Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361749

RESUMEN

Nna1/CCP1 is generally known as a causative gene for a spontaneous autosomal recessive mouse mutation, Purkinje cell degeneration (pcd). There is enough evidence that the cytosolic function of the zinc carboxypeptidase (CP) domain at the C-terminus of the Nna1 protein is associated with cell death. On the other hand, this molecule's two nuclear localization signals (NLSs) suggest some other functions exist. We generated exon 3-deficient mice (Nna1N KO), which encode a portion of the N-terminal NLS. Despite the frameshift occurring in these mice, there was an expression of the Nna1 protein lacking the N-terminal side. Surprisingly, the pcd phenotype did not occur in the Nna1N KO mouse. Behavioral analysis revealed that they were less anxious when assessed by the elevated plus maze and the light/dark box tests compared to the control. Furthermore, they showed impairments in context-dependent and sound stimulus-dependent learning. Biochemical analysis of Nna1N KO mice revealed a reduced level of the AMPA-type glutamine receptor GluA2 in the hippocampal synaptosomal fraction. In addition, the motor protein kinesin-1, which transports GluA2 to dendrites, was also decreased. These results indicate that Nna1 is also involved in emotion and memory learning, presumably through the trafficking and expression of synaptic signaling molecules, besides a known role in cell survival.


Asunto(s)
Células de Purkinje , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina , Ratones , Animales , Células de Purkinje/patología , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Supervivencia Celular/genética , Proteínas de Unión al GTP/metabolismo , Degeneración Nerviosa/metabolismo , Emociones
2.
J Biol Chem ; 297(4): 101188, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34529975

RESUMEN

Resistance to the extended-spectrum cephalosporin ceftriaxone in the pathogenic bacteria Neisseria gonorrhoeae is conferred by mutations in penicillin-binding protein 2 (PBP2), the lethal target of the antibiotic, but how these mutations exert their effect at the molecular level is unclear. Using solution NMR, X-ray crystallography, and isothermal titration calorimetry, we report that WT PBP2 exchanges dynamically between a low-affinity state with an extended ß3-ß4 loop conformation and a high-affinity state with an inward ß3-ß4 loop conformation. Histidine-514, which is located at the boundary of the ß4 strand, plays an important role during the exchange between these two conformational states. We also find that mutations present in PBP2 from H041, a ceftriaxone-resistant strain of N. gonorrhoeae, increase resistance to ceftriaxone by destabilizing the inward ß3-ß4 loop conformation or stabilizing the extended ß3-ß4 loop conformation to favor the low-affinity drug-binding state. These observations reveal a unique mechanism for ceftriaxone resistance, whereby mutations in PBP2 lower the proportion of target molecules in the high-affinity drug-binding state and thus reduce inhibition at lower drug concentrations.


Asunto(s)
Ceftriaxona/química , Farmacorresistencia Bacteriana , Neisseria gonorrhoeae/enzimología , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , Sustitución de Aminoácidos , Sitios de Unión , Mutación Missense , Neisseria gonorrhoeae/genética , Estructura Secundaria de Proteína , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo
3.
J Comput Chem ; 41(18): 1685-1697, 2020 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-32323874

RESUMEN

Two quantum mechanical (QM)-cluster models are built for studying the acylation and deacylation mechanism and kinetics of Streptomyces R61 DD-peptidase with the penicillin G at atomic level detail. DD-peptidases are bacterial enzymes involved in the cross-linking of peptidoglycan to form the cell wall, necessary for bacterial survival. The cross-linking can be inhibited by antibiotic beta-lactam derivatives through acylation, preventing the acyl-enzyme complex from undergoing further deacylation. The deacylation step was predicted to be rate-limiting. Transition state and intermediate structures are found using density functional theory in this study, and thermodynamic and kinetic properties of the proposed mechanism are evaluated. The acyl-enzyme complex is found lying in a deep thermodynamic sink, and deacylation is indeed the severely rate-limiting step, leading to suicide inhibition of the peptidoglycan cross-linking. The usage of QM-cluster models is a promising technique to understand, improve, and design antibiotics to disrupt function of the Streptomyces R61 DD-peptidase.


