RESUMEN
This study aimed to determine the effectiveness of different green extraction techniques (GETs) on targeted bioactive compounds from artichoke leaf by-products using deep eutectic solvent extraction (DESE), supercritical CO2 extraction (SCO2E), subcritical water extraction (SWE), and ultrasound-assisted extraction (UAE). Moreover, (HR) LC-ESI-QTOF MS/MS and HPLC-PDA analyses were used to perform qualitative-quantitative analysis on the extracts, enabling the detection of several bioactive compounds, including luteolin, luteolin 7-O-glucoside, luteolin 7-O-rutinoside, apigenin rutinoside, chlorogenic acid, and cynaropicrin as the most representative ones. SWE showed better results than the other GETs (TPC: 23.39 ± 1.87 mg/g of dry plant, dp) and appeared to be the best choice. Regarding UAE, the highest total phenols content (TPC) was obtained with 50:50% v/v ethanol: water (7.22 ± 0.58 mg/g dp). The DES obtained with choline chloride:levulinic acid showed the highest TPC (9.69 ± 0.87 mg/g dp). Meanwhile, SCO2E was a selective technique for the recovery of cynaropicrin (48.33 ± 2.42 mg/g dp). Furthermore, the study examined the antioxidant activity (1.10-8.82 mmol Fe2+/g dp and 3.37-31.12 mmol TEAC/g dp for DPPH⢠and FRAP, respectively) and total phenols content via Folin-Ciocalteu's assay (198.32-1433.32 mg GAE/g dp), of which the highest values were detected in the SWE extracts. The relationship among the GETs, antioxidant assays, and compounds detected was evaluated using Principal Component Analysis (PCA). PCA confirmed the strong antioxidant activity of SWE and showed comparable extraction yields for the antioxidant compounds between UAE and DESE. Consequently, GETs selection and extraction parameters optimization can be employed to enrich artichoke leaf by-products' extracts with targeted bioactive compounds.
Asunto(s)
Antioxidantes , Cynara scolymus , Extractos Vegetales , Hojas de la Planta , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Cynara scolymus/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Tecnología Química Verde , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Fenoles/análisis , Fenoles/química , Fenoles/aislamiento & purificación , Solventes/química , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Fitoquímicos/análisisRESUMEN
Artichokes (Cynara scolymus L.) are valuable foods, thanks to their health benefits, but they generate significant waste during their production, harvesting, and processing, which poses sustainability issues. This study applied an agroprospecting approach to convert Tema artichoke biowaste (TB) into valuable resources, starting from a global perspective of the production chain to the targeted applications based on chemical and biological analysis. The major TB was identified in the outer bracts of the immature flower heads, which were collected throughout the harvesting season, extracted, and analyzed. The most abundant compounds were phenolic acids including chlorogenic acid and caffeoylquinic derivatives. Among flavonoids, cynaroside was the most abundant compound. Multivariate analysis distinguished batches by collection period, explaining 77.7% of the variance, with most compounds increasing in concentration later in the harvest season. Subsequently, TB extracts were analyzed for their potential in wound healing and anti-aging properties. Fibroblasts were used to assess the effect of selected extracts on cell migration through a scratch wound assay and on cellular senescence induced by etoposide. The results show a significant decrease in senescence-associated ß-galactosidase activity, γH2AX nuclear accumulation, and both p53 and p21 protein levels. Overall, this study ascribes relevant anti-skin aging effects to TB, thus increasing its industrial value in cosmeceutical and nutraceutical applications.
Asunto(s)
Cynara scolymus , Extractos Vegetales , Cynara scolymus/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Cicatrización de Heridas/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Flavonoides/farmacología , Flavonoides/química , Flavonoides/análisis , Fitoquímicos/farmacología , Fitoquímicos/química , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Hidroxibenzoatos/farmacología , Hidroxibenzoatos/químicaRESUMEN
Stachys affinis Bunge, known as Chinese artichoke, is a perennial plant originating from China, which has uprising scientific interest due to its complex and beneficial content. Chinese artichoke is rich in bioactive compounds useful for human health, including antioxidants, polyphenols, and prebiotics, and its edible tubers are high in essential nutrients and dietary fiber. Studies show its potential as a functional food ingredient in various products like rice bars, bread, and chocolate, enhancing their nutritional and sensory properties. Additionally, Chinese artichoke exhibits significant anti-inflammatory, neuroprotective, and antibacterial activities, warranting further research and utilization in the food industry. This review aims to summarize the existing knowledge of the S. affinis Bunge plant, focusing on its health-promoting aspects.
