RESUMEN
Purpose: The purpose of this study was to assess the natural history of the foveal cone mosaic in CNGA3-associated achromatopsia (ACHM). Methods: Thirteen eyes from 10 genetically confirmed patients underwent longitudinal imaging with optical coherence tomography (OCT) and non-confocal split detection adaptive optics scanning light ophthalmoscopy (AOSLO). OCT scans assessed outer nuclear layer (ONL) thickness, foveal ellipsoid zone (EZ) disruption, and foveal hypoplasia. AOSLO images were analyzed to calculate peak foveal cone density (PCD) and mean inter-cell distance (ICD) between cones. Mixed effects models were used to analyze the rate of annual change of PCD and ICD. Results: Mean (±SD) age at visits was 29 ± 10 years, with a follow-up of 2.6 ± 1 years. There was no change in ONL thickness, degree of EZ disruption, or foveal hypoplasia over the follow-up period. We also observed a stable foveal cone mosaic using AOSLO imaging, with no significant change in PCD or ICD. Mean PCD was 15,346 cones/mm² at the mean age of 29 years old (cf. 64,000-324,000 cones/mm² in previously reported healthy controls), with a mean rate of change of -117.79 cones/mm² (0.8%) per year, P = 0.130. Mean ICD at the mean age was 13.82 µm, with a rate of change of 0.17 µm per year, P = 0.83. Conclusions: CNGA3-associated ACHM displays stable foveal cone structure over time with a similar rate of change to CNGB3-associated ACHM (2% decline per year). The stable PCD, small cohort, and large variability within the cohort means significant age associations were not detected.
Asunto(s)
Defectos de la Visión Cromática , Fóvea Central , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Defectos de la Visión Cromática/genética , Defectos de la Visión Cromática/diagnóstico , Defectos de la Visión Cromática/diagnóstico por imagen , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Estudios de Seguimiento , Fóvea Central/patología , Fóvea Central/diagnóstico por imagen , Oftalmoscopía/métodos , Células Fotorreceptoras Retinianas Conos/patología , Tomografía de Coherencia Óptica/métodos , Agudeza VisualRESUMEN
PURPOSE: To ascertain the characteristics of achromatopsia (ACHM) in Japan by analyzing the genetic and phenotypic features of patients with ACHM. METHODS: The medical records of 52 patients from 47 Japanese families who were clinically diagnosed with ACHM were reviewed in this retrospective observational study. RESULTS: Thirty-six causative variants of ACHM were identified in 26 families via whole-exome sequencing: PDE6C (12 families), CNGA3 (10 families), CNGB3 (two families), and GNAT2 (two families). However, none of the 6 causative variants that are known to cause ACHM, or the 275 other genes listed in RetNet, were observed in 19 families. A significant trend toward older age and worsening of ellipsoid zone disruption on optical coherence tomography images was observed (P < 0.01). Progressive ellipsoid zone disruptions were observed in 13 eyes of seven patients during the follow-up visits. These patients harbored one or more variants in PDE6C. CONCLUSION: The ACHM phenotype observed in this study was similar to those observed in previous reports; however, the causative gene variants differed from those in Europe. The low identification ratio of causative genes in whole-exome sequencing suggests the presence of unique hotspots in Japanese patients with ACHM that were not detectable via ordinal whole-exome sequencing.