Asunto(s)
Antibacterianos/química , Inhibidores Enzimáticos/química , Penicilina G/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , Streptomyces/enzimología , Acilación , Antibacterianos/farmacología , Teoría Funcional de la Densidad , Inhibidores Enzimáticos/farmacología , Cinética , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Estructura Molecular , Penicilina G/farmacología , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/antagonistas & inhibidores , Streptomyces/efectos de los fármacos
4.
Amino Acids ; 52(3): 487-497, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32108264

RESUMEN

Bacteria produce various D-amino acids, including non-canonical D-amino acids, to adapt to environmental changes and overcome a variety of threats. These D-amino acids are largely utilized as components of peptidoglycan, and they promote peptidoglycan remodeling and biofilm disassembly. The biosynthesis, maturation, and recycling of peptidoglycan are catalyzed by penicillin-binding proteins (PBPs). However, although non-canonical D-amino acids are known to be incorporated into peptidoglycan, the maturation and recycling of peptidoglycan containing such residues remain uncharacterized. Therefore, we investigated whether PBP4 and PBP5, low molecular mass (LMM) PBPs from Escherichia coli and Bacillus subtilis, are involved in these events of peptidoglycan metabolism. Enzyme assays using p-nitroaniline (pNA)-derivatized D-amino acids and peptidoglycan-mimicking peptides revealed that PBP4 and PBP5 from both species have peptidase activity toward substrates containing D-Asn, D-His, or D-Trp. These D-amino acids slowed the growth of dacA- or dacB-deficient E. coli (∆dacA or ∆dacB) relative to the wild-type strain. Additionally, these D-amino acids affected biofilm formation by the ∆dacB strain. Collectively, PBP4 and PBP5 are involved in the cleavage of peptidoglycan containing non-canonical D-amino acids, and these properties affect growth and biofilm formation.


Asunto(s)
Aminoácidos/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Aminoácidos/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Biopelículas/crecimiento & desarrollo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética
5.
J Am Chem Soc ; 142(11): 5034-5048, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32048840

RESUMEN

Penicillin binding proteins (PBPs) catalyzing transpeptidation reactions that stabilize the peptidoglycan component of the bacterial cell wall are the targets of ß-lactams, the most clinically successful antibiotics to date. However, PBP-transpeptidation enzymology has evaded detailed analysis, because of the historical unavailability of kinetically competent assays with physiologically relevant substrates and the previously unappreciated contribution of protein cofactors to PBP activity. By re-engineering peptidoglycan synthesis, we have constructed a continuous spectrophotometric assay for transpeptidation of native or near native peptidoglycan precursors and fragments by Escherichia coli PBP1B, allowing us to (a) identify recognition elements of transpeptidase substrates, (b) reveal a novel mechanism of stereochemical editing within peptidoglycan transpeptidation, (c) assess the impact of peptidoglycan substrates on ß-lactam targeting of transpeptidation, and (d) demonstrate that both substrates have to be bound before transpeptidation occurs. The results allow characterization of high molecular weight PBPs as enzymes and not merely the targets of ß-lactam acylation.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Proteínas de Unión a las Penicilinas/química , Peptidoglicano Glicosiltransferasa/química , Peptidoglicano/química , Monosacáridos de Poliisoprenil Fosfato/química , Oligosacáridos de Poliisoprenil Fosfato/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , Proteínas de la Membrana Bacteriana Externa/química , Biocatálisis , Pruebas de Enzimas/métodos , Cinética , Estereoisomerismo , Especificidad por Sustrato
6.
J Mol Biol ; 431(18): 3501-3519, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31301409

RESUMEN

Even with the emergence of antibiotic resistance, penicillin and the wider family of ß-lactams have remained the single most important family of antibiotics. The periplasmic/extra-cytoplasmic targets of penicillin are a family of enzymes with a highly conserved catalytic activity involved in the final stage of bacterial cell wall (peptidoglycan) biosynthesis. Named after their ability to bind penicillin, rather than their catalytic activity, these key targets are called penicillin-binding proteins (PBPs). Resistance is predominantly mediated by reducing the target drug concentration via ß-lactamases; however, naturally transformable bacteria have also acquired target-mediated resistance by inter-species recombination. Here we focus on structural based interpretations of amino acid alterations associated with the emergence of resistance within clinical isolates and include new PBP3 structures along with new, and improved, PBP-ß-lactam co-structures.