Asunto(s)
Antioxidantes , Cynara scolymus , Valor Nutritivo , Antioxidantes/química , Antioxidantes/farmacología , Cynara scolymus/química , Alimentos Funcionales/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química , Polifenoles/farmacologíaRESUMEN
The practical and easy detection of dopamine levels in human fluids, such as urine and saliva, is of great interest due to the correlation of dopamine concentration with several diseases. In this work, the one-step synthesis of water-soluble carbon nanoparticles (CNPs), starting from artichoke extract, containing catechol groups, for the fluorescence sensing of dopamine is reported. Size, morphology, chemical composition and electronic structure of CNPs were elucidated by DLS, AFM, XPS, FT-IR, EDX and TEM analyses. Their optical properties were then explored by UV-vis and fluorescence measurements in water. The dopamine recognition properties of these CNPs were investigated in water through fluorescence measurements and we observed the progressive enhancement of the CNP emission intensity upon the progressive addition of dopamine, with a binding affinity value of log K = 5.76 and a detection limit of 0.81 nM. Selectivity towards dopamine was tested over other interfering analytes commonly present in human saliva. Finally, in order to perform a solid point of care test, CNPs were adsorbed on a solid support and exposed to different concentrations of dopamine, thus observing a pseudo-linear response, using a smartphone as a detector. Therefore, the detection of dopamine in simulated human saliva was performed with excellent results, in terms of selectivity and a detection limit of 100 pM.
Asunto(s)
Carbono , Cynara scolymus , Dopamina , Nanopartículas , Extractos Vegetales , Dopamina/análisis , Dopamina/orina , Carbono/química , Nanopartículas/química , Extractos Vegetales/química , Humanos , Cynara scolymus/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Tamaño de la Partícula , Saliva/química , Propiedades de Superficie , Espectrometría de FluorescenciaRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Liver and breast cancers are the most dominant cancer types with high occurrence rates. Artichoke (Cynara scolymus L.) has been reputed for its traditional use in alleviating many liver and gallbladder ailments beside its anticancer activity against various types of cancer cells. AIM OF THE STUDY: To demonstrate detailed chemical matrices of the different plant parts and evaluate their cytotoxic activities aiming to unveil the relationship between these activities and the intrinsic metabolites using metabolomic studies, in-vitro experiments and network pharmacology. MATERIALS AND METHODS: Chemical profiling of extracts from the different plant parts (stems, leaves, bracts and receptacles) was performed using HPLC/QqQ/MS followed by unsupervised chemometric studies. In-vitro cytotoxic potentials of the extracts were evaluated on breast and liver cancer cell line then an OPLS study using linear regression was conducted. Consequently, a network pharmacology analysis on the most bioactive plant organ was applied. RESULTS: Unsupervised chemometric analysis revealed that kaempferol-3-O-α-L-rhamnopyranoside-7-O-ß-D-galacturonopyranoside, chrysoeriol-7-rutinoside and 1-caffeoylquinic acid were responsible for the segregation of the bract (CSB) segregated from the rest of the plant organs. Interestingly, CSB extract possessed the highest potential in-vitro cytotoxic activity against both liver and breast cancer cells (IC50 = 1.65 and 1.77 µg/mL). As expected, the aforementioned biomarkers were observed to be the discriminatory cytotoxic metabolites in the constructed supervised chemometric model. Network pharmacology analysis on CSB revealed 27 liver cancer-related metabolites of which, 1-caffeoylquinic acid was the most enriched one contributing to 13% of the total interactions. Furthermore, 38 target genes were involved, the most enriched of which were Aldo-keto reductase family 1 member B1 (AKR1B10) and interleukin-2 (IL-2). KEGG pathway analysis unveiled 23 significantly related pathways including metabolic pathways that possessed the lowest p-value (1.6E-5). CONCLUSION: The findings demonstrated that CSB is a significant source of cytotoxic metabolites against breast cancer and liver cancer cell lines, hence, drawing attention to the pharmaceutical and medicinal value of this negligible plant organ and paving the route for insightful research into its exact pharmacological cytotoxic mechanisms.
Asunto(s)
Antineoplásicos Fitogénicos , Neoplasias de la Mama , Cynara scolymus , Neoplasias Hepáticas , Metabolómica , Farmacología en Red , Extractos Vegetales , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antineoplásicos Fitogénicos/farmacología , Cynara scolymus/química , Femenino , Línea Celular Tumoral , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Etnofarmacología , Supervivencia Celular/efectos de los fármacos , Células MCF-7RESUMEN
Plant tissue in vitro culture is increasingly used in agriculture to improve crop production, nutritional quality, and commercial value. In plant virology, the technique is used as sanitation protocol to produce virus-free plants. Sanitized (S) artichokes show increased vigour compared to their non-sanitized (NS) counterparts, because viral infections lead to a decline of growth and development. To investigate mechanisms that control the complex traits related to morphology, growth, and yield in S artichokes compared to NS plants, RNAseq analysis and phenotyping by imaging were used. The role of peroxidases (POD) was also investigated to understand their involvement in sanitized plant development. Results showed that virus infection affected regulation of cell cycle, gene expression and signal transduction modulating cellular response to stimulus/stress. Moreover, primary metabolism and photosynthesis were also influenced, contributing to explain the main morphological differences observed between S and NS artichokes. Sanitized artichokes are also characterized by higher POD activity, probably associated with increased plant growth, rather than strengthening of cell walls. Overall, results show that the differences in development of S artichokes may be derived from the in vitro culture stressor, as well as through pathogen elimination, which, in turn, improve qualitative and quantitative artichoke production.