Asunto(s)
Defectos de la Visión Cromática , Secuenciación del Exoma , Tomografía de Coherencia Óptica , Humanos , Defectos de la Visión Cromática/genética , Defectos de la Visión Cromática/diagnóstico , Masculino , Femenino , Estudios Retrospectivos , Japón/epidemiología , Adulto , Persona de Mediana Edad , Niño , Adolescente , Adulto Joven , Mutación , Linaje , Agudeza Visual , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Fenotipo , Preescolar , Proteínas del Ojo/genética , Anciano , Electrorretinografía , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Análisis Mutacional de ADNRESUMEN
PURPOSE: Achromatopsia (ACHM) is a genetically heterogenous relatively stationary congenital autosomal recessive cone disorder characterized typically by photophobia, low vision, nystagmus, hyperopia, grossly normal retinal appearance, and absent photopic responses by full-field electroretinography. Incomplete forms occur as well. This study investigates the genetic basis of clinically suspected ACHM in the United Arab Emirates. METHODS: Retrospective case series (January 2016-December 2023) of patients with (1) clinically suspected ACHM or (2) mutations in ACHM-associated genes ( CNGA3 , CNGB3 , GNAT2 , PDE6C , PDE6H , AT6 ). RESULTS: Twenty-two clinically suspected patients (19 probands) were identified. Biallelic disease genes and the number of probands were CNGA3 (9), CNGB3 (6), PDE6C (1), GNAT2 (1), RGS9BP (1), and CNNM4 (1). Some mutant alleles were recurrent across different families. Two probands had their diagnoses revised after genetic testing and phenotypic reassessment to RGS9BP -related bradyopsia and CNNM4 -related Jalili syndrome. Three additional cases (making 22 total probands) were identified from ACHM gene mutation review-one each related to PDE6C , to AT6 , and to CNGB3 in concert with CNGA3 (triallelic disease). All three presented with macular discoloration, an atypical finding for classic ACHM. CONCLUSION: CNGA3 was the single most frequent implicated gene. Bradyopsia and Jalili syndrome can resemble incomplete ACHM. Recurrent mutant alleles may represent founder effects. Macular discoloration on presentation can occur in PDE6C -related disease, AT6 -related disease, and triallelic CNGB3 / CNGA3 -related disease. The possibility for triallelic disease exists and requires genetic counseling beyond that of simple autosomal recessive inheritance.
Asunto(s)
Defectos de la Visión Cromática , Electrorretinografía , Mutación , Humanos , Defectos de la Visión Cromática/genética , Defectos de la Visión Cromática/diagnóstico , Defectos de la Visión Cromática/fisiopatología , Estudios Retrospectivos , Masculino , Femenino , Niño , Adolescente , Emiratos Árabes Unidos/epidemiología , Adulto , Adulto Joven , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Preescolar , Análisis Mutacional de ADN , Proteínas del Ojo/genética , Linaje , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Persona de Mediana Edad , Pruebas GenéticasRESUMEN
SIGNIFICANCE: Imposing a time limit on the Farnsworth D15 test may prevent patients from compromising the test. PURPOSE: This study aimed to investigate the effect of test time on the Farnsworth D15 color vision test in unpracticed and practiced subjects and determine an optimal test time. METHODS: Twenty-one subjects (mean/standard deviation age, 33.1/9.3 years) with a range of congenital color vision deficiency participated in the study. Pseudoisochromatic plate screening, Farnsworth D15, and anomaloscope testing were performed for classification purposes. At each of 2 visits, 10 trials of the Farnsworth D15 were performed with a range in test times from 30 seconds to 10 minutes. Between visits, subjects practiced the test. Major crossovers were used as the outcome measure. A repeated-measures analysis of variance compared the scores across trials. Post hoc Dunnett's testing analyzed the pairwise data. RESULTS: Although no significant difference in the mean number of major crossovers was found across the 10 trials for the first visit ( F (9, 180) = 1.30, p=0.24), a significant difference was found for the second visit ( F (9, 180) = 4.77, p<0.001). The range of mean number of major crossovers for the second visit was 1.71 to 5.1, with the 30-second trial resulting in the largest number of major crossovers and the longest trial resulting in the smallest number of major crossovers. Analysis showed that a 2-minute time limit resulted in a Farnsworth D15 outcome that would be expected based on the anomaloscope for a majority of subjects. CONCLUSIONS: In this study, test time was found to affect performance in practiced subjects but not in unpracticed subjects. Based on this study, we recommend enforcing a time limit of 2 minutes to discourage those who try to pass the Farnsworth D15 through practice. Additional measures, such as recording patient behavior, can also be taken.
