Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.429
Filtrar
1.
EBioMedicine ; 105: 105190, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38901148

RESUMEN

BACKGROUND: Plasmodium blood-stage parasites balance asexual multiplication with gametocyte development. Few studies link these dynamics with parasite genetic markers in vivo; even fewer in longitudinally monitored infections. Environmental influences on gametocyte formation, such as mosquito exposure, may influence the parasite's investment in gametocyte production. METHODS: We investigated gametocyte production and asexual multiplication in two Plasmodium falciparum infected populations; a controlled human malaria infection (CHMI) study and a 28-day observational study in naturally infected individuals in Burkina Faso with controlled mosquito exposure. We measured gene transcript levels previously related to gametocyte formation (ap2-g, surfin1.2, surfin13.1, gexp-2) or inhibition of asexual multiplication (sir2a) and compared transcript levels to ring-stage parasite and mature gametocyte densities. FINDINGS: Three of the five markers (ap2-g, surfin1.2, surfin13.1) predicted peak gametocytaemia in the CHMI study. An increase in all five markers in natural infections was associated with an increase in mature gametocytes 14 days later; the effect of sir2a on future gametocytes was strongest (fold change = 1.65, IQR = 1.22-2.24, P = 0.004). Mosquito exposure was not associated with markers of gametocyte formation (ap2-g P = 0.277; sir2a P = 0.499) or carriage of mature gametocytes (P = 0.379). INTERPRETATION: All five parasite genetic markers predicted gametocyte formation over a single cycle of gametocyte formation and maturation in vivo; sir2a and ap2-g were most closely associated with gametocyte growth dynamics. We observed no evidence to support the hypothesis that exposure to Anopheles mosquito bites stimulates gametocyte formation. FUNDING: This work was funded by the Bill & Melinda Gates Foundation (INDIE OPP1173572), the European Research Council fellowship (ERC-CoG 864180) and UKRI Medical Research Council (MR/T016272/1) and Wellcome Center (218676/Z/19/Z).


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/genética , Humanos , Animales , Malaria Falciparum/parasitología , Marcadores Genéticos , Culicidae/parasitología , Femenino , Masculino , Niño , Adulto , Adolescente , Proteínas Protozoarias/genética , Mordeduras y Picaduras de Insectos/parasitología , Preescolar , Burkina Faso , Anopheles/parasitología , Anopheles/genética
2.
Trends Parasitol ; 40(7): 591-603, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38853076

RESUMEN

Mosquitoes are important vectors for human diseases, transmitting pathogens that cause a range of parasitic and viral infections. Mosquito blood-feeding is heterogeneous, meaning that some human hosts are at higher risk of receiving bites than others, and this heterogeneity is multifactorial. Mosquitoes integrate specific cues to locate their hosts, and mosquito attraction differs considerably between individual human hosts. Heterogeneous mosquito biting results from variations in both host attractiveness and availability and can impact transmission of vector-borne diseases. However, the extent and drivers of this heterogeneity and its importance for pathogen transmission remain incompletely understood. Here, we review methods and recent data describing human characteristics that affect host-seeking behavior and host preferences of mosquito disease vectors, and the implications for vector-borne disease transmission.


Asunto(s)
Culicidae , Conducta Alimentaria , Mosquitos Vectores , Animales , Humanos , Conducta Alimentaria/fisiología , Culicidae/fisiología , Culicidae/parasitología , Mosquitos Vectores/fisiología , Mosquitos Vectores/parasitología , Enfermedades Transmitidas por Vectores/transmisión , Enfermedades Transmitidas por Vectores/prevención & control
3.
Acta Trop ; 256: 107260, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782110