Asunto(s)
Cynara scolymus , Transcriptoma , Cynara scolymus/genética , Cynara scolymus/fisiología , Fenotipo , Regulación de la Expresión Génica de las Plantas , FotosíntesisRESUMEN
Due to a scarcity of appropriate therapeutic approaches capable of ameliorating or eliminating non-alcoholic fatty liver disease (NAFLD), many researchers have come to focus on natural products based on traditional medicine that can be utilized to successfully treat NAFLD. In this study, we aimed to evaluate the effects exerted by seven natural products (curcumin, silymarin, resveratrol, artichoke leaf extract, berberine, catechins, and naringenin) on patients with NAFLD. For this purpose, PubMed, Embase, Cochrane Library, and Web of Science, were searched for randomized controlled trials (RCTs) exclusively. The selected studies were evaluated for methodological quality via the Cochrane bias risk assessment tool, and data analysis software was used to analyze the data accordingly. The RCTs from the earliest available date until September 2022 were collected. This process resulted in 37 RCTs with a total sample size of 2509 patients being included. The results of the network meta-analysis showed that artichoke leaf extract confers a relative advantage in reducing the aspartate aminotransferase (AST) levels (SUCRA: 99.1%), alanine aminotransferase (ALT) levels (SUCRA: 88.2%) and low-density lipoprotein cholesterol (LDL-C) levels (SUCRA: 88.9%). Naringenin conferred an advantage in reducing triglyceride (TG) levels (SUCRA: 97.3%), total cholesterol (TC) levels (SUCRA: 73.9%), and improving high-density lipoprotein cholesterol (HDL-C) levels (SUCRA: 74.9%). High-density catechins significantly reduced body mass index (BMI) levels (SUCRA: 98.5%) compared with the placebo. The Ranking Plot of the Network indicated that artichoke leaf extract and naringenin performed better than the other natural products in facilitating patient recovery. Therefore, we propose that artichoke leaf extract and naringenin may exert a better therapeutic effect on NAFLD. This study may help guide clinicians and lead to further detailed studies.
Asunto(s)
Metaanálisis en Red , Enfermedad del Hígado Graso no Alcohólico , Extractos Vegetales , Ensayos Clínicos Controlados Aleatorios como Asunto , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Aspartato Aminotransferasas/sangre , Alanina Transaminasa/sangre , Cynara scolymus/química , LDL-Colesterol/sangre , Hojas de la Planta/químicaRESUMEN
The aim of this study was to assess whether dietary supplementation with a nutraceutical blend comprising extracts of bergamot and artichoke-both standardized in their characteristic polyphenolic fractions-could positively affect serum lipid concentration and insulin sensitivity, high-sensitivity C-reactive protein (hs-CRP), and indexes of non-alcoholic fatty liver disease (NAFLD) in 90 healthy individuals with suboptimal cholesterol levels. Participants were randomly allocated to treatment with a pill of either active treatment or placebo. After 6 weeks, the active-treated group experienced significant improvements in levels of triglycerides (TG), apolipoprotein B-100 (Apo B-100), and apolipoprotein AI (Apo AI) versus baseline. Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), non-high density lipoprotein cholesterol (Non-HDL-C), and hs-CRP also significantly decreased in the active-treated group compared to both baseline and placebo. At the 12-week follow-up, individuals allocated to the combined nutraceutical experienced a significant improvement in TC, LDL-C, Non-HDL-C, TG, Apo B-100, Apo AI, glucose, alanine transaminase (ALT), gamma-glutamyl transferase (gGT), hs-CRP, several indexes of NAFLD, and brachial pulse volume (PV) in comparison with baseline. Improvements in TC, LDL-C, Non-HDL-C, TG, fatty liver index (FLI), hs-CRP, and endothelial reactivity were also detected compared to placebo (p < 0.05 for all). Overall, these findings support the use of the tested dietary supplement containing dry extracts of bergamot and artichoke as a safe and effective approach for the prevention and management of a broad spectrum of cardiometabolic disorders.
Asunto(s)
Colesterol , Cynara scolymus , Suplementos Dietéticos , Enfermedad del Hígado Graso no Alcohólico , Extractos Vegetales , Humanos , Cynara scolymus/química , Masculino , Femenino , Método Doble Ciego , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Persona de Mediana Edad , Adulto , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Colesterol/sangre , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis , Resistencia a la Insulina , Triglicéridos/sangreRESUMEN
Freezing of artichoke is a promising alternative to storing it in brine and canning. The perishable vegetable was vacuum infused with inulin to improve freezing tolerance. Artichokes with and without inulin were frozen by static, air blast and individual quick freezing (IQF) methods and thawed by microwave, 25 °C and 4 °C temperature levels at each month of 6-months storage. Process conditions were evaluated by multivariate analysis of variance (MANOVA) and were found significant on the quality parameters. Inulin infusion better conserved the aw, color, texture, ascorbic acid and overall integrity of artichokes during frozen storage. Inulin incorporation and IQF showed mutual positive effect on drip loss. Polyphenol oxidase (PPO) activity values fitted to 2nd order kinetic and the highest residuals were determined in static freezing. PPO showed alleviating effect on total phenolic content. Vacuum impregnation caused a color difference prior to freezing, but was found effective for maintaining color during storage. As a result, the use of quick freezing techniques together with the addition of cryoprotectant was effective in the preservation of artichoke quality attributes during frozen storage.