Asunto(s)
Proteínas de Unión a las Penicilinas/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , Resistencia betalactámica/fisiología , beta-Lactamas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Haemophilus influenzae/enzimología , Modelos Moleculares , Mutación , Neisseria gonorrhoeae/enzimología , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/química , Peptidoglicano Glicosiltransferasa/genética , Peptidoglicano Glicosiltransferasa/metabolismo , Conformación Proteica , Dominios Proteicos , Pseudomonas aeruginosa/enzimología , Alineación de Secuencia , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , beta-Lactamasas/química , beta-Lactamasas/metabolismo , beta-Lactamas/farmacología
7.
Mol Microbiol ; 112(1): 233-248, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31022322

RESUMEN

Peptidoglycan (PG) is a highly cross-linked polysaccharide that encases bacteria, resists the effects of turgor and confers cell shape. PG precursors are translocated across the cytoplasmic membrane by the lipid carrier undecaprenyl phosphate (Und-P) where they are incorporated into the PG superstructure. Previously, we found that one of our Escherichia coli laboratory strains (CS109) harbors a missense mutation in uppS, which encodes an enzymatically defective Und-P(P) synthase. Here, we show that CS109 cells lacking the bifunctional aPBP PBP1B (penicillin binding protein 1B) lyse during exponential growth at elevated temperature. PBP1B lysis was reversed by: (i) reintroducing wild-type uppS, (ii) increasing the availability of PG precursors or (iii) overproducing PBP1A, a related bifunctional PG synthase. In addition, inhibiting the catalytic activity of PBP2 or PBP3, two monofunctional bPBPs, caused CS109 cells to lyse. Limiting the precursors required for Und-P synthesis in MG1655, which harbors a wild-type allele of uppS, also promoted lysis in mutants lacking PBP1B or bPBP activity. Thus, simultaneous inhibition of Und-P production and PG synthases provokes a synergistic response that leads to cell lysis. These findings suggest a biological connection that could be exploited in combination therapies.


Asunto(s)
Proteínas de Unión a las Penicilinas/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , División Celular , Pared Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Proteínas de Unión a las Penicilinas/antagonistas & inhibidores , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Fosfatos de Poliisoprenilo/antagonistas & inhibidores , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química
8.
Mol Microbiol ; 110(3): 335-356, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30044025

RESUMEN

Bacteria surround their cytoplasmic membrane with an essential, stress-bearing peptidoglycan (PG) layer consisting of glycan chains linked by short peptides into a mesh-like structure. Growing and dividing cells expand their PG layer using inner-membrane anchored PG synthases, including Penicillin-binding proteins (PBPs), which participate in dynamic protein complexes to facilitate cell wall growth. In Escherichia coli, and presumably other Gram-negative bacteria, growth of the mainly single layered PG is regulated by outer membrane-anchored lipoproteins. The lipoprotein LpoB is required to activate PBP1B, which is a major, bi-functional PG synthase with glycan chain polymerising (glycosyltransferase) and peptide cross-linking (transpeptidase) activities. In this work we show how the binding of LpoB to the regulatory UB2H domain of PBP1B activates both activities. Binding induces structural changes in the UB2H domain, which transduce to the two catalytic domains by distinct allosteric pathways. We also show how an additional regulator protein, CpoB, is able to selectively modulate the TPase activation by LpoB without interfering with GTase activation.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/química , Peptidoglicano Glicosiltransferasa/metabolismo , Peptidoglicano/biosíntesis , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Regulación Alostérica , Proteínas de la Membrana/metabolismo , Unión Proteica , Conformación Proteica
9.
mBio ; 8(5)2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28900026

