescence from axons and dendrites in surrounding neuropil. Here, we describe two strategies for using the ribosome to restrict the expression of fluorescent proteins to the neuronal soma. We show first that a ribosome-tethered nanobody can be used to trap GFP in the cell body, thereby enabling direct visualization of previously undetectable GFP fluorescence. We then design a ribosome-tethered GCaMP for imaging calcium dynamics. We show that this reporter faithfully tracks somatic calcium dynamics in the mouse brain while eliminating cross-talk between neurons caused by contaminating neuropil. In worms, this reporter enables whole-brain imaging with faster kinetics and brighter fluorescence than commonly used nuclear GCaMPs. These two approaches provide a general way to enhance the specificity of imaging in neurobiology.


Asunto(s)
Encéfalo/diagnóstico por imagen , Calcio/metabolismo , Cuerpo Celular/patología , Neuronas/patología , Imagen Óptica/métodos , Ribosomas/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Caenorhabditis elegans , Proteínas de Unión al Calcio , Cuerpo Celular/metabolismo , Proteínas Fluorescentes Verdes , Ratones , Neuronas/metabolismo , Neurópilo , Proteína Ribosómica L10/metabolismo , Anticuerpos de Dominio Único
17.
J Vis Exp ; (159)2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32510477

RESUMEN

Hair cells are mechanosensory cells that mediate the sense of hearing. These cells do not regenerate after damage in humans, but they are naturally replenished in non-mammalian vertebrates such as zebrafish. The zebrafish lateral line system is a useful model for characterizing sensory hair cell regeneration. The lateral line is comprised of hair cell-containing organs called neuromasts, which are linked together by a string of interneuromast cells (INMCs). INMCs act as progenitor cells that give rise to new neuromasts during development. INMCs can repair gaps in the lateral line system created by cell death. A method is described here for selective INMC ablation using a conventional laser-scanning confocal microscope and transgenic fish that express green fluorescent protein in INMCs. Time-lapse microscopy is then used to monitor INMC regeneration and determine the rate of gap closure. This represents an accessible protocol for cell ablation that does not require specialized equipment, such as a high-powered pulsed ultraviolet laser. The ablation protocol may serve broader interests, as it could be useful for the ablation of additional cell types, employing a tool set that is already available to many users. This technique will further enable the characterization of INMC regeneration under different conditions and from different genetic backgrounds, which will advance the understanding of sensory progenitor cell regeneration.


Asunto(s)
Bioensayo/métodos , Interneuronas/citología , Terapia por Láser , Microscopía Confocal , Regeneración/fisiología , Pez Cebra/fisiología , Anestesia , Animales , Animales Modificados Genéticamente , Cuerpo Celular/metabolismo , Muerte Celular , Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Procesamiento de Imagen Asistido por Computador , Larva/citología , Modelos Logísticos , Pez Cebra/genética
18.
Neuron ; 107(3): 470-486.e11, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32592656

RESUMEN

Methods for one-photon fluorescent imaging of calcium dynamics can capture the activity of hundreds of neurons across large fields of view at a low equipment complexity and cost. In contrast to two-photon methods, however, one-photon methods suffer from higher levels of crosstalk from neuropil, resulting in a decreased signal-to-noise ratio and artifactual correlations of neural activity. We address this problem by engineering cell-body-targeted variants of the fluorescent calcium indicators GCaMP6f and GCaMP7f. We screened fusions of GCaMP to natural, as well as artificial, peptides and identified fusions that localized GCaMP to within 50 µm of the cell body of neurons in mice and larval zebrafish. One-photon imaging of soma-targeted GCaMP in dense neural circuits reported fewer artifactual spikes from neuropil, an increased signal-to-noise ratio, and decreased artifactual correlation across neurons. Thus, soma-targeting of fluorescent calcium indicators facilitates usage of simple, powerful, one-photon methods for imaging neural calcium dynamics.


Asunto(s)
Encéfalo/diagnóstico por imagen , Calcio/metabolismo , Cuerpo Celular/patología , Neuronas/patología , Imagen Óptica/métodos , Animales , Artefactos , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Unión al Calcio , Cuerpo Celular/metabolismo , Proteínas Fluorescentes Verdes , Ratones , Neuronas/metabolismo , Neurópilo , Pez Cebra
19.
Sci Rep ; 10(1): 5820, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32242061

RESUMEN

Neuronal migration is necessary in the process of the formation of brain architecture. Recently, we demonstrated that human induced pluripotent stem cell (iPSC)-derived dopaminergic neurons exhibit directional migration in vitro. However, it remains unclear how the cell shape is involved in their migration. In this study, we performed live imaging analyses using human iPSC-derived dopaminergic neurons. Our automated method, which can automatically identify the cell body shape and the cell position at specific time points, revealed that healthy iPSC-derived dopaminergic neurons migrate according to their shape. This migration behavior was out of accord in neurons derived from iPSCs carrying an RELN deletion. Our findings provide a novel theory that cell body orientation is related to the stability of movement direction for human dopaminergic neurons, under the regulation of RELN.


Asunto(s)
Cuerpo Celular/fisiología , Movimiento Celular/fisiología , Forma de la Célula/fisiología , Neuronas Dopaminérgicas/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Adulto , Anciano , Cuerpo Celular/metabolismo , Diferenciación Celular/fisiología , Línea Celular , Neuronas Dopaminérgicas/metabolismo , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Proteína Reelina
20.
Domest Anim Endocrinol ; 72: 106432, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32169754

RESUMEN

Circulating concentrations of Anti-Müllerian hormone (AMH) can indicate fertility in various animals, but the physiological mechanisms underlying the effect of AMH on fertility remain unknown. We recently discovered that AMH has extragonadal functions via its main receptor, AMH receptor type 2 (AMHR2). Specifically, AMH stimulates the secretion of luteinizing hormone and follicle-stimulating hormone from bovine gonadotrophs. Moreover, gonadotrophs themselves express AMH to exert paracrine/autocrine functions, and AMH can activate gonadotropin-releasing-hormone (GnRH) neurons in mice. This study aimed to evaluate whether AMH and AMHR2 are detected in areas of the brain relevant to neuroendocrine control of reproduction: the preoptic area (POA), arcuate nucleus (ARC), and median eminence (ME), and in particular within GnRH neurons. Reverse transcription-polymerase chain reaction detected both AMH and AMHR2 mRNA in tissues containing POA, as well as in those containing both ARC and ME, collected from postpubertal heifers. Western blotting detected AMH and AMHR2 protein in the collected tissues. Triple fluorescence immunohistochemistry revealed that most cell bodies or fibers of GnRH neurons were AMHR2-positive and AMH-positive, although some were negative. Immunohistochemistry revealed that 75% to 85% of cell bodies and fibers of GnRH neurons were positive for both AMH and AMHR2 in the POA, ARC, and both the internal and external zones of the ME. The cell bodies of GnRH neurons were situated around other AMH-positive cell bodies or fibers of GnRH and non-GNRH neurons. Our findings thus indicate that AMH and AMHR2 are detected in most cell bodies or fibers of GnRH neurons in the POA, ARC, and ME of heifer brains. These data support the need for further study as to how AMH and AMHR2 act within the hypothalamus to influence GnRH and gonadotropin secretion.


Asunto(s)
Hormona Antimülleriana/metabolismo , Encéfalo/metabolismo , Bovinos , Cuerpo Celular/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Receptores de Péptidos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Péptidos/genética , Receptores de Factores de Crecimiento Transformadores beta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...