Asunto(s)
Catecol Oxidasa , Crioprotectores , Cynara scolymus , Congelación , Inulina , Cynara scolymus/química , Crioprotectores/farmacología , Crioprotectores/química , Vacio , Catecol Oxidasa/metabolismo , Almacenamiento de Alimentos/métodos , Ácido Ascórbico , Criopreservación/métodos , Conservación de Alimentos/métodos , Color , Fenoles/análisisRESUMEN
Globe artichoke (Cynara cardunculus var. scolymus; 2n = 2x = 34) is a food crop consumed for its immature flower heads. Traditionally, globe artichoke varietal types are vegetatively propagated. However, seed propagation makes it possible to treat the crop as annual, increasing field uniformity and reducing farmers costs, as well as pathogens diffusion. Despite globe artichoke's significant agricultural value and the critical role of heterosis in the development of superior varieties, the production of hybrids remains challenging without a reliable system for large-scale industrial seed production. Male sterility (MS) presents a promising avenue for overcoming these challenges by simplifying the hybridization process and enabling cost-effective seed production. However, within the Cynara genus, genic male sterility has been linked to three recessive loci in globe artichoke, with no definitive genetic mechanism elucidated to date. A 250 offsprings F2 population, derived from a cross between a MS globe artichoke and a male fertile (MF) cultivated cardoon (C. cardunculus var. altilis) and fitting a monogenic segregation model (3:1), was analyzed through BSA-seq, aiming at the identification of genomic regions/genes affecting male sterility. Four QTL regions were identified on chromosomes 4, 12, and 14. By analyzing the sequence around the highest pick on chromosome 14, a cytochrome P450 (CYP703A2) was identified, carrying a deleterious substitution (R/Q) fixed in the male sterile parent. A single dCAPS marker was developed around this SNP, allowing the discrimination between MS and MF genotypes within the population, suitable for applications in plant breeding programs. A 3D model of the protein was generated by homology modeling, revealing that the mutated amino acid is part of a highly conserved motif crucial for protein folding.
Asunto(s)
Cynara scolymus , Infertilidad Vegetal , Polen , Infertilidad Vegetal/genética , Cynara scolymus/genética , Polen/genética , Genoma de Planta , Genes de PlantasRESUMEN
Inulin, a polysaccharide characterized by a ß-2,1 fructosyl-fructose structure terminating in a glucosyl moiety, is naturally present in plant roots and tubers. Current methods provide average degrees of polymerization (DP) but lack information on the distribution and absolute concentration of each DP. To address this limitation, a reproducible (CV < 10 %) high throughput (<2 min/sample) MALDI-MRMS approach capable of characterizing and quantifying inulin molecules in plants using matched-matrix consisting of α-cyano-4-hydroxycinnamic acid butylamine salt (CHCA-BA), chicory inulin-12C and inulin-13C was developed. The method identified variation in chain lengths and concentration of inulin across various plant species. Globe artichoke hearts, yacón and elephant garlic yielded similar concentrations at 15.6 g/100 g dry weight (DW), 16.8 g/100 g DW and 17.7 g/100 g DW, respectively, for DP range between 9 and 22. In contrast, Jerusalem artichoke demonstrated the highest concentration (53.4 g/100 g DW) within the same DP ranges. Jerusalem artichoke (DPs 9-32) and globe artichoke (DPs 9-36) showed similar DP distributions, while yacón and elephant garlic displayed the narrowest and broadest DP ranges (DPs 9-19 and DPs 9-45, respectively). Additionally, qualitative measurement for all inulin across all plant samples was feasible using the peak intensities normalized to Inulin-13C, and showed that the ratio of yacón, elephant garlic and Jerusalem was approximately one, two and three times that of globe artichoke. This MALDI-MRMS approach provides comprehensive insights into the structure of inulin molecules, opening avenues for in-depth investigations into how DP and concentration of inulin influence gut health and the modulation of noncommunicable diseases, as well as shedding light on refining cultivation practices to elevate the beneficial health properties associated with specific DPs.