RESUMEN

One of the mechanisms of ß-lactam antibiotic resistance requires the activity of d,d-carboxypeptidases (d,d-CPases) involved in peptidoglycan (PG) synthesis, making them putative targets for new antibiotic development. The activity of PG-synthesizing enzymes is often correlated with their association with other proteins. The PG layer is maintained in the periplasm between the two membranes of the Gram-negative cell envelope. Because no methods existed to detect in vivo interactions in this compartment, we have developed and validated a Förster resonance energy transfer assay. Using the fluorescent-protein donor-acceptor pair mNeonGreen-mCherry, periplasmic protein interactions were detected in fixed and in living bacteria, in single samples or in plate reader 96-well format. We show that the d,d-CPases PBP5, PBP6a, and PBP6b of Escherichia coli change dimer conformation between resting and active states. Complementation studies and changes in localization suggest that these d,d-CPases are not redundant but that their balanced activity is required for robust PG synthesis.IMPORTANCE The periplasmic space between the outer and the inner membrane of Gram-negative bacteria contains many essential regulatory, transport, and cell wall-synthesizing and -hydrolyzing proteins. To date, no assay is available to determine protein interactions in this compartment. We have developed a periplasmic protein interaction assay for living and fixed bacteria in single samples or 96-well-plate format. Using this assay, we were able to demonstrate conformation changes related to the activity of proteins that could not have been detected by any other living-cell method available. The assay uniquely expands our toolbox for antibiotic screening and mode-of-action studies.


Asunto(s)
Carboxipeptidasas/química , Carboxipeptidasas/metabolismo , Escherichia coli/enzimología , Periplasma/ultraestructura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Proteínas Luminiscentes , Peptidoglicano/química , Peptidoglicano/metabolismo , Periplasma/química , Periplasma/metabolismo , Conformación Proteica , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Proteína Fluorescente Roja
10.
J Biol Chem ; 292(3): 979-993, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-27899450

RESUMEN

In Escherichia coli, the peptidoglycan cell wall is synthesized by bifunctional penicillin-binding proteins such as PBP1b that have both transpeptidase and transglycosylase activities. The PBP1b transpeptidase domain is a major target of ß-lactams, and therefore it is important to attain a detailed understanding of its inhibition. The peptidoglycan glycosyltransferase domain of PBP1b is also considered an excellent antibiotic target yet is not exploited by any clinically approved antibacterials. Herein, we adapt a pyrophosphate sensor assay to monitor PBP1b-catalyzed glycosyltransfer and present an improved crystallographic model for inhibition of the PBP1b glycosyltransferase domain by the potent substrate analog moenomycin. We elucidate the structure of a previously disordered region in the glycosyltransferase active site and discuss its implications with regards to peptidoglycan polymerization. Furthermore, we solve the crystal structures of E. coli PBP1b bound to multiple different ß-lactams in the transpeptidase active site and complement these data with gel-based competition assays to provide a detailed structural understanding of its inhibition. Taken together, these biochemical and structural data allow us to propose new insights into inhibition of both enzymatic domains in PBP1b.


Asunto(s)
Escherichia coli K12/química , Proteínas de Escherichia coli/química , Proteínas de Unión a las Penicilinas/química , Peptidoglicano Glicosiltransferasa/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , beta-Lactamas/química , Cristalografía por Rayos X , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano Glicosiltransferasa/genética , Dominios Proteicos , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética
11.
Chembiochem ; 17(23): 2250-2256, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27709766

