Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
J Invest Surg ; 37(1): 2421826, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39467565

RESUMEN

BACKGROUND: Fracture healing can be impeded or even compromised by various factors, resulting in a growing number of patients suffering. The lncRNA LINC-PINT has garnered attention for its latent role in enhancing fracture healing, but its specific functions in this process remain unclear. OBJECTIVES: The primary objective of this study is to investigate the clinical relevance and underlying molecular mechanisms of LINC-PINT in delayed fracture healing (DFH), while also assessing its potential as an early diagnostic biomarker. MATERIALS AND METHODS: The expression levels of LINC-PINT were measured in the serum of DFH patients and those with normal fracture healing using RT-qPCR. In MC3T3-E1 cells, the study investigated the influence on the expression of differentiation-related protein, cell viability, and apoptosis through the modulation of LINC-PINT and miR-324-3p. To elucidate the targeting relationship between LINC-PINT, miR-324-3p, and BMP2, a dual-luciferase reporter assay was employed. RESULTS: The findings revealed a significant downregulation of LINC-PINT expression in DFH patients. LINC-PINT showed high sensitivity and specificity as a diagnostic marker for DFH. In MC3T3-E1 cells, LINC-PINT overexpression markedly enhanced the expression levels of ALP, OCN, Runx2, and OPN, improved cell viability, and inhibited apoptosis. LINC-PINT negatively regulated miR-324-3p, and the effects of LINC-PINT were counteracted by miR-324-3p. LINC-PINT was found to regulate BMP2 by targeting miR-324-3p. CONCLUSION: LINC-PINT could serve as an early diagnostic biomarker for DFH and slow the progression of DFH by modulating BMP2 through the targeted regulation of miR-324-3p. This research presents new molecular targets for the diagnosis and treatment of DFH.


Asunto(s)
Apoptosis , Proteína Morfogenética Ósea 2 , Curación de Fractura , MicroARNs , ARN Largo no Codificante , ARN Largo no Codificante/sangre , ARN Largo no Codificante/genética , Humanos , Curación de Fractura/genética , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/genética , MicroARNs/sangre , MicroARNs/genética , Animales , Ratones , Apoptosis/genética , Femenino , Masculino , Biomarcadores/sangre , Biomarcadores/metabolismo , Adulto , Regulación hacia Abajo , Persona de Mediana Edad , Supervivencia Celular , Osteoblastos/metabolismo , Diferenciación Celular
2.
J Clin Invest ; 134(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225088

RESUMEN

The periosteum contains skeletal stem/progenitor cells that contribute to bone fracture healing. However, the in vivo identity of periosteal skeletal stem cells (P-SSCs) remains unclear, and membrane protein markers of P-SSCs that facilitate tissue engineering are needed. Here, we identified integral membrane protein 2A (Itm2a) enriched in SSCs using single-cell transcriptomics. Itm2a+ P-SSCs displayed clonal multipotency and self-renewal and sat at the apex of their differentiation hierarchy. Lineage-tracing experiments showed that Itm2a selectively labeled the periosteum and that Itm2a+ cells were preferentially located in the outer fibrous layer of the periosteum. The Itm2a+ cells rarely expressed CD34 or Osx, but expressed periosteal markers such as Ctsk, CD51, PDGFRA, Sca1, and Gli1. Itm2a+ P-SSCs contributed to osteoblasts, chondrocytes, and marrow stromal cells upon injury. Genetic lineage tracing using dual recombinases showed that Itm2a and Prrx1 lineage cells generated spatially separated subsets of chondrocytes and osteoblasts during fracture healing. Bone morphogenetic protein 2 (Bmp2) deficiency or ablation of Itm2a+ P-SSCs resulted in defects in fracture healing. ITM2A+ P-SSCs were also present in the human periosteum. Thus, our study identified a membrane protein marker that labels P-SSCs, providing an attractive target for drug and cellular therapy for skeletal disorders.


Asunto(s)
Curación de Fractura , Proteínas de la Membrana , Periostio , Animales , Periostio/metabolismo , Periostio/citología , Ratones , Curación de Fractura/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Humanos , Células Madre/metabolismo , Células Madre/citología , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/genética , Fracturas Óseas/patología , Fracturas Óseas/metabolismo , Fracturas Óseas/terapia , Fracturas Óseas/genética , Osteoblastos/metabolismo , Osteoblastos/citología , Diferenciación Celular , Condrocitos/metabolismo , Condrocitos/citología , Masculino , Linaje de la Célula
3.
J Orthop Surg Res ; 19(1): 511, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192334