Asunto(s)
Productos Biológicos , Cynara scolymus , Ajo , Helianthus , Inulina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Antioxidantes , Espectroscopía de Resonancia Magnética , Rayos LáserRESUMEN
Cynara scolymus, also known as the globe artichoke or artichoke, is grown as a food, mainly in the Mediterranean, Canary Islands, and Egypt, as well as in Asia and South America. It has also been associated with various health benefits and is used in plant-based dietary supplements and herbal infusions. Its edible parts, consisting of the head or capitula, flower, and leaves, have shown various biological activities, including anti-cancer, hepatoprotective and antimicrobial potential. The leaves are mainly used in infusions and extracts for their health-promoting properties, although all their edible parts may also be consumed as fresh, frozen, or canned foods. However, its primary health-promoting activity is associated with its antioxidant potential, which has been linked to its chemical composition, particularly its phenolic compounds (representing 96 mg of gallic acid equivalent per 100 g of raw plant material) and dietary fiber. The main phenolic compounds in the heads and leaves are caffeic acid derivatives, while the flavonoids luteolin and apigenin (both present as glucosides and rutinosides) have also been identified. In addition, heat-treated artichokes (i.e., boiled, steamed or fried), their extracts, and waste from artichoke processing also have antioxidant activity. The present paper reviews the current literature concerning the biological properties of different parts of C. scolymus, its by-products and dietary supplements, as well as their chemical content and toxicity. The literature was obtained by a search of PubMed/Medline, Google Scholar, Web of Knowledge, ScienceDirect, and Scopus, with extra papers being identified by manually reviewing the references.
Asunto(s)
Cynara scolymus , Cynara scolymus/química , Antioxidantes/análisis , Suplementos Dietéticos , Flavonoides/análisis , Fenoles/análisis , Extractos Vegetales/química , Hojas de la Planta/químicaRESUMEN
The present study was designed to evaluate whether AuNPs (gold nanoparticles) synthesized with the Cynara scolymus (CS) leaf exert protective and/or alleviative effects on arsenic (As)-induced hippocampal neurotoxicity in mice. Neurotoxicity in mice was developed by orally treating 10â¯mg/kg/day sodium arsenite (NaAsO2) for 21 days. 10⯵g/g AuNPs, 1.6â¯g/kg CS, and 10⯵g/g CS-AuNPs were administered orally simultaneously with 10â¯mg/kg As. CS and CS-AuNPs treatments showed down-regulation of TNF-α and IL-1ß levels. CS and CS-AuNPs also ameliorated apoptosis and reduced the alterations in the expression levels of D1 and D2 dopamine receptors induced by As. Simultaneous treatment with CS and CS-AuNPs improved As-induced learning, memory deficits, and motor coordination in mice assessed by water maze and locomotor tests, respectively. The results of this study provide evidence that CS-AuNPs demonstrated neuroprotective roles with antioxidant, anti-inflammatory, and anti-apoptotic effects, as well as improving D1 and D2 signaling, and eventually reversed neurobehavioral impairments.
Asunto(s)
Arsénico , Cynara scolymus , Nanopartículas del Metal , Extractos Vegetales , Ratones , Animales , Arsénico/metabolismo , Oro , Ratones Endogámicos BALB C , Nanopartículas del Metal/toxicidad , Hipocampo/metabolismoRESUMEN
Dietary supplements enriched with bioactive compounds represent a promising approach to influence physiological processes and enhance longevity and overall health. Cynara cardunculus var. scolymus serves as a functional food supplement with a high concentration of bioactive compounds, which offers various health-promoting benefits. Several chronic diseases have metabolic, genetic, or inflammatory origins, which are frequently interconnected. Pharmacological treatments, although effective, often result in undesirable side effects. In this context, preventive approaches are gaining increased attention. Recent literature indicates that the consumption of bioactive compounds in the diet can positively influence the organism's biological functions. Polyphenols, well-known for their health benefits, are widely recognized as valuable compounds in preventing/combating various pathologies related to lifestyle, metabolism, and aging. The C. scolymus belonging to the Asteraceae family, is widely used in the food and herbal medicine fields for its beneficial properties. Although the inflorescences (capitula) of the artichoke are used for food and culinary purposes, preparations based on artichoke leaves can be used as an active ingredient in herbal medicines. Cynara scolymus shows potential benefits in different domains. Its nutritional value and health benefits make it a promising candidate for improving overall well-being. C. scolymus exhibits anti-inflammatory, antioxidant, liver-protective, bile-expelling, antimicrobial, and lipid-lowering neuroprotective properties. Different studies demonstrate that oxidative stress is the leading cause of the onset and progression of major human health disorders such as cardiovascular, neurological, metabolic, and cancer diseases. The large amount of polyphenol found in C. scolymus has an antioxidant activity, enabling it to neutralize free radicals, preventing cellular damage. This reduces the subsequent risk of developing conditions such as cancer, diabetes, and cardiovascular diseases. Additionally, these polyphenols demonstrate anti-inflammatory activity, which is closely associated with their antioxidant properties. As a result, C. scolymus has the potential to contribute to the treatment of chronic diseases, including intestinal disorders, cardiovascular diseases, and neurodegenerative pathologies. The current review discussed the nutritional profiles, potential benefits, and pharmacological effects of C. scolymus.