RESUMEN

Avian haemosporidian parasites are spread worldwide and pose a threat to their hosts occasionally. A complete life cycle of these parasites requires two hosts: vertebrate and invertebrate (a blood-sucking insect that acts as a vector). In this study, we tested wild-caught mosquitoes for haemosporidian infections. Mosquitoes were collected (2021-2023) in several localities in Lithuania using a sweeping net and a CDC trap baited with CO2, morphologically identified, and preparations of salivary glands were prepared (from females collected in 2022-2023). 2093 DNA samples from either individual after dissection (1675) or pools (418 pools/1145 individuals) of female mosquito's abdomens were screened using PCR for the detection of haemosporidian parasite DNA. Salivary gland preparations were analyzed microscopically from each PCR-positive mosquito caught in 2022 and 2023. The average prevalence of haemosporidian parasites for all analyzed samples was 2.0 % and varied between 0.6 % (2021) and 3.5 % (2022). DNA of Plasmodium ashfordi (cytochrome b genetic lineage pGRW02), P. circumflexum (pTURDUS1), P. homonucleophilum (pSW2), P. matutinum (pLINN1), P. vaughani (pSYAT05), Haemoproteus brachiatus (hLK03), H. majoris (hWW2), and H. minutus (hTUPHI01) were detected in mosquitoes. Coquilletidia richiardii (3.5 %) and Culex pipiens (2.9 %) were mosquito species with the highest prevalence of haemosporidian parasite DNA detected. Mixed infections were detected in 16 mosquitoes. In one of the samples, sporozoites of P. matutinum (pLINN1) were found in the salivary gland preparation of Culex pipiens, confirming this mosquito species as a competent vector of Plasmodium matutinum and adding it to the list of the natural vectors of this avian parasite.


Asunto(s)
Mosquitos Vectores , Plasmodium , Glándulas Salivales , Animales , Femenino , Mosquitos Vectores/parasitología , Plasmodium/aislamiento & purificación , Plasmodium/genética , Plasmodium/clasificación , Glándulas Salivales/parasitología , Lituania , Haemosporida/genética , Haemosporida/aislamiento & purificación , Haemosporida/clasificación , Culicidae/parasitología , Aves/parasitología , Reacción en Cadena de la Polimerasa , Culex/parasitología , ADN Protozoario/genética
4.
Parasit Vectors ; 17(1): 187, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605410

RESUMEN

BACKGROUND: In the context of climate change, a growing concern is that vector-pathogen or host-parasite interactions may be correlated with climatic factors, especially increasing temperatures. In the present study, we used a mosquito-microsporidian model to determine the impact of environmental factors such as temperature, humidity, wind and rainfall on the occurrence rates of opportunistic obligate microparasites (Microsporidia) in hosts from a family that includes important disease vectors (Culicidae). METHODS: In our study, 3000 adult mosquitoes collected from the field over 3 years were analysed. Mosquitoes and microsporidia were identified using PCR and sequencing of the hypervariable V5 region of the small subunit ribosomal RNA gene and a shortened fragment of the cytochrome c oxidase subunit I gene, respectively. RESULTS: DNA metabarcoding was used to identify nine mosquito species, all of which were hosts of 12 microsporidian species. The prevalence of microsporidian DNA across all mosquito samples was 34.6%. Microsporidian prevalence in mosquitoes was more frequent during warm months (> 19 °C; humidity < 65%), as was the co-occurrence of two or three microsporidian species in a single host individual. During warm months, microsporidian occurrence was noted 1.6-fold more often than during the cold periods. Among the microsporidians found in the mosquitoes, five (representing the genera Enterocytospora, Vairimorpha and Microsporidium) were positively correlated with an increase in temperature, whereas one (Hazardia sp.) was significantly correlated with a decrease in temperature. Threefold more microsporidian co-occurrences were recorded in the warm months than in the cold months. CONCLUSIONS: These results suggest that the susceptibility of mosquitoes to parasite occurrence is primarily determined by environmental conditions, such as, for example, temperatures > 19 °C and humidity not exceeding 62%. Collectively, our data provide a better understanding of the effects of the environment on microsporidian-mosquito interactions.


Asunto(s)
Culicidae , Microsporidios , Animales , Culicidae/parasitología , Temperatura , Humedad , Mosquitos Vectores , Microsporidios/genética , ADN
5.
Trends Parasitol ; 40(4): 302-312, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443304

RESUMEN

Malaria parasites have coevolved with humans over thousands of years, mirroring their migration out of Africa. They persist to this day, despite continuous elimination efforts worldwide. These parasites can adapt to changing environments during infection of human and mosquito, and when expanding the geographical range by switching vector species. Recent studies in the human malaria parasite, Plasmodium falciparum, identified determinants governing the plasticity of sexual conversion rates, sex ratio, and vector competence. Here we summarize the latest literature revealing environmental, epigenetic, and genetic determinants of malaria transmission.