RESUMEN

OBJECTIVE: Delayed fracture healing is a common complication of fractures that significantly impacts human health. This study aimed to explore the role of LINC00339 (lncRNA) in delayed fracture healing to provide new directions for its treatment. METHODS: This study included 82 patients with fractures healing in a normal manner and 90 patients experiencing delayed fracture healing. Levels of LINC00339, miR-16-5p, and osteogenic marker-related mRNAs were measured using RT-qPCR. The predictive potential of LINC00339 for delayed fracture healing was validated using ROC curve analysis. The interaction between LINC00339 and miR-16-5p was validated using dual-luciferase reporter assays and RIP experiments. CCK-8 was used to assess cell proliferation, and apoptosis rates were measured by flow cytometry. RESULTS: LINC00339 was significantly upregulated in delayed fracture healing patients and exhibited strong predictive ability for this condition. Overexpression of LINC00339 inhibited osteoblast proliferation, promoted apoptosis, and reduced mRNA levels of osteogenic markers (P < 0.05). miR-16-5p was recognized as a target mRNA of LINC00339, with LINC00339 exerting negative regulation on miR-16-5p, while overexpression of miR-16-5p mitigated the inhibitory effects of LINC00339 on fracture healing (P < 0.05). CONCLUSION: This research indicated that LINC00339 may serve as a diagnostic marker for delayed fracture healing and revealed the function of the LINC00339/miR-16-5p axis on fracture healing by regulating osteoblasts.


Asunto(s)
Apoptosis , Proliferación Celular , Curación de Fractura , MicroARNs , ARN Largo no Codificante , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Apoptosis/genética , Proliferación Celular/genética , Células Cultivadas , Curación de Fractura/genética , Curación de Fractura/fisiología , MicroARNs/genética , Osteoblastos/metabolismo , Osteogénesis/genética , Osteogénesis/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación hacia Arriba
4.
J Orthop Surg Res ; 19(1): 466, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118176

RESUMEN

OBJECTIVE: Delayed fracture healing increases the suffering of patients. An in-depth investigation of the pathogenesis of delayed fracture healing may offer new direction for the prevention and treatment. METHODS: The study included 63 normal healing tibial fractures and 58 delayed healing tibial fractures patients. Long non-coding RNA (lncRNA)TRPM2-AS, microRNA-545-3p (miR-545-3p), bone morphogenetic protein 2 (Bmp2) mRNA and osteogenic differentiation markers, including runt-related transcription factor 2 (Runx2), osteocalcin (Ocn), and alkaline phosphatase (Alp) mRNA expression were determined by Real-time quantitative reverse transcription-polymerase chain reaction in serum and MC3T3-E1 cells. The prediction potential of TRPM2-AS in delayed healing fracture patients was verified by receiver operating characteristic curves. The binding relationship of TRPM2-AS/miR-545-3p/Bmp2 was evaluated by dual luciferase reporter gene assay. Cell proliferation and apoptosis were detected by CCK-8 and flow cytometry. RESULTS: TRPM2-AS was remarkably down-regulated in patients with delayed fracture healing and could better predict the fracture healing status. TRPM2-AS downregulation inhibited osteogenic markers mRNA expression, restrained proliferation, and promoted apoptosis of MC3T3-E1 cells (p < 0.05). In delayed fracture healing, miR-545-3p was dramatically up-regulated and was negatively regulated by TRPM2-AS. Reducing miR-545-3p eliminate the negative effect of TRPM2-AS down-regulation on osteoblast proliferation and differentiation (p < 0.05). miR-545-3p targets Bmp2, which plays a positive role in osteoblast differentiation (p < 0.05). CONCLUSION: This study found that TRPM2-AS has the potential to be a diagnostic marker for delayed fracture healing and revealed that the TRPM2-AS/miR-545-3p/Bmp2 axis affects fracture healing by regulating osteoblast.


Asunto(s)
Proteína Morfogenética Ósea 2 , Curación de Fractura , MicroARNs , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Apoptosis/genética , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular/genética , Proliferación Celular/genética , Curación de Fractura/genética , Curación de Fractura/fisiología , MicroARNs/genética , Osteoblastos/metabolismo , Osteogénesis/genética , Osteogénesis/fisiología , ARN Largo no Codificante/genética , Fracturas de la Tibia/genética , Canales Catiónicos TRPM/genética
5.
J Cell Mol Med ; 28(13): e18522, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957040