Asunto(s)
Enfermedades Cardiovasculares , Cynara scolymus , Neoplasias , Humanos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Polifenoles/farmacología , Polifenoles/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/metabolismo , Enfermedad Crónica , Antiinflamatorios/farmacologíaRESUMEN
Wild cardoon (Cynara cardunculus var. sylvestris) is the ancestor of many cultivated forms, including globe artichoke (C. cardunculus var. scolymus). Four organs (receptacles, bracts, leaves and stems) of wild and cultivated artichokes (organic and conventional) were assessed considering their individual phenolic constituents (HPLC-DAD), total phenol-flavonoid content, and pharmaceutical potentials (antibacterial and antioxidant). All three sources of artichokes had the highest concentration of 1,3-dicaffeoylquinic acid (cynarin) in their receptacles and cultivated artichoke receptacles had more cynarin than wild one. On the other hand, receptacles of wild cardoon had the highest 1,5-dicaffeoylquinic acid and caffeic acid than the cultivated ones. Generally, receptacles, stems and leaves of wild cardoon were superior to both cultivated artichokes on antioxidant potential, and total phenol-flavonoid content. The rise in total phenolic content can be attributed to an increase in antioxidant capacity in all artichoke organs. Only the leaves of all different artichokes showed antibacterial activity against Gram-positive bacteria. The investigated wild cardoon was believed to be a true ancestor since a comparison of wild and cultivated varieties revealed similar trends in terms of phenolic profile and biological properties. The nutraceutical industry can profit from this invasive wild cardoon due to their strong antioxidant potential and phenolic content.
Asunto(s)
Cinamatos , Cynara scolymus , Cynara , Fenoles , Antibacterianos/farmacología , Antioxidantes/farmacología , Cynara/química , Cynara scolymus/química , Suplementos Dietéticos/análisis , Flavonoides/farmacología , Fenoles/análisis , Fenoles/química , Fenoles/farmacologíaRESUMEN
This study aimed to evaluate the effects of varying levels of dietary Cynara scolymus (CS) powder on growth performance, carcass characteristics, intestinal microbiota, immune and haemato-biochemical parameters in female quails. A total of 120-day-old female quails used for the research were divided into 3 treatment groups: 0% CS, 0.75% CS and 1.50% CS having 4 replicates (n = 10). Blood samples collected were analyzed for differential leukocyte count, red blood cell count and its indices, uric acid, lipid profile, liver enzymes, calcium, phosphorous, creatinine, thyroid hormone, creatine kinase, lactate dehydrogenase and antibody titres. Quails were euthanized for evaluation of carcass and microbial bacteria and sensory characteristics of the breast and thigh meat. Supplementation of CS at 0.75% and 1.50% increased (P < 0.05) wing, drumstick, ileum, jejunum and spleen lengths, high-density lipoprotein, and decreased (P < 0.05) low-density lipoprotein: high-density lipoprotein ratio. Diets supplemented with 0.75% CS increased (P < 0.05) albumin while 1.50% decreased (P < 0.05) abdominal fat and increased (P < 0.05) corpuscular volume, red blood cell count, lactobacillus population, and color of thigh meat. Both CS levels (0.75% and 1.50%) may improve intestinal morphology, quality of meat, immunity, erythropoiesis, intestinal microbial population, and decrease bad cholesterol in quails.
Asunto(s)
Cynara scolymus , Microbioma Gastrointestinal , Femenino , Animales , Codorniz , Polvos/farmacología , Coturnix , Suplementos Dietéticos , Dieta/veterinaria , Lipoproteínas HDL , Alimentación Animal/análisisRESUMEN
BACKGROUND: In the present study, natural deep eutectic solvents (NADES) as a novel green tool were used for the recovery of bioactive compounds with respect to the valorization of artichoke outer petals. NADES coupled with ultrasound-assisted extraction was applied by varying the type of hydrogen bond acceptors (choline chloride or betain) and hydrogen bond donors (sucrose, lactic acid, citric acid, oxalic acid and glycerol) in the NADES mixtures. Thereafter, extraction efficacy was assessed in terms of total phenolic content, antioxidant capacity and individual phenolic composition and their levels by comparing the results obtained by NADES with those for a reference methanolic extract. RESULTS: Based on the results of the present study, the use of choline chloride and lactic acid mixtures was superior for obtaining extracts with high levels of phenolic compounds (12.96 g GAE kg-1 DW) and high antioxidant potential (60.68 g TE kg-1 DW). In addition, gallic acid, syringic acid, chlorogenic acid, ferulic acid, sinapic acid, luteolin, apigenin, rutin and quercetin were detected in all extracts by chromatographic evaluation. As major phenolic compounds, chlorogenic acid and ferulic acid were found to be maximum in lactic acid-based NADES mixtures. CONCLUSION: The present study reveals the potential treatment of various plants, wastes or by-products with NADES combined with an ultrasonication method for the extraction of bioactive compounds with enhanced recovery and selectivity, with the aim of incorporating them into various food and pharmaceutical formulations. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Asunto(s)