RESUMEN

Surface plasmon resonance (SPR) is one of the most powerful label-free methods to determine the kinetic parameters of molecular interactions in real time and in a highly sensitive way. Penicillin-binding proteins (PBPs) are peptidoglycan synthesis enzymes present in most bacteria. Established protocols to analyze interactions of PBPs by SPR involve immobilization to an ampicillin-coated chip surface (a ß-lactam antibiotic mimicking its substrate), thereby forming a covalent complex with the PBPs transpeptidase (TP) active site. However, PBP interactions measured with a substrate-bound TP domain potentially affect interactions near the TPase active site. Furthermore, in vivo PBPs are anchored in the inner membrane by an N-terminal transmembrane helix, and hence immobilization at the C-terminal TPase domain gives an orientation contrary to the in vivo situation. We designed a new procedure: immobilization of PBP by copper-free click chemistry at an azide incorporated in the N terminus. In a proof-of-principle study, we immobilized Escherichia coli PBP1B on an SPR chip surface and used this for the analysis of the well-characterized interaction of PBP1B with LpoB. The site-specific incorporation of the azide affords control over protein orientation, thereby resulting in a homogeneous immobilization on the chip surface. This method can be used to study topology-dependent interactions of any (membrane) protein.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas Inmovilizadas/química , Proteínas de Unión a las Penicilinas/química , Peptidoglicano Glicosiltransferasa/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , Resonancia por Plasmón de Superficie , Azidas/química , Azidas/metabolismo , Ciclooctanos/química , Ciclooctanos/metabolismo , Proteínas de Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Proteínas Inmovilizadas/metabolismo , Modelos Moleculares , Estructura Molecular , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Propiedades de Superficie
12.
J Med Chem ; 59(18): 8207-20, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27232275

RESUMEN

The targets of ß-lactam antibiotics are bacterial DD-peptidases that catalyze the final steps of peptidoglycan biosynthesis. Bacterial resistance to ß-lactams is achieved by the production of ß-lactamases, enzymes that catalyze ß-lactam hydrolysis. Structural studies of both of these groups of enzymes, their substrates and of ß-lactams have led to the conclusion that ß-lactamases have evolved from a DD-peptidase ancestor. Thus, the active sites of DD-peptidases and serine ß-lactamases are very similar. Why is it then that the active site of a serine ß-lactamase can catalyze hydrolysis of a ß-lactam while that of a DD-peptidase cannot? In view of the active site similarities, why was it necessary for ß-lactamases to evolve at all? The aim of this review is to examine our current understanding of these issues in terms of the crystal structures of the relevant enzymes that are now available, rounding off the analysis with speculation where necessary.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/enzimología , Infecciones Bacterianas/tratamiento farmacológico , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , beta-Lactamasas/metabolismo , beta-Lactamas/farmacología , Animales , Antibacterianos/metabolismo , Infecciones Bacterianas/microbiología , Dominio Catalítico , Farmacorresistencia Bacteriana , Humanos , Modelos Moleculares , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , beta-Lactamasas/química , beta-Lactamas/metabolismo
13.
Biotechnol Bioeng ; 113(7): 1413-20, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26694096

RESUMEN

We report a novel bacterial screening protocol based on co-expressing the target protein with VanX, an enzyme which mediates Escherichia coli's autolysis and the release of the target protein into the culture medium, thereby facilitating activity measurement and screening from crude medium. This protocol as assessed with 19 Gaussia luciferase (GLuc) expressing colonies, was able to detect bioluminescence wavelength shift as small as 1.5 nm. We demonstrate the performance and versatility of this protocol by applying it to a semi-rational search for GLuc variants with red-shifted bioluminescence. Six GLuc's sites, F113, I114, W143, L144, A149, and F151, were randomly mutated, and for each site, 50 colonies were cultivated in 3 mL samples, from which bioluminescence was measured without purification. We identified two GLuc single mutation red-shifted variants: W143V and L144A. Their red shifted bioluminescence and biophysical/biochemical properties were confirmed using HPLC purified variants. Biotechnol. Bioeng. 2016;113: 1413-1420. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biotecnología/métodos , Luciferasas/metabolismo , Mediciones Luminiscentes/métodos , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Luciferasas/química , Luciferasas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética
14.
J Biol Chem ; 289(52): 35686-94, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25294880

RESUMEN

VanX is a d-alanyl-d-alanine (d-Ala-d-Ala) dipeptidase encoded in the vancomycin-resistance vanA gene cluster. Here we report that strong bacteriolysis occurred when isolated VanX was expressed in Escherichia coli at temperatures lower than 30 °C, which was unexpected because the vanA operon confers vancomycin resistance by protecting the cell wall. Therefore, we monitored cell lysis by measuring sample turbidity with absorbance at 590 nm and VanX expression using SDS-PAGE. No cell lysis was observed when VanX was expressed, even in large quantities, in the cell inclusion bodies at 37 °C, suggesting that a natively folded VanX is required for lysis. In addition, VanX mutants with suppressed dipeptidase activity did not lyse E. coli cells, confirming that bacteriolysis originated from the dipeptidase activity of VanX. We also observed shape changes in E. coli cells undergoing VanX-mediated lysis with optical microscopy and classified these changes into three classes: bursting, deformation, and leaking fluid. Optical microscopic image analysis fully corroborated our interpretation of the turbidity changes in the samples. From a practical perspective, the finding that VanX expressed in isolation induces cell lysis suggests that inhibitors of VanA and VanH that act downstream from VanX could provide a new class of therapeutic chemicals against bacteria expressing the vancomycin-resistance gene cluster.