Asunto(s)
Pruebas de Percepción de Colores , Defectos de la Visión Cromática , Humanos , Defectos de la Visión Cromática/fisiopatología , Defectos de la Visión Cromática/diagnóstico , Adulto , Masculino , Femenino , Factores de Tiempo , Pruebas de Percepción de Colores/métodos , Adulto Joven , Persona de Mediana Edad , Reproducibilidad de los Resultados , Percepción de Color/fisiología , Estudios de Seguimiento , Visión de Colores/fisiologíaRESUMEN
Visual function comprises three principles: light sensation, color sensation, and minimum separable sensation. Although clinical evaluation of light sensation and visual acuity have been remarkably developed through comprehensive application of various methods, the test methods to evaluate color sensation in the clinical field have not reflected these various significant developments after their recommendation at the International Congress of Ophthalmology in 1933. To date, various research methods in color vision have been invented on the basis of clinical evaluation methods, most of which were limited to laboratory investigations and were not applied to the clinical field. In this review, the author focuses on both the currently clinical available evaluation methods and the clinically applicable methods based on the present laboratory research studies.
Asunto(s)
Pruebas de Percepción de Colores , Percepción de Color , Visión de Colores , Humanos , Visión de Colores/fisiología , Pruebas de Percepción de Colores/métodos , Percepción de Color/fisiología , Agudeza Visual/fisiología , Defectos de la Visión Cromática/diagnóstico , Defectos de la Visión Cromática/fisiopatologíaRESUMEN
PURPOSE: To evaluate whether colour vision normal (CVN) adults pass two Fletcher-Evans (CAM) lantern tests and to investigate the impact of imposed blur on Ishihara, CAM lantern and computerised colour discrimination test (colour assessment and diagnosis test [CAD] and Cambridge colour test [CCT]) results. METHODS: In a pilot experiment, 20 (16 CVN and 4 colour vision deficient [CVD]) participants with normal VA were tested with the CAM lantern. In the main experiment, the impact of imposed dioptric blur (up to +8.00 D) on visual acuity and the Ishihara test, CAM lantern, CAD and CCT was assessed for 15 CVN participants. RESULTS: CVN participants can fail the CAM lantern, with specificity of 81.25% (aviation mode) and 75% (clinical mode), despite following the test requirements of participants having at least 0.18 logMAR (6/9) in the better eye. With blur, test accuracy was affected. As expected, significant detrimental effects of blur on test results were found for logMAR VA and CAM lantern (aviation) with +1.00 D or higher. Ishihara, CAD and CCT results were not detrimentally affected until +8.00 D. Yellow-blue discrimination was more affected by blur for the CAD than the CCT, which was not explained by the different colour spaces used or vectors tested. CONCLUSION: False-positive findings on lantern colour vision tests with small apertures are likely to be increased in patients with blur due to uncorrected refractive error or ocular and visual pathway disease. Other colour vision tests with larger stimuli are more robust to blur.
Asunto(s)
Pruebas de Percepción de Colores , Defectos de la Visión Cromática , Visión de Colores , Agudeza Visual , Humanos , Pruebas de Percepción de Colores/métodos , Adulto , Masculino , Femenino , Agudeza Visual/fisiología , Defectos de la Visión Cromática/diagnóstico , Defectos de la Visión Cromática/fisiopatología , Visión de Colores/fisiología , Adulto Joven , Proyectos Piloto , Percepción de Color/fisiología , Persona de Mediana Edad , Reproducibilidad de los ResultadosRESUMEN
PURPOSE: To evaluate mesopic and photopic contrast sensitivity in patients with congenital red-green color vision deficiency regarding with and without glare conditions and to compare these findings with age- and gender-matched healthy controls with normal color vision. METHODS: Patients with congenital red-green color vision deficiency and age- and gender-matched healthy controls were included in this cross-sectional comparative study. Contrast sensitivity measurements were taken from all subjects in 4 different conditions; binocular mesopic-without glare, mesopic-with glare, photopic-without glare, photopic-with glare, and the results were compared. RESULTS: Twenty one patients with color vision deficiency (13 deuteranopic, 8 protanopic) and 22 age- and gender-matched healthy controls were included in the study. The mean age was 35.2 ± 13.5 years in the protan group, 30.6 ± 7.7 years in the deutan group, 32.0 ± 8.8 years in the control group, and there was no significant difference in age between the groups (P > 0.05). The mean mesopic and photopic contrast sensitivity values of the groups at all spatial frequencies (1.5, 3, 6, 12, 18 cpd) were not statistically significant when evaluated by the multifactor repeated measures test of ANOVA to evaluate the effect of light conditions (with and without glare) (P > .05). CONCLUSION: Mesopic and photopic contrast sensitivity values of patients with congenital red-green color vision deficiency were similar to healthy controls regarding with and without glare conditions.