RESUMEN

Bone non-union is a common fracture complication that can severely impact patient outcomes, yet its mechanism is not fully understood. This study used differential analysis and weighted co-expression network analysis (WGCNA) to identify susceptibility modules and hub genes associated with fracture healing. Two datasets, GSE125289 and GSE213891, were downloaded from the GEO website, and differentially expressed miRNAs and genes were analysed and used to construct the WGCNA network. Gene ontology (GO) analysis of the differentially expressed genes showed enrichment in cytokine and inflammatory factor secretion, phagocytosis, and trans-Golgi network regulation pathways. Using bioinformatic site prediction and crossover gene search, miR-29b-3p was identified as a regulator of LIN7A expression that may negatively affect fracture healing. Potential miRNA-mRNA interactions in the bone non-union mechanism were explored, and miRNA-29-3p and LIN7A were identified as biomarkers of skeletal non-union. The expression of miRNA-29b-3p and LIN7A was verified in blood samples from patients with fracture non-union using qRT-PCR and ELISA. Overall, this study identified characteristic modules and key genes associated with fracture non-union and provided insight into its molecular mechanisms. Downregulated miRNA-29b-3p was found to downregulate LIN7A protein expression, which may affect the healing process after fracture in patients with bone non-union. These findings may serve as a prognostic biomarker and potential therapeutic target for bone non-union.


Asunto(s)
Biomarcadores , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/sangre , Biomarcadores/sangre , Redes Reguladoras de Genes , Curación de Fractura/genética , Perfilación de la Expresión Génica , Biología Computacional/métodos , Femenino , Masculino , Ontología de Genes , Regulación de la Expresión Génica , Fracturas no Consolidadas/genética , Persona de Mediana Edad
6.
FASEB J ; 38(14): e23810, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39042586

RESUMEN

Osteofibrous dysplasia (OFD) is a rare, benign, fibro-osseous lesion that occurs most commonly in the tibia of children. Tibial involvement leads to bowing and predisposes to the development of a fracture which exhibit significantly delayed healing processes, leading to prolonged morbidity. We previously identified gain-of-function mutations in the MET gene as a cause for OFD. In our present study, we test the hypothesis that gain-of-function MET mutations impair bone repair due to reduced osteoblast differentiation. A heterozygous Met exon 15 skipping (MetΔ15-HET) mouse was created to imitate the human OFD mutation. The mutation results in aberrant and dysregulation of MET-related signaling determined by RNA-seq in the murine osteoblasts extracted from the wide-type and genetic mice. Although no gross skeletal defects were identified in the mice, fracture repair was delayed in MetΔ15-HET mice, with decreased bone formation observed 2-week postfracture. Our data are consistent with a novel role for MET-mediated signaling regulating osteogenesis.


Asunto(s)
Enfermedades del Desarrollo Óseo , Modelos Animales de Enfermedad , Displasia Fibrosa Ósea , Curación de Fractura , Osteogénesis , Proteínas Proto-Oncogénicas c-met , Animales , Ratones , Osteogénesis/genética , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Curación de Fractura/genética , Enfermedades del Desarrollo Óseo/genética , Enfermedades del Desarrollo Óseo/patología , Humanos , Displasia Fibrosa Ósea/genética , Displasia Fibrosa Ósea/patología , Displasia Fibrosa Ósea/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patología , Mutación , Diferenciación Celular , Ratones Endogámicos C57BL , Masculino
7.
JCI Insight ; 9(16)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990653

RESUMEN

The neurofibromatosis type 1 (NF1) RASopathy is associated with persistent fibrotic nonunions (pseudarthrosis) in human and mouse skeletal tissue. Here, we performed spatial transcriptomics to define the molecular signatures occurring during normal endochondral healing following fracture in mice. Within the control fracture callus, we observed spatially restricted activation of morphogenetic pathways, such as TGF-ß, WNT, and BMP. To investigate the molecular mechanisms contributing to Nf1-deficient delayed fracture healing, we performed spatial transcriptomic analysis on a Postn-cre;Nf1fl/- (Nf1Postn) fracture callus. Transcriptional analyses, subsequently confirmed through phospho-SMAD1/5/8 immunohistochemistry, demonstrated a lack of BMP pathway induction in Nf1Postn mice. To gain further insight into the human condition, we performed spatial transcriptomic analysis of fracture pseudarthrosis tissue from a patient with NF1. Analyses detected increased MAPK signaling at the fibrocartilaginous-osseus junction. Similar to that in the Nf1Postn fracture, BMP pathway activation was absent within the pseudarthrosis tissue. Our results demonstrate the feasibility of delineating the molecular and tissue-specific heterogeneity inherent in complex regenerative processes, such as fracture healing, and reconstructing phase transitions representing endochondral bone formation in vivo. Furthermore, our results provide in situ molecular evidence of impaired BMP signaling underlying NF1 pseudarthrosis, potentially informing the clinical relevance of off-label BMP2 as a therapeutic intervention.