Asunto(s)
Proteínas Bacterianas/genética , Bacteriólisis/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/ultraestructura , Genes Bacterianos , Familia de Multigenes , Estructura Secundaria de Proteína , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/biosíntesis , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , Resistencia a la Vancomicina/genética
15.
Proc Natl Acad Sci U S A ; 111(22): 8197-202, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24821816

RESUMEN

Bacteria surround their cytoplasmic membrane with an essential, stress-bearing peptidoglycan (PG) layer. Growing and dividing cells expand their PG layer by using membrane-anchored PG synthases, which are guided by dynamic cytoskeletal elements. In Escherichia coli, growth of the mainly single-layered PG is also regulated by outer membrane-anchored lipoproteins. The lipoprotein LpoB is required for the activation of penicillin-binding protein (PBP) 1B, which is a major, bifunctional PG synthase with glycan chain polymerizing (glycosyltransferase) and peptide cross-linking (transpeptidase) activities. Here, we report the structure of LpoB, determined by NMR spectroscopy, showing an N-terminal, 54-aa-long flexible stretch followed by a globular domain with similarity to the N-terminal domain of the prevalent periplasmic protein TolB. We have identified the interaction interface between the globular domain of LpoB and the noncatalytic UvrB domain 2 homolog domain of PBP1B and modeled the complex. Amino acid exchanges within this interface weaken the PBP1B-LpoB interaction, decrease the PBP1B stimulation in vitro, and impair its function in vivo. On the contrary, the N-terminal flexible stretch of LpoB is required to stimulate PBP1B in vivo, but is dispensable in vitro. This supports a model in which LpoB spans the periplasm to interact with PBP1B and stimulate PG synthesis.


Asunto(s)
Apolipoproteínas B/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Apolipoproteínas B/química , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Resonancia Magnética Nuclear Biomolecular , Proteínas de Unión a las Penicilinas/química , Peptidoglicano/biosíntesis , Peptidoglicano Glicosiltransferasa/química , Periplasma/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química
16.
Proc Natl Acad Sci U S A ; 111(16): 5872-7, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24711382

RESUMEN

Vancomycin resistance in Gram-positive bacteria is due to production of cell-wall precursors ending in D-Ala-D-Lac or D-Ala-D-Ser, to which vancomycin exhibits low binding affinities, and to the elimination of the high-affinity precursors ending in D-Ala-D-Ala. Depletion of the susceptible high-affinity precursors is catalyzed by the zinc-dependent D,D-peptidases VanX and VanY acting on dipeptide (D-Ala-D-Ala) or pentapeptide (UDP-MurNac-L-Ala-D-Glu-L-Lys-D-Ala-D-Ala), respectively. Some of the vancomycin resistance operons encode VanXY D,D-carboxypeptidase, which hydrolyzes both di- and pentapeptide. The molecular basis for the diverse specificity of Van D,D-peptidases remains unknown. We present the crystal structures of VanXYC and VanXYG in apo and transition state analog-bound forms and of VanXYC in complex with the D-Ala-D-Ala substrate and D-Ala product. Structural and biochemical analysis identified the molecular determinants of VanXY dual specificity. VanXY residues 110-115 form a mobile cap over the catalytic site, whose flexibility is involved in the switch between di- and pentapeptide hydrolysis. Structure-based alignment of the Van D,D-peptidases showed that VanY enzymes lack this element, which promotes binding of the penta- rather than that of the dipeptide. The structures also highlight the molecular basis for selection of D-Ala-ending precursors over the modified resistance targets. These results illustrate the remarkable adaptability of the D,D-peptidase fold in response to antibiotic pressure via evolution of specific structural elements that confer hydrolytic activity against vancomycin-susceptible peptidoglycan precursors.