Ácidos Cumáricos , Cynara scolymus , Disolventes Eutécticos Profundos , Solventes/química , Antioxidantes , Extractos Vegetales/química , Fenoles , Colina , Ácido Clorogénico , Ácido LácticoRESUMEN
The prevalence of chronic kidney disease (CKD) is in progress that causes kidney failure, leading to global problems. This manuscript investigated the nephroprotective effects of chicory (CLE) and/or artichoke (ALE) leaves extracts on carbon tetrachloride (CCl4 ) and gamma-irradiation (Rad)-induced chronic nephrotoxicity in rats. Rats were divided into 10 groups (10 animals/group): group 1: control, groups 2-7 rats were treated with CLE, ALE, CLE/ALE, CCl4 , Rad, and CCl4 /Rad, respectively. Groups 8 to 10, rats were intoxicated with CCl4 /Rad, and treated with CLE, ALE, and CLE/ALE extracts, respectively, for 4 weeks. The data demonstrated that CCl4 administration or Rad exposure induced high levels of urea and creatinine, with low levels of total protein and albumin in the serum. However, high levels of malondialdehyde (MDA), nitric oxide (NO), hydrogen peroxide (H2 O2 ), some pro-inflammatory markers such as interleukins (IL-1ß, IL-2, IL-6), TNF-α, NF-κB, the fibrotic marker; TGF-ß1, calcium, and copper, low contents of reduced glutathione (GSH), iron, and zinc, and suppression of the antioxidant enzymes' activity, superoxide dismutase (SOD), and catalase (CAT) were observed. In addition, the Wnt and ß-catenin protein expression ratios were up-regulated in the kidney tissues of the CCl4 , and Rad intoxicated animals. However, the combined treatment CCl4 /Rad augmented these measurements. On the other hand, CLE, ALE, and CLE/ALE treatments demonstrated nephroprotection in the kidney tissues of CCl4 /Rad intoxicated animals, in the order of CLE/ALE>ALE>CLE by ameliorating the investigated parameters. Kidney tissues' histopathological examinations confirmed these results. In conclusion, CLE and/or ALE demonstrated nephroprotection against CCl4 /Rad co-toxicity mediated by down-regulation of renal Wnt/ß-catenin protein expressions.
Asunto(s)
Cichorium intybus , Cynara scolymus , Insuficiencia Renal , Ratas , Animales , Tetracloruro de Carbono/toxicidad , Estrés Oxidativo , Cynara scolymus/metabolismo , Antioxidantes/metabolismo , Insuficiencia Renal/metabolismo , Insuficiencia Renal/patología , Extractos Vegetales/farmacología , Cateninas/metabolismo , Cateninas/farmacología , HígadoRESUMEN
As espécies de Candida spp. apresentam-se como o principal patógeno fúngico humano, podendo causar infecções superficiais e invasivas. A emergência de novas espécies em infecções, apresentando alta resistência aos antifúngicos utilizados desafia pesquisadores a propor novas terapias no controle desta infecção, entre as quais podemos citar a fitoterapia realizando o uso de extratos de plantas para propor novos protocolos. Por isto, este trabalho objetiva avaliar a ação antifúngica dos extratos isolados de Quilaia (Quillaja saponaria) e Alcachofra (Cynara scolymus) sobre C. albicans, C. glabrata, C. krusei, C. tropicalis e C. dubliniensis em formas planctônica e biofilmes monotípicos. Inicialmente foram feitas análises da ação antifúngica dos extratos de Quilaia e Alcachofra por meio do teste de microdiluição em caldo (CLSI Protocolo M27-S4), para determinar as Concentrações Inibitórias Mínimas (CIM) e as Concentrações Fungicidas Mínimas (CFM) de espécies. Os biofilmes foram formados por 48 h em poços de microplacas, os quais receberam tratamentos de concentrações dos extratos (100 mg/mL, 50 mg/mL, 25 mg/mL, 12,5 mg/mL e 6,25 mg/mL), assim como foram testados os grupos controles positivo e negativo, para determinação da viabilidade celular por meio do teste MTT. Os dados foram analisados estatísticamente pelos testes ANOVA e Tukey, com significância de 5%. Os resultados da CIM e CFM para as espécies C. albicans, C. krusei e C. glabrata foram de 12,5mg/mL para ambos os extratos, os valores para C tropicalis foi 12,5 mg/mL para o extrato de Quilaia e 25 mg/mL para Alcachofra, ambos os extratos apresentaram o mesmo valor de 6,25 mg/mL para a espécie C. dubliniensis. A ação antibiofilme do extrato de Quilaia apresentou redução fúngica do biofilme principalmente nas duas maiores concentrações (100 mg/mL e 50 mg/mL) do extrato para ambos os tempos (5 min e 24 h) quando comparados com o grupo controle negativo que não recebeu tratamento, apresentando diferenças estatísticas significativas (p<0.001). A ação antibiofilme do extrato de Alcachofra apresentou reduções dos biofilmes significativas nas cinco concentrações (100 mg/mL, 50 mg/mL, 25 mg/mL, 12,5 mg/mL e 6,25 mg/mL) em ambos os tempos, na maioria das espécies, apresentando diferenças significativas (p<0.001). Diante disso, concluímos que os extratos glicólicos de Q. saponaria e C. scolymus apresentam ação antifúngica em todas as espécies de Candida spp. analisadas, sendo um potencial antifúngico para C. albicans e as espécies C. não-albicans, mas na espécie de C. krusei as reduções de biofilme só ocorrem nas maiores concentrações. Os resultados da ação antibiofilme manteve um padrão de ação, quanto maior a concentração do extrato, maior a redução, isto para ambos os extratos e para a maioria das espécies analisadas (AU)