Asunto(s)
Proteínas Morfogenéticas Óseas , Curación de Fractura , Neurofibromatosis 1 , Seudoartrosis , Transducción de Señal , Transcriptoma , Animales , Seudoartrosis/metabolismo , Seudoartrosis/genética , Ratones , Humanos , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Neurofibromatosis 1/genética , Neurofibromatosis 1/metabolismo , Neurofibromatosis 1/complicaciones , Neurofibromatosis 1/patología , Curación de Fractura/genética , Fracturas Óseas/metabolismo , Fracturas Óseas/genética , Modelos Animales de Enfermedad , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Perfilación de la Expresión Génica
8.
J Orthop Surg Res ; 19(1): 370, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907263

RESUMEN

BACKGROUND: Long non-coding RNAs (LncRNAs) are recognized as a pivotal element in the processes of fracture healing and the osteogenic differentiation of stem cells. This study investigated the molecular mechanism and regulatory significance of lncRNA MAGI2-AS3 (MAGI2-AS3) in fracture healing. METHODS: Serum levels of MAGI2-AS3 in patients with normal and delayed fracture healing were verified by RT-qPCR assays. The predictive efficacy of MAGI2-AS3 for delayed fracture healing was analyzed by ROC curve. Osteogenic markers were quantified by RT-qPCR assays. MC3T3-E1 cell viability was detected using CCK-8 assay, and flow cytometry was utilized to measure cell apoptosis. The dual-luciferase reporter gene assay was used to determine the targeted binding between MAGI2-AS3 and miR-223-3p. RESULTS: Serum MAGI2-AS3 expression was decreased in patients with delayed fracture healing compared with patients with normal healing. Elevated MAGI2-AS3 resulted in an upregulation of the proliferative capacity of MC3T3-E1 cells and a decrease in mortality, along with increased levels of both osteogenic markers. However, after transfection silencing MAGI2-AS3, the trend was reversed. Additionally, miR-223-3p was the downstream target of MAGI2-AS3 and was controlled by MAGI2-AS3. miR-223-3p mimic reversed the promoting effects of MAGI2-AS3 overexpression on osteogenic marker levels and cell growth, and induced cell apoptosis. CONCLUSION: The upregulation of MAGI2-AS3 may expedite the healing of fracture patients by targeting miR-223-3p, offering a novel biomarker for diagnosing patients with delayed healing.


Asunto(s)
Regulación hacia Abajo , Curación de Fractura , MicroARNs , ARN Largo no Codificante , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Apoptosis/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Curación de Fractura/genética , Curación de Fractura/fisiología , MicroARNs/genética , Osteogénesis/genética , ARN Largo no Codificante/genética
9.
J Orthop Surg Res ; 19(1): 343, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849896

RESUMEN

BACKGROUND: Fragility fracture is common in the elderly. Osteoblast differentiation is essential for bone healing and regeneration. Expression pattern of long non-coding RNA MIAT during fracture healing was examined, and its role in osteoblast differentiation was investigated. METHODS: 90 women with simple osteoporosis and 90 women with fragility fractures were included. Another 90 age-matched women were set as the control group. mRNA levels were tested using RT-qPCR. Cell viability was detected via CCK-8, and osteoblastic biomarkers, including ALP, OCN, Collagen I, and RUNX2 were tested via ELISA. The downstream miRNAs and genes targeted by MIAT were predicted by bioinformatics analysis, whose functions and pathways were annotated via GO and KEGG analysis. RESULTS: Serum MIAT was upregulated in osteoporosis women with high accuracy of diagnostic efficacy. Serum MIAT was even elevated in the fragility fracture group, but decreased in a time manner after operation. MIAT knockdown promoted osteogenic proliferation and differentiation of MC3T3-E1, but the influences were reversed by miR-181a-5p inhibitor. A total of 137 overlapping target genes of miR-181a-5p were predicted based on the miRDB, TargetScan and microT datasets, which were mainly enriched for terms related to signaling pathways regulating pluripotency of stem cells, cellular senescence, and osteoclast differentiation. CONCLUSIONS: LncRNA MIAT serves as a promising biomarker for osteoporosis, and promotes osteogenic differentiation via targeting miR-181a-5p.