Asunto(s)
Defectos de la Visión Cromática , Visión de Colores , Sensibilidad de Contraste , Humanos , Sensibilidad de Contraste/fisiología , Defectos de la Visión Cromática/fisiopatología , Defectos de la Visión Cromática/diagnóstico , Femenino , Masculino , Estudios Transversales , Adulto , Visión de Colores/fisiología , Adulto Joven , Persona de Mediana Edad , Visión Mesópica/fisiología , Deslumbramiento , Agudeza Visual , AdolescenteRESUMEN
BACKGROUND/AIM: Congenital color vision deficiency (CCVD) is an eye disease characterized by abnormalities in the cone cells in the photoreceptor layer. Visual evoked potentials (VEPs) are electrophysiological tests that physiologically examine the optic nerve, other visual pathways, and the visual cortex. The aim of this research was to determine whether there are VEP abnormalities in CCVD patients. METHODS: Patients with CCVD and healthy individuals were included in this prospective case-control study. Participants with eye disease or neurodegenerative disease were excluded from the study. Pattern reversal VEP (PVEP), flash VEP (FVEP), and optical coherence tomography were performed on all participants. RESULTS: Twenty healthy individuals (15 male) and 21 patients with CCVD (18 male) were included in the study. The mean ages of healthy individuals and patients with CCVD were 29.8 ± 9.6 and 31.1 ± 10.9 years (p = 0.804). Retinal nerve fiber layer thickness and central macular thickness values did not differ between the two groups. In PVEP, Right P100, Left N75, P100, N135 values were delayed in CCVD patients compared to healthy individuals (p = 0.001, p = 0.032, p = 0.003, p = 0.032). At least one PVEP and FVEP abnormality was present in nine (42.9%) and six (28.6%) of the patients, respectively. PVEP or FVEP abnormalities were found in 13 (61.9%) of the patients. CONCLUSION: This study indicated that there may be PVEP and FVEP abnormalities in patients with CCVD.
Asunto(s)
Defectos de la Visión Cromática , Potenciales Evocados Visuales , Tomografía de Coherencia Óptica , Humanos , Potenciales Evocados Visuales/fisiología , Masculino , Femenino , Defectos de la Visión Cromática/fisiopatología , Defectos de la Visión Cromática/diagnóstico , Defectos de la Visión Cromática/congénito , Estudios Prospectivos , Adulto , Tomografía de Coherencia Óptica/métodos , Estudios de Casos y Controles , Adulto Joven , Persona de Mediana Edad , Adolescente , Agudeza Visual/fisiologíaRESUMEN
PURPOSE: To describe the phenotype of Danish patients with genetically verified achromatopsia (ACHM) with special focus on signs of progression on structural or functional parameters, and possible genotype-phenotype correlations. METHODS: Forty-eight patients were identified, with disease-causing variants in five different genes: CNGA3, CNGB3, GNAT2, PDE6C and PDE6H. Longitudinal evaluation was possible for 11 patients and 27 patients participated in a renewed in-depth phenotyping consisting of visual acuity assessment, optical coherence tomography (OCT), fundus autofluorescence, colour vision evaluation, contrast sensitivity, mesopic microperimetry and full-field electroretinography. Foveal morphology was evaluated based on OCT images for all 48 patients using a grading system based on the integrity of the hyperreflective photoreceptor band, the inner segment ellipsoid zone (ISe). Signs of progression were evaluated based on longitudinal data and correlation with age. RESULTS: We found a statistically significant positive correlation between OCT grade and age (Spearman ρ = 0.62, p < 0.0001) and we observed changes in the foveal morphology in 2 of 11 patients with ≥5 years of follow-up. We did not find any convincing correlation between age and functional parameters (visual acuity, retinal sensitivity and contrast sensitivity) nor did we find correlation between structural and functional parameters, or any clear genotype-phenotype correlation. CONCLUSIONS: Some patients with ACHM demonstrate signs of progressive foveal changes in OCT characteristics with increasing age. This is relevant in terms of possible new treatments. However, functional characteristics, such as visual acuity, remained stable despite changing foveal structure. Thus, seen from a patient perspective, ACHM can still be considered a non-progressive condition.
Asunto(s)
Defectos de la Visión Cromática , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Electrorretinografía , Fenotipo , Tomografía de Coherencia Óptica , Agudeza Visual , Humanos , Defectos de la Visión Cromática/genética , Defectos de la Visión Cromática/fisiopatología , Defectos de la Visión Cromática/diagnóstico , Masculino , Tomografía de Coherencia Óptica/métodos , Femenino , Agudeza Visual/fisiología , Adulto , Dinamarca , Adolescente , Adulto Joven , Niño , Persona de Mediana Edad , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Mutación , Pruebas del Campo Visual , Sensibilidad de Contraste/fisiología , Estudios de Seguimiento , Angiografía con Fluoresceína/métodos , Proteínas del Ojo/genética , Guanilato Ciclasa/genética , Campos Visuales/fisiología , Estudios de Asociación Genética , Análisis Mutacional de ADN , ADN/genética , Visión de Colores/fisiologíaRESUMEN
BACKGROUND: ATF6-associated Achromatopsia (ACHM) is a rare autosomal recessive disorder characterized by reduction of visual acuity, photophobia, nystagmus, and poor color vision. METHODS: Detailed ophthalmological examinations were performed in a Chinese patient with ACHM. Whole exome sequencing and Sanger sequencing were performed to detect the disease-causing gene in the patient. RESULTS: A 6-year-old girl presented photophobia, low vision and reduced color discrimination. Small yellow lesion in the macula of both eyes was observed. FAF demonstrated hypofluorescence in the macular fovea. OCT images revealed interruption of ellipsoid and interdigitation zone in the foveal area and a loss of the foveal pit. ERG showed relatively normal rod responses and unrecordable cone responses. Sequencing result identified a novel splicing variant c.354 + 6T>C in the ATF6 gene (NM_007348.4). CONCLUSIONS: We reported detailed clinical features and genetic analysis of a new Chinese ATF6-associated patient with ACHM.
Asunto(s)
Defectos de la Visión Cromática , Niño , Femenino , Humanos , Factor de Transcripción Activador 6/genética , China , Defectos de la Visión Cromática/diagnóstico , Fotofobia/diagnóstico , Fotofobia/patología , Células Fotorreceptoras Retinianas Conos/patología , Tomografía de Coherencia Óptica/métodosRESUMEN
OBJECTIVES: Visual colour differentiation in clinical research requires colour-competent (CC) participants. The Ishihara colour charts (ICC) have established themselves as the standard for CC screening of colour vision deficiencies (CVD). However, the extent to which the results can be compared with a presentation of the colour charts on a smartphone display (SD) is currently unknown. The aim of this in vitro study was to determine the sensitivity and specificity of the Ishihara colour deficiency test depending on the presentation mode. METHODS: Dental students (female n = 28; male n = 10; mean age, 23.5 ± 2.65 years; median age, 23.0 ± 13.0 years) evaluated 25 Ishihara test plates on their SD (n = 38) and/or a calibrated monitor (HP monitor, 22-inch; n = 18). The median size of the SD was 6.0 inches. Datasets with more than 2 failed charts were scored. RESULTS: When the Ishihara test charts were presented on a PC screen, the sensitivity was 94.4% and the specificity was 82.4% (0 mistakes: n = 14, <3 failures: n = 3, 14 false answers: n = 1). On the SD, a sensitivity of 96.0% and a specificity of 94.7% were calculated (89.5% were correct; 4 participants [10.5%] made <3 errors; and 1 participant made 21 errors). No significant difference between display modi (PC vs SD) was evaluated (P > .05). CONCLUSIONS: The presentation of ICC on an SD is useful and can be used for the investigation of a possible CVD of large groups. Comparable results to data projection can be achieved with a high degree of certainty. For CVD screening of larger groups (eg, students in preclinical training as part of CC training), the presentation of ICC on the SD can be used. This research was able to demonstrate that the sensitivity and specificity of the usual presentation method (Ishihara's booklet or data projection) is comparable.
Asunto(s)
Sensibilidad y Especificidad , Humanos , Femenino , Masculino , Adulto Joven , Defectos de la Visión Cromática/diagnóstico , Pruebas de Percepción de Colores/métodos , Teléfono Inteligente , Adulto , Estudiantes de OdontologíaRESUMEN
SIGNIFICANCE: The Waggoner PIP24 is a pseudoisochromatic test with a pattern similar to the Ishihara test. This study determined that the W-PIP24 can be used clinically to yield screening results (or sensitivity and specificity) comparable with the Ishihara. PURPOSE: This study aimed to determine whether the W-PIP24 is equivalent to the Ishihara 38 edition pseudoisochromatic test in detecting red-green color vision defects. Also, the performance of each plate of the W-PIP24 in detecting the color vision defects relative to the Ishihara test was determined. METHODS: Sixty-three individuals with congenital red-green color vision defects and 57 with normal trichromacy were recruited. Participants were tested with both the Ishihara and W-PIP24. The first-order agreement coefficients were calculated for the Ishihara and W-PIP24. The results were also analyzed using specificity, sensitivity, efficiency, and predictive pass and fail values. RESULTS: The agreement between the W-PIP24 and Ishihara test using the recommended criterion of using all plates was perfect. The sensitivity, specificity, predictive pass, and predictive fail were 1.00 (95% confidence interval, 0.94 to 1.00). CONCLUSIONS: This study showed that the W-PIP24 using a failure criterion of three or more errors on screening plates 1 to 15 is equivalent to the Ishihara test while screening for red-green color vision deficiency using a failure criterion of three or more errors on screening plates 1 to 17 of the Ishihara 38 edition.
Asunto(s)
Defectos de la Visión Cromática , Visión de Colores , Humanos , Defectos de la Visión Cromática/diagnóstico , Defectos de la Visión Cromática/congénito , Pruebas de Percepción de Colores/métodos , Sensibilidad y Especificidad , Percepción de ColorRESUMEN
Purpose: This study aimed to evaluate color perception (CP) changes on Ishihara plates following red-tinted contact lenses in subjects with low vision (LV) from retinal diseases. Methods: A cross-sectional observational study without control involved 84 subjects, aged 20-70 years, having LV from retinal diseases to examine CP changes following wearing red-tinted contact lenses. The subjects viewed Ishihara plates, with each eye separately, before and after wearing red lenses in two categories: "plates 1-21" and "plates 22-25". Change in CP with the use of a red lens was the primary outcome measure. Results: There was a significant increase in the number of plates read in both categories, that is, plates 1-21 (P = 0.002) and plates 22-25 (P = 0.032), the latter being used to diagnose the red-green defects. Although 70 eyes could read both digits on plates 22-25 and appeared to have normal color vision (CV) at baseline, this number rose to 99 eyes following the use of red-tinted lenses. There was a significant change in the type of CP (red defect/green defect/normal/undefined defect) (P = 0.022) with the application of a red-tinted lens. Conclusions: The use of red-tinted lenses caused a significant increase in the number of plates read, increased the number of subjects who appeared normal on plates 22-25, and significantly changed CP of LV subjects. These lenses can be a valuable aid for LV subjects. Although Ishihara plates can diagnose only red-green defects, further studies on CV testing techniques that detect both red-green and blue-yellow CV defects are recommended.
Asunto(s)
Defectos de la Visión Cromática , Visión de Colores , Enfermedades de la Retina , Baja Visión , Humanos , Percepción de Color , Baja Visión/diagnóstico , Baja Visión/etiología , Estudios Transversales , Pruebas de Visión , Defectos de la Visión Cromática/diagnóstico , Defectos de la Visión Cromática/etiología , Enfermedades de la Retina/etiología , Enfermedades de la Retina/complicacionesRESUMEN
Achromatopsia, inherited in an autosomal recessive manner, is a rare condition featured by dysfunction of cone photoreceptors responsible for high-acuity vision in daylight. To date, its pathogenesis and genetic mechanism are still not well defined due to the rarity of cases. In this study, the authors describe a patient with achromatopsia who was diagnosed based on the combination of whole exome sequencing, ocular examination, fundus photography, and fundus fluorescein angiography. A 1-year-old girl presented due to absence of the foveal reflex, severe photophobia, and pigment mottling. Fundus photography and fundus fluorescein angiography were performed on admission. Blood samples were extracted from the proband and her parents. Whole exome sequencing detected two ATF6 variants (c.533C>A and c.82+1G>T), which were confirmed through Sanger sequencing. According to the American College of Medical Genetics guidelines, both c.533C>A and c.82+1G>T variants in ATF6 were predicted as pathogenic mutations (PVS1, PM2, PM3). The patient was diagnosed as having achromatopsia with pathogenicity of ATF6 variants (c.533C>A and c.82+1G>T). [J Pediatr Ophthalmol Strabismus. 2023;60(5):e65-e69.].
Asunto(s)
Defectos de la Visión Cromática , Femenino , Humanos , Lactante , Defectos de la Visión Cromática/diagnóstico , Defectos de la Visión Cromática/genética , Secuenciación del Exoma , Mutación , Células Fotorreceptoras Retinianas Conos/patología , Linaje , Factor de Transcripción Activador 6/genéticaRESUMEN
PURPOSE: CNGA3 encoding the main subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors is one of the major disease-associated genes for achromatopsia. Most CNGA3 variants are missense variants with the majority being functionally uncharacterized and therefore hampering genetic diagnosis. In light of potential gene therapy, objective variant pathogenicity assessment is essential. METHODS: We established a medium-throughput aequorin-based luminescence bioassay allowing mutant CNGA3 channel function assessment via quantification of CNGA3 channel-mediated calcium influx in a cell culture system, thereby enabling American College of Medical Genetics and Genomics/Association for Molecular Pathology-based variant re-classification. RESULTS: We provide functional read-out obtained for 150 yet uncharacterized CNGA3 missense substitutions of which 55 were previously categorized as variants of uncertain significance (VUS) identifying 25 as functionally normal and 125 as functionally abnormal. These data enabled the American College of Medical Genetics and Genomics/ Association for Molecular Pathology-based variant re-classification of 52/55 VUS as either benign, likely benign, or likely pathogenic reaching a VUS re-classification rate of 94.5%. CONCLUSION: Our aequorin-based bioassay allows functionally ensured clinical variant interpretation for 150 CNGA3 missense variants enabling and supporting VUS re-classification and assuring molecular diagnosis to patients affected by CNGA3-associated achromatopsia, hereby identifying patients eligible for future gene therapy trials on this disease.
Asunto(s)
Defectos de la Visión Cromática , Humanos , Defectos de la Visión Cromática/diagnóstico , Defectos de la Visión Cromática/genética , Defectos de la Visión Cromática/patología , Aequorina/genética , Células Fotorreceptoras Retinianas Conos/patología , Mutación Missense/genética , Genómica , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genéticaRESUMEN
Colour vision deficiencies (CVDs) indicate potential genetic variations and can be important biomarkers of acquired impairment in many neuro-ophthalmic diseases. However, CVDs are typically measured with tests which possess high sensitivity for detecting the presence of a CVD but do not quantify its type or severity. In this study, we introduce Foraging Interactive D-prime (FInD), a novel computer-based, generalisable, rapid, self-administered vision assessment tool and apply it to colour vision testing. This signal detection theory-based adaptive paradigm computed test stimulus intensity from d-prime analysis. Stimuli were chromatic Gaussian blobs in dynamic luminance noise, and participants clicked on cells that contained chromatic blobs (detection) or blob pairs of differing colours (discrimination). Sensitivity and repeatability of FInD colour tasks were compared against the Hardy-Rand-Rittler and the Farnsworth-Munsell 100 hue tests in 19 colour-normal and 18 inherited colour-atypical, age-matched observers. Rayleigh colour match was also completed. Detection and discrimination thresholds were higher for atypical than for typical observers, with selective threshold elevations corresponding to unique CVD types. Classifications of CVD type and severity via unsupervised machine learning confirmed functional subtypes. FInD tasks reliably detect inherited CVDs, and may serve as valuable tools in basic and clinical colour vision science.
Asunto(s)
Enfermedades Cardiovasculares , Defectos de la Visión Cromática , Visión de Colores , Humanos , Defectos de la Visión Cromática/diagnóstico , Pruebas de Visión , Aprendizaje Automático , Percepción de ColorRESUMEN
Achromatopsia or rod monochromatism is a congenital autosomal recessive retinal dystrophy which leads to dysfunctional cones, with decreased visual acuity, extremely limited color vision, nystagmus and photophobia. Due to the initially normally appearing ocular morphology, the diagnosis is often delayed. With imaging procedures, e.g., fluorescence-autofluorescence (FAF) and optical coherence tomography (OCT), different morphological forms of achromatopsia can be discriminated that do not seem to have a differential effect on visual function. Crucial is the provision of specific edge filters. Mutations in six genes are known to cause achromatopsia. For the two most frequent genes, CNGA3 and CNGB3, gene addition therapies are currently being tested. Such future approaches should be applied before the manifestation of sensory-related amblyopia in the visual cortex. Accordingly, state of the art management of achromatopsia should provide a diagnosis in early childhood including genotyping.
Asunto(s)
Defectos de la Visión Cromática , Preescolar , Humanos , Defectos de la Visión Cromática/diagnóstico , Calidad de Vida , Encéfalo , Células Fotorreceptoras Retinianas ConosRESUMEN
PURPOSE: Biallelic mutations in the CEP290 gene cause early onset retinal dystrophy or syndromic disease such as Senior-Loken or Joubert syndrome. Here, we present an unusual non-syndromic case of a juvenile retinal dystrophy caused by biallelic CEP290 mutations imitating initially the phenotype of achromatopsia or slowly progressing cone dystrophy. METHODS: We present 13 years of follow-up of a female patient who presented first with symptoms and findings typical for achromatopsia. The patient underwent functional and morphologic examinations, including fundus autofluorescence imaging, spectral-domain optical coherence tomography, electroretinography, color vision and visual field testing. RESULTS: Diagnostic genetic testing via whole genome sequencing and virtual inherited retinal disease gene panel evaluation finally identified two compound heterozygous variants c.4452_4455del;p.(Lys1484Asnfs*4) and c.2414T > C;p.(Leu805Pro) in the CEP290 gene. CONCLUSIONS: CEP290 mutation causes a wide variety of clinical phenotypes. The presented case shows a phenotype resembling achromatopsia or early onset slowly progressing cone dystrophy.
Asunto(s)
Defectos de la Visión Cromática , Distrofia del Cono , Distrofias Retinianas , Humanos , Femenino , Distrofia del Cono/diagnóstico , Distrofia del Cono/genética , Defectos de la Visión Cromática/diagnóstico , Defectos de la Visión Cromática/genética , Electrorretinografía , Mutación , Fenotipo , Tomografía de Coherencia ÓpticaRESUMEN
Purpose: To quantify visual performance of patients with achromatopsia at various contrast and luminance combinations typical for daily living conditions, in comparison to controls, and to measure beneficial effects of short-wavelength cutoff filter glasses used by patients with achromatopsia to reduce glare sensation. Methods: Best-corrected visual acuity (BCVA) was tested with Landolt rings using an automated device (VA-CAL test). The visual acuity space was assessed for each participant with and without filter glasses (transmission >550 nm) at 46 contrast-luminance combinations (18%-95%; 0-10,000 cd/m2). The BCVA differences between both conditions were calculated for each combination as absolute values and relative to individual standard BCVA. Results: Fourteen achromats (mean ± SD: 37.9 ± 17.6 years) and 14 normally sighted controls (mean ± SD: 25.2 ± 2.8 years) were included in the study. Without filter glasses, achromats' BCVA was best at 30 cd/m2 (mean ± SEM: 0.76 ± 0.046 logarithm of the minimum angle of resolution [logMAR], contrast = 89%) and worst at 10,000 cd/m2 (mean ± SEM: 1.41 ± 0.08 logMAR, contrast = 18%), a deterioration up to 0.6 logMAR due to increased luminance and decreased contrast. Filter glasses improved achromats' BCVA for almost all luminances by about 0.2 logMAR but lowered controls' BCVA by about 0.1 logMAR. Conclusions: The VA-CAL test provides numerical proof that short-wavelength cutoff filter glasses can help patients with achromatopsia in everyday life, avoiding the common situation of severe visual impairment at certain daily object contrasts and ambient luminances. Translational Relevance: The VA-CAL test discovers losses of spatial resolution in the visual acuity space not seen in standardized BCVA assessment. Filter glasses improve the patients' daily visual performance, rendering them a strongly recommended visual aid in achromatopsia.