Candida spp. They are the main human fungal pathogen and can cause superficial and invasive infections. The emergence of new species in infections, presenting high resistance to the antifungals used, challenges researchers to propose new therapies to control this infection, among which we can mention phytotherapy using plant extracts to propose new protocols. Therefore, this work aims to evaluate the antifungal action of extracts isolated from Quilaia (Quillaja saponaria) and Artichoke (Cynara scolymus) on C. albicans, C. glabrata, C. krusei, C. tropicalis and C. dubliniensis in planktonic forms and biofilms monotypic. Initially, analyzes of the antifungal action of Quilaia and Artichoke extracts were carried out using the broth microdilution test (CLSI Protocol M27-S4), to determine the Minimum Inhibitory Concentrations (MICs) and Minimum Fungicide Concentrations (MFCs) of species. Biofilms were formed for 48 h in microplate wells, which received extract concentration treatments (100 mg/mL, 50 mg/mL, 25 mg/mL, 12.5 mg/mL and 6.25 mg/mL), as well as the positive and negative control groups were tested to determine cell viability using the MTT test. The data were statistically analyzed using the ANOVA and Tukey tests, with a significance of 5%. The MIC and CFM results for the species C. albicans, C. krusei and C. glabrata were 12.5 mg/mL for both extracts, the values for C tropicalis were 12.5 mg/mL for the Quilaia extract and 25 mg/mL for Artichoke, both extracts presented the same value of 6.25 mg/mL for the species C. dubliniensis. The antibiofilm action of the Quilaia extract showed a fungal reduction of the biofilm mainly at the two highest concentrations (100 mg/mL and 50 mg/mL) of the extract for both times (5 min and 24 h) when compared with the negative control group that did not receive treatment, showing significant statistical differences (p<0.001). The antibiofilm action of Artichoke extract showed significant reductions in biofilms at the five concentrations (100 mg/mL, 50 mg/mL, 25 mg/mL, 12.5 mg/mL and 6.25 mg/mL) at both times, in most species, showing significant differences (p<0.001). Therefore, we conclude that glycolic extracts of Q. saponaria and C. scolymus have antifungal action on all species of Candida spp. analyzed, with antifungal potential for C. albicans and non-albicans C. species, but in the C. krusei species, biofilm reductions only occur at higher concentrations. The results of the antibiofilm action maintained a pattern of action, the higher the concentration of the extract, the greater the reduction, this for both extracts and for the majority of species analyzed(AU)
Asunto(s)
Candida , Cynara scolymus , Quillaja , Placa Dental , FitoterapiaRESUMEN
BACKGROUND: Artichoke (Cynara scolymus L.) is a typical element of a traditional Mediterranean diet and has potential health advantages for insulin resistance (IR) and type 2 diabetes mellitus (T2DM). This study aims to evaluate the effect and underlying mechanism of artichoke water extract (AWE) on palmitate (PA)-induced IR in human hepatocellular carcinoma (HepG2) cells. METHODS: The effect of AWE on cell viability was determined using CCK8 assay. Cellular glucose uptake, glucose consumption, glucose production, and glycogen content were assessed after AWE treatment. The gene expression and protein levels were examined by real-time polymerase chain reaction (qRT-PCR) and western blotting. RESULTS: The results showed that AWE dose-dependently increased cell viability in IR HepG2 cells (P < 0.01). AWE treatment significantly promoted glucose uptake and consumption, decreased glucose production, and increased the cellular glycogen content in IR HepG2 cells (P < 0.01). Mechanistically, AWE elevated the phosphorylation and total protein levels of major insulin signaling molecules in IR HepG2 cells, which resulted in a decrease in the expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) and the inhibition of glycogen synthase (GS) phosphorylation in IR HepG2 cells. Furthermore, the protective effect of AWE on IR HepG2 cells might be ascribed to the inhibition of the endoplasmic reticulum (ER) stress. CONCLUSION: We conclude that AWE may improve glucose metabolism by regulating IRS1/PI3K/AKT/FoxO1 and GSK-3ß signaling associated with the inhibition of ER stress in IR HepG2 cells induced by PA.