Asunto(s)
Biomarcadores , Diferenciación Celular , Curación de Fractura , Osteoblastos , ARN Largo no Codificante , ARN Largo no Codificante/genética , Humanos , Femenino , Biomarcadores/sangre , Biomarcadores/metabolismo , Curación de Fractura/genética , Curación de Fractura/fisiología , Anciano , Diferenciación Celular/genética , Osteoblastos/metabolismo , Animales , Ratones , MicroARNs/genética , Osteoporosis/genética , Osteoporosis/metabolismo , Osteogénesis/genética , Osteogénesis/fisiología , Persona de Mediana Edad , Fracturas Osteoporóticas/genética , Proliferación Celular/genética , Regulación hacia Arriba
10.
PLoS One ; 19(5): e0303035, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38820355

RESUMEN

Fracture non-unions affect many patients worldwide, however, known risk factors alone do not predict individual risk. The identification of novel biomarkers is crucial for early diagnosis and timely patient treatment. This study focused on the identification of microRNA (miRNA) related to the process of fracture healing. Serum of fracture patients and healthy volunteers was screened by RNA sequencing to identify differentially expressed miRNA at various times after injury. The results were correlated to miRNA in the conditioned medium of human bone marrow mesenchymal stromal cells (BMSCs) during in vitro osteogenic differentiation. hsa-miR-1246, hsa-miR-335-5p, and miR-193a-5p were identified both in vitro and in fracture patients and their functional role in direct BMSC osteogenic differentiation was assessed. The results showed no influence of the downregulation of the three miRNAs during in vitro osteogenesis. However, miR-1246 may be involved in cell proliferation and recruitment of progenitor cells. Further studies should be performed to assess the role of these miRNA in other processes relevant to fracture healing.


Asunto(s)
Biomarcadores , Diferenciación Celular , MicroARN Circulante , Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , Humanos , Osteogénesis/genética , MicroARNs/sangre , MicroARNs/genética , Células Madre Mesenquimatosas/metabolismo , Biomarcadores/sangre , Masculino , MicroARN Circulante/sangre , MicroARN Circulante/genética , Femenino , Curación de Fractura/genética , Adulto , Fracturas Óseas/sangre , Fracturas Óseas/genética , Persona de Mediana Edad , Células Cultivadas , Proliferación Celular
11.
Injury ; 55(4): 111410, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359711

RESUMEN

The term "fracture" pertains to the occurrence of bones being either fully or partially disrupted as a result of external forces. Prolonged fracture healing can present a notable danger to the patient's general health and overall quality of life. The significance of osteoblasts in the process of new bone formation is widely recognized, and optimizing their function could be a desirable strategy. Therefore, the mending of bone fractures is intricately linked to the processes of osteogenic differentiation and mineralization. MicroRNAs (miRNAs) are RNA molecules that do not encode for proteins, but rather modulate the functioning of physiological processes by directly targeting proteins. The participation of microRNAs (miRNAs) in experimental investigations has been extensive, and their control functions have earned them the recognition as primary regulators of the human genome. Earlier studies have shown that modulating the expression of miRNAs, either by increasing or decreasing their levels, can initiate the differentiation of osteoblasts. This implies that miRNAs play a pivotal function in promoting osteogenesis, facilitating bone mineralization and formation, ultimately leading to an efficient healing of fractures. Hence, focusing on miRNAs can be considered a propitious therapeutic approach to accelerate the healing of fractures and forestall nonunion. In this manner, the information supplied by this investigation has the potential to aid in upcoming clinical utilization, including its possible use as biomarkers or as resources for devising innovative therapeutic tactics aimed at promoting fracture healing.


Asunto(s)
Fracturas Óseas , MicroARNs , Humanos , Osteogénesis/genética , MicroARNs/genética , MicroARNs/metabolismo , Curación de Fractura/genética , Calidad de Vida , Fracturas Óseas/genética , Fracturas Óseas/terapia , Fracturas Óseas/metabolismo , Osteoblastos/metabolismo , Diferenciación Celular
12.
Tohoku J Exp Med ; 263(1): 17-25, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38267060

RESUMEN

MicroRNAs (miRNAs) are related to the regulation of bone metabolism. Delayed fracture healing (DFH) is a common complication after fracture surgery. The study attempted to examine the role of miR-98-5p and bone morphogenetic protein (BMP)-2 with the onset of DFH. A total of 140 patients with femoral neck fracture were recruited, including 80 cases with normal fracture healing (NFH) and 60 cases with DFH. MC3T3-E1 cells were induced cell differentiation for cell function experiments. Real-time quantitative polymerase chain reaction (RT-qPCR) was carried out to test mRNA levels. Cell proliferation and apoptosis were determined via CCK-8 and flow cytometry assay. Luciferase reporter assay was done to verify the targeted regulatory relationship of miR-98-5p with BMP-2. In comparison with NFH cases, DFH patients owned high levels of serum miR-98-5p and low concentration of BMP-2, and the levels of the two indexes are significantly negatively correlated. Both miR-98-5p and BMP-2 had the ability to predict DFH, while their combined diagnostic value is the highest. BMP-2 was demonstrated to be the target gene of miR-98-5p. Overexpression of BMP-2 reversed the role of miR-98-5p in MC3T3-E1 cell proliferation, apoptosis and differentiation. Increased miR-98-5p and decreased BMP-2 serve as potential biomarkers for the diagnosis of DFH. MiR-98-5p overexpression inhibits osteoblast proliferation and differentiation via targeting BMP-2.


Asunto(s)
Apoptosis , Proteína Morfogenética Ósea 2 , Proliferación Celular , Curación de Fractura , MicroARNs , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Apoptosis/genética , Secuencia de Bases , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/genética , Diferenciación Celular/genética , Línea Celular , Fracturas del Cuello Femoral/metabolismo , Fracturas del Cuello Femoral/genética , Curación de Fractura/genética , MicroARNs/genética , MicroARNs/metabolismo
13.
Cytokine ; 173: 156436, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979214

RESUMEN

Failure of bone healing after fracture often results in nonunion, but the underlying mechanism of nonunion pathogenesis is poorly understood. Herein, we provide evidence to clarify that the inflammatory microenvironment of atrophic nonunion (AN) mice suppresses the expression levels of DNA methyltransferases 2 (DNMT2) and 3A (DNMT3a), preventing the methylation of CpG islands on the promoters of C-terminal binding protein 1/2 (CtBP1/2) and resulting in their overexpression. Increased CtBP1/2 acts as transcriptional corepressors that, along with histone acetyltransferase p300 and Runt-related transcription factor 2 (Runx2), suppress the expression levels of six genes involved in bone healing: BGLAP (bone gamma-carboxyglutamate protein), ALPL (alkaline phosphatase), SPP1 (secreted phosphoprotein 1), COL1A1 (collagen 1a1), IBSP (integrin binding sialoprotein), and MMP13 (matrix metallopeptidase 13). We also observe a similar phenomenon in osteoblast cells treated with proinflammatory cytokines or treated with a DNMT inhibitor (5-azacytidine). Forced expression of DNMT2/3a or blockage of CtBP1/2 with their inhibitors can reverse the expression levels of BGLAP/ALPL/SPP1/COL1A1/IBSP/MMP13 in the presence of proinflammatory cytokines. Administration of CtBP1/2 inhibitors in fractured mice can prevent the incidence of AN. Thus, we demonstrate that the downregulation of bone healing genes dependent on proinflammatory cytokines/DNMT2/3a/CtBP1/2-p300-Runx2 axis signaling plays a critical role in the pathogenesis of AN. Disruption of this signaling may represent a new therapeutic strategy to prevent AN incidence after bone fracture.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Citocinas , ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Curación de Fractura , Animales , Ratones , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Citocinas/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Metiltransferasas/metabolismo , Osteoblastos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Curación de Fractura/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A/genética , ADN Metiltransferasa 3A/metabolismo
14.
Elife ; 122023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079220

RESUMEN

Insufficient bone fracture repair represents a major clinical and societal burden and novel strategies are needed to address it. Our data reveal that the transforming growth factor-ß superfamily member Activin A became very abundant during mouse and human bone fracture healing but was minimally detectable in intact bones. Single-cell RNA-sequencing revealed that the Activin A-encoding gene Inhba was highly expressed in a unique, highly proliferative progenitor cell (PPC) population with a myofibroblast character that quickly emerged after fracture and represented the center of a developmental trajectory bifurcation producing cartilage and bone cells within callus. Systemic administration of neutralizing Activin A antibody inhibited bone healing. In contrast, a single recombinant Activin A implantation at fracture site in young and aged mice boosted: PPC numbers; phosphorylated SMAD2 signaling levels; and bone repair and mechanical properties in endochondral and intramembranous healing models. Activin A directly stimulated myofibroblastic differentiation, chondrogenesis and osteogenesis in periosteal mesenchymal progenitor culture. Our data identify a distinct population of Activin A-expressing PPCs central to fracture healing and establish Activin A as a potential new therapeutic tool.


Asunto(s)
Activinas , Callo Óseo , Curación de Fractura , Ratones , Humanos , Animales , Curación de Fractura/genética , Osteogénesis , Células Madre , Diferenciación Celular
15.
Signal Transduct Target Ther ; 8(1): 260, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37402714

RESUMEN

Traumatic brain injury (TBI) accelerates fracture healing, but the underlying mechanism remains largely unknown. Accumulating evidence indicates that the central nervous system (CNS) plays a pivotal role in regulating immune system and skeletal homeostasis. However, the impact of CNS injury on hematopoiesis commitment was overlooked. Here, we found that the dramatically elevated sympathetic tone accompanied with TBI-accelerated fracture healing; chemical sympathectomy blocks TBI-induced fracture healing. TBI-induced hypersensitivity of adrenergic signaling promotes the proliferation of bone marrow hematopoietic stem cells (HSCs) and swiftly skews HSCs toward anti-inflammation myeloid cells within 14 days, which favor fracture healing. Knockout of ß3- or ß2-adrenergic receptor (AR) eliminate TBI-mediated anti-inflammation macrophage expansion and TBI-accelerated fracture healing. RNA sequencing of bone marrow cells revealed that Adrb2 and Adrb3 maintain proliferation and commitment of immune cells. Importantly, flow cytometry confirmed that deletion of ß2-AR inhibits M2 polarization of macrophages at 7th day and 14th day; and TBI-induced HSCs proliferation was impaired in ß3-AR knockout mice. Moreover, ß3- and ß2-AR agonists synergistically promote infiltration of M2 macrophages in callus and accelerate bone healing process. Thus, we conclude that TBI accelerates bone formation during early stage of fracture healing process by shaping the anti-inflammation environment in the bone marrow. These results implicate that the adrenergic signals could serve as potential targets for fracture management.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Curación de Fractura , Ratones , Animales , Curación de Fractura/genética , Médula Ósea , Mielopoyesis , Ratones Noqueados , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/complicaciones , Adrenérgicos
16.
Gene ; 874: 147481, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37182560

RESUMEN

Despite the advances in bone fracture treatment, a significant fraction of fracture patients will develop non-union. Most non-unions are treated with surgery since identifying the molecular causes of these defects is exceptionally challenging. In this study, compared with marrow bone, we generated a transcriptional atlas of human osteoprogenitor cells derived from healing callus and non-union fractures. Detailed comparison among the three conditions revealed a substantial similarity of callus and nonunion at the gene expression level. Nevertheless, when assayed functionally, they showed different osteogenic potential. Utilizing longitudinal transcriptional profiling of the osteoprogenitor cells, we identified FOS as a putative master regulator of non-union fractures. We validated FOS activity by profiling a validation cohort of 31 tissue samples. Our work identified new molecular targets for non-union classification and treatment while providing a valuable resource to better understand human bone healing biology.


Asunto(s)
Callo Óseo , Curación de Fractura , Humanos , Curación de Fractura/genética , Callo Óseo/metabolismo , Osteogénesis/genética
17.
Hum Gene Ther ; 34(13-14): 649-661, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37212284

RESUMEN

Substantial advances have been made in understanding the role of partial PDZ and LIM domain family's proteins in skeletal-related diseases. Yet, little is known about the effect of PDZ and LIM Domain 1 (Pdlim1) on osteogenesis and fracture repair. This study aimed to investigate whether direct gene delivery using an adenovirus vector carrying Pdlim1 (Ad-oePdlim1) or encoding shRNA-Pdlim1 (Ad-shPdlim1) could affect the osteogenic activity of preosteoblastic MC3T3-E1 cells in vitro, and influence the fracture healing of mice in vivo. We found that Ad-shPdlim1 transfection contributed to the calcified nodule formation in MC3T3-E1 cells. Downregulation of Pdlim1 enhanced the alkaline phosphatase activity and increased the expression of osteogenic markers (Runt-related transcription factor 2 [Runx2], collagen type I alpha 1 chain [Col1A1], osteocalcin [OCN], and osteopontin [OPN]). Further analysis indicated that Pdlim1 knockdown could activate ß-catenin signaling, as evidenced by the accumulation of ß-catenin in the nucleus and the increase levels of downstream regulators such as Lef1/Tcf7, axis inhibition protein 2, cyclin D1, and SRY-box transcription factor 9. By contrast, Pdlim1 overexpression resulted in inhibition of the osteogenic activity of MC3T3-E1 cells. In vivo, at day 3 after fracture,Ad-shPdlim1 adenovirus particles were injected into the fracture site of the femur of mice, and the process of fracture healing was evaluated by X-ray, micro-computed tomography and histological examination. Local injection of Ad-shPdlim1 promoted the early cartilage callus formation, restored bone mineral density, and accelerated cartilaginous ossification, with the upregulation of osteogenic gene (Runx2, Col1A1, OCN, and OPN) expression and activation of ß-catenin signaling. Thus, we concluded that inhibition of Pdlim1 contributed to osteogenesis and fracture healing by activating the ß-catenin signaling pathway.


Asunto(s)
Osteogénesis , beta Catenina , Animales , Ratones , Adenoviridae/genética , Adenoviridae/metabolismo , beta Catenina/genética , Diferenciación Celular/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Curación de Fractura/genética , Osteoblastos , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogénesis/genética , Microtomografía por Rayos X
18.
Zhongguo Gu Shang ; 36(4): 393-8, 2023 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-37087632

RESUMEN

Pentaxin 3 (PTX3), as a multifunctional glycoprotein, plays an important role in regulating inflammatory response, promoting tissue repair, inducing ectopic calcification and maintaining bone homeostasis. The effect of PTX3 on bone mineral density (BMD) may be affected by many factors. In PTX3 knockout mice and osteoporosis (OP) patients, the deletion of PTX3 will lead to decrease of BMD. In Korean community "Dong-gu study", it was found that plasma PTX3 was negatively correlated with BMD of femoral neck in male elderly patients. In terms of bone related cells, PTX3 plays an important role in maintaining the phenotype and function of osteoblasts (OB) in OP state;for osteoclast (OC), PTX3 in inflammatory state could stimulate nuclear factor κ receptor activator of nuclear factor-κB ligand (RANKL) production and its combination with TNF-stimulated gene 6(TSG-6) could improve activity of osteoclasts and promote bone resorption;for mesenchymal stem cells (MSCs), PTX3 could promote osteogenic differentiation of MSCs through PI3K/Akt signaling pathway. In recent years, the role of PTX3 as a new bone metabolism regulator in OP and fracture healing has been gradually concerned by scholars. In OP patients, PTX3 regulates bone mass mainly by promoting bone regeneration. In the process of fracture healing, PTX3 promotes fracture healing by coordinating bone regeneration and bone resorption to maintain bone homeostasis. In view of the above biological characteristics, PTX3 is expected to become a new target for the diagnosis and treatment of OP and other age-related bone diseases and fracture healing.


Asunto(s)
Resorción Ósea , Curación de Fractura , Osteoporosis , Animales , Masculino , Ratones , Resorción Ósea/metabolismo , Diferenciación Celular , Curación de Fractura/genética , Osteoblastos , Osteoclastos , Osteogénesis , Osteoporosis/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología
19.
Biomed Res Int ; 2023: 9950037, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36726840

RESUMEN

The present study was designed to evaluate the dynamic expression of lncRNA NORAD in fracture healing of patients with brittle fractures and explore the function and mechanism of NORAD in regulating osteoblastic proliferation, differentiation, and apoptosis. The expression level of NORAD was detected by quantitative real-time PCR. The proliferation, differentiation, and apoptosis of osteoblasts were analyzed by MTT assay, ELISA, and flow cytometry. Luciferase report analysis was used to confirm the interaction between NORAD and its target ceRNA miR-26a. This study showed no significant differences in serum NORAD expression on the 7th day during fracture healing in patients, but increased expression of NORAD was certified on the 14, 21, and 28 days after fixation. Overexpression of NORAD promoted the proliferation and differentiation of osteoblasts and suppressed the apoptosis of osteoblasts. miR-26a proved to be the target gene of NORAD and was inhibited by overexpression of NORAD in osteoblasts. The enhanced expression of miR-26a was negatively linked to the lessened expression of NORAD. NORAD could accelerate the proliferation and differentiation of osteoblasts and inhibit apoptosis, thereby promoting fracture healing.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Curación de Fractura/genética , Diferenciación Celular/genética , Osteoblastos/metabolismo , Proliferación Celular/genética
20.
Exp Mol Med ; 55(2): 443-456, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36797542

RESUMEN

Bone fracture remains a common occurrence, with a population-weighted incidence of approximately 3.21 per 1000. In addition, approximately 2% to 50% of patients with skeletal fractures will develop an infection, one of the causes of disordered bone healing. Dysfunction of bone marrow mesenchymal stem cells (BMSCs) plays a key role in disordered bone repair. However, the specific mechanisms underlying BMSC dysfunction caused by bone infection are largely unknown. In this study, we discovered that Fibulin2 expression was upregulated in infected bone tissues and that BMSCs were the source of infection-induced Fibulin2. Importantly, Fibulin2 knockout accelerated mineralized bone formation during skeletal development and inhibited inflammatory bone resorption. We demonstrated that Fibulin2 suppressed BMSC osteogenic differentiation by binding to Notch2 and inactivating the Notch2 signaling pathway. Moreover, Fibulin2 knockdown restored Notch2 pathway activation and promoted BMSC osteogenesis; these outcomes were abolished by DAPT, a Notch inhibitor. Furthermore, transplanted Fibulin2 knockdown BMSCs displayed better bone repair potential in vivo. Altogether, Fibulin2 is a negative regulator of BMSC osteogenic differentiation that inhibits osteogenesis by inactivating the Notch2 signaling pathway in infected bone.


Asunto(s)
Curación de Fractura , Osteogénesis , Humanos , Huesos , Diferenciación Celular/genética , Células Cultivadas , Curación de Fractura/genética , Osteogénesis/genética , Transducción de Señal , Células de la Médula Ósea/metabolismo , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...