Asunto(s)
Culicidae , Malaria Falciparum , Malaria , Animales , Humanos , Malaria Falciparum/parasitología , Mosquitos Vectores , Malaria/parasitología , Plasmodium falciparum/genética , Culicidae/parasitología
6.
Vet Parasitol ; 325: 110092, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38070383

RESUMEN

Armigeres subalbatus, a mosquito species widely found in Thailand and other Asian countries, serves as a vector for filarial parasites, affecting both humans and animals. However, the surveillance of this vector is complicated because of its morphological similarity to two other species, Armigeres dohami and Armigeres kesseli. To differentiate these morphologically similar species, our study employed both wing geometric morphometrics (GM) and DNA barcoding, offering a comprehensive approach to accurately identify these closely related Armigeres species in Thailand. Our GM analyses based on shape demonstrated significant accuracy in differentiating Armigeres species. Specifically, the outline-based GM method focusing on the 3rd posterior cell exhibited an accuracy rate of 82.61%, closely followed by the landmark-based GM method with 81.54%. Both these GM techniques effectively distinguished Ar. subalbatus from Ar. dohami and Ar. kesseli. Regarding DNA barcoding, our investigation of pairwise intra- and interspecific divergences revealed a "barcoding gap". Furthermore, the results of species confirmation using both species delimitation methods including the automatic barcode gap discovery method (ABGD) and the Multi-rate Poisson tree process (mPTP) were consistent with those of morphological identification, sequence comparisons with the GenBank and Barcode of Life Data System (BOLD) databases, and the neighbor-joining tree construction. These consistent results emphasize the efficacy of DNA barcoding in the precise identification of Armigeres species.


Asunto(s)
Culicidae , Humanos , Animales , Culicidae/genética , Culicidae/parasitología , Código de Barras del ADN Taxonómico/métodos , Código de Barras del ADN Taxonómico/veterinaria , Tailandia , Mosquitos Vectores
7.
Mol Microbiol ; 121(3): 394-412, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37314965

RESUMEN

Plasmodium parasites, the eukaryotic pathogens that cause malaria, feature three distinct invasive forms tailored to the host environment they must navigate and invade for life cycle progression. One conserved feature of these invasive forms is the micronemes, apically oriented secretory organelles involved in egress, motility, adhesion, and invasion. Here we investigate the role of GPI-anchored micronemal antigen (GAMA), which shows a micronemal localization in all zoite forms of the rodent-infecting species Plasmodium berghei. ∆GAMA parasites are severely defective for invasion of the mosquito midgut. Once formed, oocysts develop normally, however, sporozoites are unable to egress and exhibit defective motility. Epitope-tagging of GAMA revealed tight temporal expression late during sporogony and showed that GAMA is shed during sporozoite gliding motility in a similar manner to circumsporozoite protein. Complementation of P. berghei knockout parasites with full-length P. falciparum GAMA partially restored infectivity to mosquitoes, indicating conservation of function across Plasmodium species. A suite of parasites with GAMA expressed under the promoters of CTRP, CAP380, and TRAP, further confirmed the involvement of GAMA in midgut infection, motility, and vertebrate infection. These data show GAMA's involvement in sporozoite motility, egress, and invasion, implicating GAMA as a regulator of microneme function.


Asunto(s)
Culicidae , Parásitos , Animales , Culicidae/metabolismo , Culicidae/parasitología , Parásitos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Oocistos , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Esporozoítos/metabolismo
8.
mBio ; 15(2): e0314223, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38131664

RESUMEN

Plasmodium fertilization, an essential step for the development of the malaria parasite in the mosquito, is a prime target for blocking pathogen transmission. Using phage peptide display screening, we identified MG1, a peptide that binds to male gametes and inhibits fertilization, presumably by competing with a female gamete ligand. Anti-MG1 antibodies bind to the female gamete surface and, by doing so, also inhibit fertilization. We determined that this antibody recognizes HSP90 on the surface of Plasmodium female gametes. Our findings establish Plasmodium HSP90 as a prime target for the development of a transmission-blocking vaccine.IMPORTANCEMalaria kills over half a million people every year and this number has not decreased in recent years. The development of new tools to combat this disease is urgently needed. In this article, we report the identification of a key molecule-HSP90-on the surface of the parasite's female gamete that is required for fertilization to occur and for the completion of the parasite cycle in the mosquito. HSP90 is a promising candidate for the development of a transmission-blocking vaccine.


Asunto(s)
Culicidae , Plasmodium , Vacunas , Animales , Masculino , Femenino , Humanos , Células Germinativas/metabolismo , Culicidae/parasitología , Fertilización , Péptidos , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo
9.
Parasit Vectors ; 16(1): 395, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37915080

RESUMEN

BAKGROUND: Vector-borne diseases affecting humans, wildlife and livestock have significantly increased their incidence and distribution in the last decades. Because the interaction among vectors-parasite-vertebrate hosts plays a key role driving vector-borne disease transmission, the analyses of the diversity and structure of vector-parasite networks and host-feeding preference may help to assess disease risk. Also, the study of seasonal variations in the structure and composition of vector and parasite communities may elucidate the current patterns of parasite persistence and spread as well as facilitate prediction of how climate variations may impact vector-borne disease transmission. Avian malaria and related haemosporidian parasites constitute an exceptional model to understand the ecology and evolution of vector-borne diseases. However, the characterization of vector-haemosporidian parasite-bird host assemblages is largely unknown in many regions. METHODS: Here, we analyzed 5859 female mosquitoes captured from May to November in five localities from southwestern Spain to explore the composition and seasonal variation of the vector-parasite-vertebrate host network. RESULTS: We showed a gradual increase in mosquito abundance, peaking in July. A total of 16 different haemosporidian lineages were found infecting 13 mosquito species. Of these assemblages, more than 70% of these vector-parasite associations have not been described in previous studies. Moreover, three Haemoproteus lineages were reported for the first time in this study. The prevalence of avian malaria infections in mosquitoes varied significantly across the months, reaching a maximum in November. Mosquito blood-feeding preference was higher for mammals (62.5%), whereas 37.5% of vectors fed on birds, suggesting opportunistic feeding behavior. CONCLUSION: These outcomes improve our understanding of disease transmission risk and help tovector control strategies.


Asunto(s)
Enfermedades de las Aves , Culicidae , Haemosporida , Malaria Aviar , Parásitos , Plasmodium , Animales , Humanos , Femenino , Culicidae/parasitología , Malaria Aviar/parasitología , Mosquitos Vectores/parasitología , Aves/parasitología , Vertebrados , Enfermedades de las Aves/parasitología , Mamíferos
10.
Sci Adv ; 9(24): eadf2161, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37327340

RESUMEN

Critical events in the life cycle of malaria-causing parasites depend on cyclic guanosine monophosphate homeostasis by guanylyl cyclases (GCs) and phosphodiesterases, including merozoite egress or invasion of erythrocytes and gametocyte activation. These processes rely on a single GCα, but in the absence of known signaling receptors, how this pathway integrates distinct triggers is unknown. We show that temperature-dependent epistatic interactions between phosphodiesterases counterbalance GCα basal activity preventing gametocyte activation before mosquito blood feed. GCα interacts with two multipass membrane cofactors in schizonts and gametocytes: UGO (unique GC organizer) and SLF (signaling linking factor). While SLF regulates GCα basal activity, UGO is essential for GCα up-regulation in response to natural signals inducing merozoite egress and gametocyte activation. This work identifies a GC membrane receptor platform that senses signals triggering processes specific to an intracellular parasitic lifestyle, including host cell egress and invasion to ensure intraerythrocytic amplification and transmission to mosquitoes.


Asunto(s)
Culicidae , Plasmodium , Animales , Señales (Psicología) , Plasmodium/fisiología , Eritrocitos/parasitología , Merozoítos/fisiología , Estadios del Ciclo de Vida , Culicidae/parasitología
11.
Infect Immun ; 91(7): e0016723, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37260388

RESUMEN

A frequent side effect of chemotherapy against malaria parasite blood infections is a dramatic induction of the sexual blood stages, thereby enhancing the risk of future malaria transmissions. The polyamine biosynthesis pathway has been suggested as a candidate target for transmission-blocking anti-malarial drug development. Herein, we describe the role of a bacterial-type amino acid decarboxylase (AAD) in the life cycle of the malaria model parasite Plasmodium yoelii. Hallmarks of AAD include a conserved catalytic lysine residue and high-level homology to arginine/lysine/ornithine decarboxylases of pathogenic bacteria. By targeted gene deletion, we show that AAD plays an essential role in the exflagellation of microgametes, resulting in complete absence of sporozoites in the mosquito vector. These data highlight the central role of the biosysthesis of polyamines in the final steps of male gamete sexual development of the malaria parasite and, hence, onward transmission to mosquitoes.


Asunto(s)
Carboxiliasas , Culicidae , Malaria , Parásitos , Animales , Masculino , Culicidae/parasitología , Aminoácidos/metabolismo , Lisina/metabolismo , Malaria/parasitología , Bacterias , Células Germinativas/metabolismo , Carboxiliasas/metabolismo
12.
PLoS Pathog ; 19(3): e1011261, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36928686

RESUMEN

Invasion of host cells by apicomplexan parasites such as Toxoplasma and Plasmodium spp requires the sequential secretion of the parasite apical organelles, the micronemes and the rhoptries. The claudin-like apicomplexan microneme protein (CLAMP) is a conserved protein that plays an essential role during invasion by Toxoplasma gondii tachyzoites and in Plasmodium falciparum asexual blood stages. CLAMP is also expressed in Plasmodium sporozoites, the mosquito-transmitted forms of the malaria parasite, but its role in this stage is still unknown. CLAMP is essential for Plasmodium blood stage growth and is refractory to conventional gene deletion. To circumvent this obstacle and study the function of CLAMP in sporozoites, we used a conditional genome editing strategy based on the dimerisable Cre recombinase in the rodent malaria model parasite P. berghei. We successfully deleted clamp gene in P. berghei transmission stages and analyzed the functional consequences on sporozoite infectivity. In mosquitoes, sporozoite development and egress from oocysts was not affected in conditional mutants. However, invasion of the mosquito salivary glands was dramatically reduced upon deletion of clamp gene. In addition, CLAMP-deficient sporozoites were impaired in cell traversal and productive invasion of mammalian hepatocytes. This severe phenotype was associated with major defects in gliding motility and with reduced shedding of the sporozoite adhesin TRAP. Expansion microscopy revealed partial colocalization of CLAMP and TRAP in a subset of micronemes, and a distinct accumulation of CLAMP at the apical tip of sporozoites. Collectively, these results demonstrate that CLAMP is essential across invasive stages of the malaria parasite, and support a role of the protein upstream of host cell invasion, possibly by regulating the secretion or function of adhesins in Plasmodium sporozoites.


Asunto(s)
Culicidae , Malaria , Animales , Esporozoítos/metabolismo , Micronema , Plasmodium berghei/fisiología , Proteínas Protozoarias/metabolismo , Culicidae/parasitología , Mamíferos , Malaria/parasitología
13.
Trials ; 24(1): 128, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810194

RESUMEN

BACKGROUND: Residual malaria transmission is the result of adaptive mosquito behavior that allows malaria vectors to thrive and sustain transmission in the presence of good access to bed nets or insecticide residual spraying. These behaviors include crepuscular and outdoor feeding as well as intermittent feeding upon livestock. Ivermectin is a broadly used antiparasitic drug that kills mosquitoes feeding on a treated subject for a dose-dependent period. Mass drug administration with ivermectin has been proposed as a complementary strategy to reduce malaria transmission. METHODS: A cluster randomized, parallel arm, superiority trial conducted in two settings with distinct eco-epidemiological conditions in East and Southern Africa. There will be three groups: human intervention, consisting of a dose of ivermectin (400 mcg/kg) administered monthly for 3 months to all the eligible population in the cluster (>15 kg, non-pregnant and no medical contraindication); human and livestock intervention, consisting human treatment as above plus treatment of livestock in the area with a single dose of injectable ivermectin (200 mcg/kg) monthly for 3 months; and controls, consisting of a dose of albendazole (400 mg) monthly for 3 months. The main outcome measure will be malaria incidence in a cohort of children under five living in the core of each cluster followed prospectively with monthly RDTs DISCUSSION: The second site for the implementation of this protocol has changed from Tanzania to Kenya. This summary presents the Mozambique-specific protocol while the updated master protocol and the adapted Kenya-specific protocol undergo national approval in Kenya. BOHEMIA will be the first large-scale trial evaluating the impact of ivermectin-only mass drug administration to humans or humans and cattle on local malaria transmission TRIAL REGISTRATION: ClinicalTrials.gov NCT04966702 . Registered on July 19, 2021. Pan African Clinical Trials Registry PACTR202106695877303.


Asunto(s)
Culicidae , Insecticidas , Malaria , Salud Única , Niño , Humanos , Animales , Bovinos , Ivermectina/uso terapéutico , Administración Masiva de Medicamentos , Control de Mosquitos/métodos , Mosquitos Vectores , Malaria/epidemiología , Culicidae/parasitología , Kenia/epidemiología
14.
Cell Host Microbe ; 31(2): 305-319.e10, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36634679

RESUMEN

Malaria transmission to mosquitoes requires a developmental switch in asexually dividing blood-stage parasites to sexual reproduction. In Plasmodium berghei, the transcription factor AP2-G is required and sufficient for this switch, but how a particular sex is determined in a haploid parasite remains unknown. Using a global screen of barcoded mutants, we here identify genes essential for the formation of either male or female sexual forms and validate their importance for transmission. High-resolution single-cell transcriptomics of ten mutant parasites portrays the developmental bifurcation and reveals a regulatory cascade of putative gene functions in the determination and subsequent differentiation of each sex. A male-determining gene with a LOTUS/OST-HTH domain as well as the protein interactors of a female-determining zinc-finger protein indicate that germ-granule-like ribonucleoprotein complexes complement transcriptional processes in the regulation of both male and female development of a malaria parasite.


Asunto(s)
Culicidae , Malaria , Parásitos , Animales , Femenino , Masculino , Parásitos/metabolismo , Malaria/parasitología , Plasmodium berghei/genética , Desarrollo Sexual/genética , Culicidae/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
15.
J Invertebr Pathol ; 197: 107873, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36577478

RESUMEN

Microsporidians (Microsporidia) are a diverse group of obligate and intracellular parasites of eukaryotes. There is evidence that the real species diversity in the phylum could be greatly underestimated, especially for microsporidians parasitic on invertebrates. Mosquitoes (Culicidae) are among very important microsporidian host groups. However, to date, no extensive survey on the prevalence of microsporidians in European mosquitoes has been performed. Here, we used mosquitoes collected in west-central Poland and a metabarcoding approach to examine the prevalence and diversity of microsporidian species among European mosquitoes. We found that up to one-third of mosquitoes in Europe may be infected with at least 13 microsporidian species belonging to the genera Amblyospora, Hazardia, Encephalitozoon, Enterocytospora, and Nosema and the holding genus Microsporidium. The lack of a difference in microsporidian prevalence between mosquito sexes implies that other factors, e.g., temperature or humidity, affect microsporidian occurrence in adult mosquitoes. Each microsporidian species was found in at least three mosquito species, which suggests that these microsporidians are polyxenic rather than monoxenic parasites. The co-occurrence of at least two different microsporidian species was found in 3.6% of host individuals. The abundance of microsporidian DNA sequences suggests interactions between co-occurring parasites; however, these results should be confirmed by microscopic and quantitative methods. In addition, further histological research is required to describe Microsporidium sp. PL01 or match its DNA to that of an already described species.


Asunto(s)
Culicidae , Microsporidios , Nosema , Parásitos , Animales , Microsporidios/genética , Culicidae/parasitología , Interacciones Huésped-Parásitos , Nosema/genética , Europa (Continente) , Filogenia
16.
Nature ; 612(7940): 534-539, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477528

RESUMEN

An effective vaccine is needed for the prevention and elimination of malaria. The only immunogens that have been shown to have a protective efficacy of more than 90% against human malaria are Plasmodium falciparum (Pf) sporozoites (PfSPZ) manufactured in mosquitoes (mPfSPZ)1-7. The ability to produce PfSPZ in vitro (iPfSPZ) without mosquitoes would substantially enhance the production of PfSPZ vaccines and mosquito-stage malaria research, but this ability is lacking. Here we report the production of hundreds of millions of iPfSPZ. iPfSPZ invaded human hepatocytes in culture and developed to mature liver-stage schizonts expressing P. falciparum merozoite surface protein 1 (PfMSP1) in numbers comparable to mPfSPZ. When injected into FRGhuHep mice containing humanized livers, iPfSPZ invaded the human hepatocytes and developed to PfMSP1-expressing late liver stage parasites at 45% the quantity of cryopreserved mPfSPZ. Human blood from FRGhuHep mice infected with iPfSPZ produced asexual and sexual erythrocytic-stage parasites in culture, and gametocytes developed to PfSPZ when fed to mosquitoes, completing the P. falciparum life cycle from infectious gametocyte to infectious gametocyte without mosquitoes or primates.


Asunto(s)
Plasmodium falciparum , Esporozoítos , Animales , Humanos , Ratones , Culicidae/parasitología , Malaria/parasitología , Malaria/prevención & control , Vacunas contra la Malaria/biosíntesis , Vacunas contra la Malaria/química , Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Esporozoítos/crecimiento & desarrollo , Esporozoítos/patogenicidad , Hepatocitos/parasitología , Hígado/parasitología , Proteína 1 de Superficie de Merozoito , Eritrocitos/parasitología , Técnicas In Vitro
17.
Trends Parasitol ; 38(12): 1031-1040, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36209032

RESUMEN

Proof-of-concept studies demonstrate that antimalarial drugs designed for human treatment can also be applied to mosquitoes to interrupt malaria transmission. Deploying a new control tool is ideally undertaken within a stewardship programme that maximises a drug's lifespan by minimising the risk of resistance evolution and slowing its spread once emerged. We ask: what are the epidemiological and evolutionary consequences of targeting parasites within mosquitoes? Our synthesis argues that targeting parasites inside mosquitoes (i) can be modelled by readily expanding existing epidemiological frameworks; (ii) provides a functionally novel control method that has potential to be more robust to resistance evolution than targeting parasites in humans; and (iii) could extend the lifespan and clinical benefit of antimalarials used exclusively to treat humans.


Asunto(s)
Antimaláricos , Culicidae , Malaria , Parásitos , Animales , Humanos , Culicidae/parasitología , Antimaláricos/uso terapéutico , Malaria/parasitología
18.
mBio ; 13(5): e0227722, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36073811

RESUMEN

Population genetic diversity of Plasmodium falciparum antigenic loci is high despite large bottlenecks in population size during the parasite life cycle. The prevalence of genetically distinct haplotypes at these loci, while well characterized in humans, has not been thoroughly compared between human and mosquito hosts. We assessed parasite haplotype prevalence, diversity, and evenness using human and mosquito P. falciparum infections collected from the same households during a 14-month longitudinal cohort study using amplicon deep sequencing of two antigenic gene fragments (ama1 and csp). To a prior set of infected humans (n = 1,175/2,813; 86.2% sequencing success) and mosquito abdomens (n = 199/1,448; 95.5% sequencing success), we added sequences from infected mosquito heads (n = 134/1,448; 98.5% sequencing success). The overall and sample-level parasite populations were more diverse in mosquitoes than in humans. Additionally, haplotype prevalences were more even in the P. falciparum human population than in the mosquito population, consistent with balancing selection occurring at these loci in humans. In contrast, we observed that infections in humans were more likely to harbor a dominant haplotype than infections in mosquitoes, potentially due to removal of unfit strains by the human immune system. Finally, within a given mosquito, there was little overlap in genetic composition of abdomen and head infections, suggesting that infections may be cleared from the abdomen during a mosquito's lifespan. Taken together, our observations provide evidence for the mosquito vector acting as a reservoir of sequence diversity in malaria parasite populations. IMPORTANCE Plasmodium falciparum is the deadliest human malaria parasite, and infections consisting of concurrent, multiple strains are common in regions of high endemicity. During transitions within and between the parasite's mosquito and human hosts, these strains are subject to population bottlenecks, and distinct parasite strains may have differential fitness in the various environments encountered. These bottlenecks and fitness differences may lead to differences in strain prevalence and diversity between hosts. We investigated differences in genetic diversity and evenness between P. falciparum parasites in human and mosquito hosts collected from the same households during a 14-month longitudinal study in Kenya. Compared to human parasite populations and infections, P. falciparum parasites observed in mosquito populations and infections were more diverse by multiple population genetic metrics. This suggests that the mosquito vector acts as a reservoir of sequence diversity in malaria parasite populations.


Asunto(s)
Culicidae , Variación Genética , Malaria Falciparum , Plasmodium falciparum , Animales , Humanos , Culicidae/parasitología , Estudios Longitudinales , Malaria Falciparum/parasitología , Plasmodium falciparum/genética
19.
Immunohorizons ; 6(8): 630-641, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35985797

RESUMEN

We have recently demonstrated that basophils are protective against intestinal permeability during malaria and contribute to reduced parasite transmission to mosquitoes. Given that IL-18 is an early cytokine/alarmin in malaria and has been shown to activate basophils, we sought to determine the role of the basophil IL-18R in this protective phenotype. To address this, we infected control [IL18r flox/flox or basoIL-18R (+)] mice and mice with basophils lacking the IL-18R [IL18r flox/flox × Basoph8 or basoIL-18R (-)] with Plasmodium yoelii yoelii 17XNL, a nonlethal strain of mouse malaria. Postinfection (PI), intestinal permeability, ileal mastocytosis, bacteremia, and levels of ileal and plasma cytokines and chemokines were measured through 10 d PI. BasoIL-18R (-) mice exhibited greater intestinal permeability relative to basoIL-18R (+) mice, along with increased plasma levels of proinflammatory cytokines at a single time point PI, day 4 PI, a pattern not observed in basoIL-18R (+) mice. Surprisingly, mosquitoes fed on basoIL-18R (-) mice became infected less frequently than mosquitoes fed on basoIL-18R (+) mice, with no difference in gametocytemia, a pattern that was distinct from that observed previously with basophil-depleted mice. These findings suggest that early basophil-dependent protection of the intestinal barrier in malaria is mediated by IL-18, and that basophil IL-18R-dependent signaling differentially regulates the inflammatory response to infection and parasite transmission.


Asunto(s)
Culicidae , Mucosa Intestinal , Malaria , Parásitos , Receptores de Interleucina-18 , Animales , Basófilos , Permeabilidad de la Membrana Celular , Culicidae/parasitología , Citocinas , Inmunidad , Interleucina-18 , Mucosa Intestinal/parasitología , Malaria/parasitología , Ratones , Receptores de Interleucina-18/metabolismo , Receptores de Interleucina-18/fisiología
20.
Malar J ; 21(1): 244, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35996189

RESUMEN

BACKGROUND: Parasites are recognized for their ability to modify host physiology and behaviours in ways that increase parasite fitness. Protozoan parasites of the genus Plasmodium are a group of widespread vector-borne parasites of vertebrates, causing disease to a wide range of hosts, but most notably to human and avian hosts. METHODS: The hypothesis that infection with the avian malaria, Plasmodium relictum (GRW4 lineage) impacts flight activity in one of their natural vectors, Culex quinquefasciatus, was tested using both parasites and mosquitoes colonized from local populations in East-Central Texas, USA. Groups of Cx. quinquefasciatus were allowed to feed directly on canaries with active P. relictum infections and control canaries with no P. relictum exposure history. Additionally, how P. relictum sporozoite invasion of mosquito salivary glands impacts mosquito flight activity behaviour was tested using a Locomotor Activity Monitor for both control and infected females. Generalized linear mixed models were used to evaluate the influence of infection status on the response variables of flight activity (continuous) and probability of flight occurring (binomial). RESULTS: Infection status was a significant predictor of flight activity and flight probability and interactions between infection status and experimental period of infection as well as infection status and dusk were statistically significant predictors of flight activity. Plasmodium relictum infected mosquitoes had a mean flight activity of 3.10 and control mosquitoes had an overall mean flight activity of 3.13. DISCUSSION: Based on these results, avian malaria parasites increase the flight activity of these mosquitoes at hours known for peak host-seeking behaviour but decrease overall diel activity. CONCLUSION: Although the ramifications of this behavioural change for P. relictum transmission are unclear, these results provide additional empirical evidence suggesting that avian malaria can influence mosquito behaviour and modulate transmission potential.


Asunto(s)
Culex , Culicidae , Malaria Aviar , Malaria , Plasmodium , Animales , Culex/fisiología , Culicidae/parasitología , Femenino , Humanos , Malaria Aviar/parasitología , Mosquitos Vectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...