Asunto(s)
Evolución Molecular , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , Resistencia a la Vancomicina , Vancomicina/farmacología , Alanina/metabolismo , Sitios de Unión , Análisis Mutacional de ADN , Ligandos , Modelos Moleculares , Mutagénesis/efectos de los fármacos , Mutagénesis/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Vancomicina/química , Resistencia a la Vancomicina/efectos de los fármacos
17.
Int J Mol Sci ; 14(6): 11510-26, 2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23722660

RESUMEN

Molecular Dynamics is a method of choice for membrane simulations and the rising of coarse-grained forcefields has opened the way to longer simulations with reduced calculations times. Here, we present an elastic network, SAHBNET (Surface Accessibility Hydrogen-Bonds elastic NETwork), that will maintain the structure of soluble or membrane proteins based on the hydrogen bonds present in the atomistic structure and the proximity between buried residues. This network is applied on the coarse-grained beads defined by the MARTINI model, and was designed to be more physics-based than a simple elastic network. The SAHBNET model is evaluated against atomistic simulations, and compared with ELNEDYN models. The SAHBNET is then used to simulate two membrane proteins inserted in complex lipid bilayers. These bilayers are formed by self-assembly and the use of a modified version of the GROMACS tool genbox (which is accessible through the gcgs.gembloux.ulg.ac.be website). The results show that SAHBNET keeps the structure close to the atomistic one and is successfully used for the simulation of membrane proteins.


Asunto(s)
Elasticidad , Proteínas de la Membrana/química , Proteínas de la Membrana Bacteriana Externa/química , Calibración , Simulación por Computador , ARN Polimerasas Dirigidas por ADN/química , Proteínas de Escherichia coli/química , Enlace de Hidrógeno , Proteínas de Microfilamentos/química , Modelos Moleculares , Proteínas de Unión a las Penicilinas/química , Peptidoglicano Glicosiltransferasa/química , Estructura Terciaria de Proteína , Rhinovirus/enzimología , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , Solubilidad , Solventes , Propiedades de Superficie , Agua/química
18.
Biochemistry ; 52(15): 2627-37, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23560856

RESUMEN

Bacterial dd-peptidases are the targets of the ß-lactam antibiotics. The sharp increase in bacterial resistance toward these antibiotics in recent years has stimulated the search for non-ß-lactam alternatives. The substrates of dd-peptidases are elements of peptidoglycan from bacterial cell walls. Attempts to base dd-peptidase inhibitor design on peptidoglycan structure, however, have not been particularly successful to date because the specific substrates for most of these enzymes are unknown. It is known, however, that the preferred substrates of low-molecular mass (LMM) class B and C dd-peptidases contain the free N-terminus of the relevant peptidoglycan. Two very similar LMMC enzymes, for example, the Actinomadura R39 dd-peptidase and Bacillus subtilis PBP4a, recognize a d-α-aminopimelyl terminus. The peptidoglycan of B. subtilis in the vegetative stage, however, has the N-terminal d-α-aminopimelyl carboxylic acid amidated. The question is, therefore, whether the dd-peptidases of B. subtilis are separately specific to carboxylate or carboxamide or have dual specificity. This paper describes an investigation of this issue with B. subtilis PBP4a. This enzyme was indeed found to have a dual specificity for peptide substrates, both in the acyl donor and in the acyl acceptor sites. In contrast, the R39 dd-peptidase, from an organism in which the peptidoglycan is not amidated, has a strong preference for a terminal carboxylate. It was also found that acyl acceptors, reacting with acyl-enzyme intermediates, were preferentially d-amino acid amides for PBP4a and the corresponding amino acids for the R39 dd-peptidase. Examination of the relevant crystal structures, aided by molecular modeling, suggested that the expansion of specificity in PBP4a accompanies a change of Arg351 in the R39 enzyme and most LMMC dd-peptidases to histidine in PBP4a and its orthologs in other Bacillus sp. This histidine, in neutral form at pH 7, appeared to be able to favorably interact with both carboxylate and carboxamide termini of substrates, in agreement with the kinetic data. It may still be possible, in specific cases, to combat bacteria with new antibiotics based on particular elements of their peptidoglycan structure.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/metabolismo , Alanina/química , Alanina/metabolismo , Amidas/química , Amidas/metabolismo , Arginina/química , Arginina/metabolismo , Dominio Catalítico , Histidina/química , Histidina/metabolismo , Hidrólisis , Cinética , Conformación Proteica , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Especificidad por Sustrato
19.
Biochemistry ; 52(12): 2128-38, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23484909

RESUMEN

Inhibitors of bacterial DD-peptidases represent potential antibiotics. In the search for alternatives to ß-lactams, we have investigated a series of compounds designed to generate transition state analogue structures upon reaction with DD-peptidases. The compounds contain a combination of a peptidoglycan-mimetic specificity handle and a warhead capable of delivering a tetrahedral anion to the enzyme active site. The latter includes a boronic acid, two alcohols, an aldehyde, and a trifluoroketone. The compounds were tested against two low-molecular mass class C DD-peptidases. As expected from previous observations, the boronic acid was a potent inhibitor, but rather unexpectedly from precedent, the trifluoroketone [D-α-aminopimelyl(1,1,1-trifluoro-3-amino)butan-2-one] was also very effective. Taking into account competing hydration, we found the trifluoroketone was the strongest inhibitor of the Actinomadura R39 DD-peptidase, with a subnanomolar (free ketone) inhibition constant. A crystal structure of the complex between the trifluoroketone and the R39 enzyme showed that a tetrahedral adduct had indeed formed with the active site serine nucleophile. The trifluoroketone moiety, therefore, should be considered along with boronic acids and phosphonates as a warhead that can be incorporated into new and effective DD-peptidase inhibitors and therefore, perhaps, antibiotics.


Asunto(s)
Actinomycetales/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/antagonistas & inhibidores , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , Antibacterianos/química , Antibacterianos/farmacología , Butanonas/química , Butanonas/farmacología , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Modelos Moleculares , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , beta-Lactamas/farmacología
20.
FASEB J ; 26(11): 4468-80, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22835831

RESUMEN

The axotomy-inducible enzyme Nna1 defines a subfamily of M14 metallocarboxypeptidases, and its mutation underlies the Purkinje cell degeneration (pcd) mouse. However, the relationship among its catalytic activity, substrate specificities, and the critical processes of neurodegeneration/axon regeneration is incompletely understood. Here we used a transgenic rescue strategy targeting expression of modified forms of Nna1 to Purkinje cells in pcd mice to determine structure-activity relationships for neuronal survival and in parallel characterized the enzymatic properties of purified recombinant Nna1. The Nna1 subfamily uniquely shares conserved substrate-determining residues with aspartoacylase that, when mutated, cause Canavan disease. Homologous mutations (D1007E and R1078E) inactivate Nna1 in vivo, as does mutation of its catalytic glutamate (E1094A), which implies that metabolism of acidic substrates is essential for neuronal survival. Consistent with reports that Nna1 is a tubulin glutamylase, recombinant Nna1-but not the catalytic mutants-removes glutamate from tubulin. Recombinant Nna1 metabolizes synthetic substrates with 2 or more C-terminal glutamate (but not aspartate) residues (V(max) for 3 glutamates is ∼7-fold higher than 2 glutamates although K(M) is similar). Catalysis is not ATP/GTP dependent, and mutating the ATP/GTP binding site of Nna1 has no effect in vivo. Nna1 is a monomeric enzyme essential for neuronal survival through hydrolysis of polyglutamate-containing substrates.


Asunto(s)
Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Células de Purkinje/fisiología , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Quelantes/farmacología , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos , Ratones Transgénicos , Datos de Secuencia Molecular , Mutación , Neuronas/citología , Neuronas/fisiología , Conformación Proteica , Células de Purkinje/citología , Células de Purkinje/patología , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética , Relación Estructura-Actividad , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA