Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 643
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39000564

RESUMEN

Alzheimer's disease (AD) and Frontotemporal lobar degeneration (FTLD) represent the most common forms of neurodegenerative dementias with a highly phenotypic variability. Herein, we investigated the role of genetic variants related to the immune system and inflammation as genetic modulators in AD and related dementias. In patients with sporadic AD/FTLD (n = 300) and GRN/C9orf72 mutation carriers (n = 80), we performed a targeted sequencing of 50 genes belonging to the immune system and inflammation, selected based on their high expression in brain regions and low tolerance to genetic variation. The linear regression analyses revealed two genetic variants: (i) the rs1049296 in the transferrin (TF) gene, shown to be significantly associated with age at onset in the sporadic AD group, anticipating the disease onset of 4 years for each SNP allele with respect to the wild-type allele, and (ii) the rs7550295 in the calsyntenin-1 (CLSTN1) gene, which was significantly associated with age at onset in the C9orf72 group, delaying the disease onset of 17 years in patients carrying the SNP allele. In conclusion, our data support the role of genetic variants in iron metabolism (TF) and in the modulation of the calcium signalling/axonal anterograde transport of vesicles (CLSTN1) as genetic modulators in AD and FTLD due to C9orf72 expansions.


Asunto(s)
Edad de Inicio , Enfermedad de Alzheimer , Proteína C9orf72 , Degeneración Lobar Frontotemporal , Humanos , Enfermedad de Alzheimer/genética , Proteína C9orf72/genética , Degeneración Lobar Frontotemporal/genética , Femenino , Masculino , Anciano , Persona de Mediana Edad , Expansión de las Repeticiones de ADN/genética , Anciano de 80 o más Años , Polimorfismo de Nucleótido Simple , Transferrina/genética , Transferrina/metabolismo , Predisposición Genética a la Enfermedad , Variación Genética
2.
Acta Neuropathol ; 147(1): 104, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896345

RESUMEN

TAR DNA-binding protein 43 (TDP-43) is an RNA binding protein found within ribonucleoprotein granules tethered to lysosomes via annexin A11. TDP-43 protein forms inclusions in many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) and limbic predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC). Annexin A11 is also known to form aggregates in ALS cases with pathogenic variants in ANXA11. Annexin A11 aggregation has not been described in sporadic ALS, FTLD-TDP or LATE-NC cases. To explore the relationship between TDP-43 and annexin A11, genetic analysis of 822 autopsy cases was performed to identify rare ANXA11 variants. In addition, an immunohistochemical study of 368 autopsy cases was performed to identify annexin A11 aggregates. Insoluble annexin A11 aggregates which colocalize with TDP-43 inclusions were present in all FTLD-TDP Type C cases. Annexin A11 inclusions were also seen in a small proportion (3-6%) of sporadic and genetic forms of FTLD-TDP types A and B, ALS, and LATE-NC. In addition, we confirm the comingling of annexin A11 and TDP-43 aggregates in an ALS case with the pathogenic ANXA11 p.G38R variant. Finally, we found abundant annexin A11 inclusions as the primary pathologic finding in a case of progressive supranuclear palsy-like frontotemporal dementia with prominent striatal vacuolization due to a novel variant, ANXA11 p.P75S. By immunoblot, FTLD-TDP with annexinopathy and ANXA11 variant cases show accumulation of insoluble ANXA11 including a truncated fragment. These results indicate that annexin A11 forms a diverse and heterogeneous range of aggregates in both sporadic and genetic forms of TDP-43 proteinopathies. In addition, the finding of a primary vacuolar annexinopathy due to ANXA11 p.P75S suggests that annexin A11 aggregation is sufficient to cause neurodegeneration.


Asunto(s)
Anexinas , Proteínas de Unión al ADN , Degeneración Lobar Frontotemporal , Humanos , Anciano , Anexinas/genética , Anexinas/metabolismo , Femenino , Masculino , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/patología , Degeneración Lobar Frontotemporal/metabolismo , Persona de Mediana Edad , Anciano de 80 o más Años , Proteinopatías TDP-43/patología , Proteinopatías TDP-43/genética , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/metabolismo , Cuerpos de Inclusión/patología , Cuerpos de Inclusión/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Agregación Patológica de Proteínas/patología , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo
3.
J Alzheimers Dis ; 99(2): 577-593, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38701145

RESUMEN

Background: Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) account for the vast majority of neurodegenerative dementias. AD and FTLD have different clinical phenotypes with a genetic overlap between them and other dementias. Objective: This study aimed to identify the genetic spectrum of sporadic AD and FTLD in the Chinese population. Methods: A total of 74 sporadic AD and 29 sporadic FTLD participants were recruited. All participants underwent whole-exome sequencing (WES) and testing for a hexanucleotide expansion in C9orf72 was additionally performed for participants with negative WES results. Results: Four known pathogenic or likely pathogenic variants, including PSEN1 (p.G206D), MAPT (p.R5H), LRRK2 (p.W1434*), and CFAP43 (p.C934*), were identified in AD participants, and 1 novel pathogenic variant of ANXA11 (p.D40G) and two known likely pathogenic variants of MAPT (p.D177V) and TARDBP (p.I383V) were identified in FTLD participants. Twenty-four variants of uncertain significance as well as rare variants in risk genes for dementia, such as ABCA7, SORL1, TRPM7, NOS3, MPO, and DCTN1, were also found. Interestingly, several variants in participants with semantic variant primary progressive aphasia were detected. However, no participants with C9orf72 gene variants were found in the FTLD cohort. Conclusions: There was a high frequency of genetic variants in Chinese participants with sporadic AD and FTLD and a complex genetic overlap between these two types of dementia and other neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Pueblo Asiatico , Degeneración Lobar Frontotemporal , Pruebas Genéticas , Humanos , Masculino , Femenino , Enfermedad de Alzheimer/genética , Degeneración Lobar Frontotemporal/genética , Anciano , Pruebas Genéticas/métodos , Pueblo Asiatico/genética , Persona de Mediana Edad , Secuenciación del Exoma , China/epidemiología , Proteína C9orf72/genética , Anciano de 80 o más Años , Predisposición Genética a la Enfermedad/genética , Pueblos del Este de Asia
4.
Acta Neuropathol ; 147(1): 73, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641715

RESUMEN

The most prominent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a repeat expansion in the gene C9orf72. Importantly, the transcriptomic consequences of the C9orf72 repeat expansion remain largely unclear. Here, we used short-read RNA sequencing (RNAseq) to profile the cerebellar transcriptome, detecting alterations in patients with a C9orf72 repeat expansion. We focused on the cerebellum, since key C9orf72-related pathologies are abundant in this neuroanatomical region, yet TDP-43 pathology and neuronal loss are minimal. Consistent with previous work, we showed a reduction in the expression of the C9orf72 gene and an elevation in homeobox genes, when comparing patients with the expansion to both patients without the C9orf72 repeat expansion and control subjects. Interestingly, we identified more than 1000 alternative splicing events, including 4 in genes previously associated with ALS and/or FTLD. We also found an increase of cryptic splicing in C9orf72 patients compared to patients without the expansion and controls. Furthermore, we demonstrated that the expression level of select RNA-binding proteins is associated with cryptic splice junction inclusion. Overall, this study explores the presence of widespread transcriptomic changes in the cerebellum, a region not confounded by severe neurodegeneration, in post-mortem tissue from C9orf72 patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Cerebelo , Degeneración Lobar Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Cerebelo/patología , Expansión de las Repeticiones de ADN/genética , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Perfilación de la Expresión Génica , Transcriptoma
5.
Acta Neuropathol ; 147(1): 62, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526799

RESUMEN

TMEM106B, a gene encoding a lysosome membrane protein, is tightly associated with brain aging, hypomyelinating leukodystrophy, and multiple neurodegenerative diseases, including frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Recently, TMEM106B polymorphisms have been associated with tauopathy in chronic traumatic encephalopathy (CTE) and FTLD-TDP patients. However, how TMEM106B influences Tau pathology and its associated neurodegeneration, is unclear. Here we show that loss of TMEM106B enhances the accumulation of pathological Tau, especially in the neuronal soma in the hippocampus, resulting in severe neuronal loss in the PS19 Tau transgenic mice. Moreover, Tmem106b-/- PS19 mice develop significantly increased abnormalities in the neuronal cytoskeleton, autophagy-lysosome activities, as well as glial activation, compared with PS19 and Tmem106b-/- mice. Together, our findings demonstrate that loss of TMEM106B drastically exacerbates Tau pathology and its associated disease phenotypes, and provide new insights into the roles of TMEM106B in neurodegenerative diseases.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Animales , Humanos , Ratones , Demencia Frontotemporal/genética , Degeneración Lobar Frontotemporal/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas tau/genética
6.
Alzheimers Dement ; 20(4): 2886-2893, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38456576

RESUMEN

INTRODUCTION: Federal policies and guidelines have expanded the return of individual results to participants and expectations for data sharing between investigators and through repositories. Here, we report investigators' and study participants' views and experiences with data stewardship practices within frontotemporal lobal degeneration (FTLD) research, which reveal unique ethical challenges. METHODS: Semi-structured interviews with (1) investigators conducting FTLD research that includes genetic data collection and/or analysis and (2) participants enrolled in a single site longitudinal FTLD study. RESULTS: Analysis of the interviews identified three meta themes: perspectives on data sharing, experiences with enrollment and participation, and data management and security as mechanisms for participant protections. DISCUSSION: This study identified a set of preliminary gaps and needs regarding data stewardship within FTLD research. The results offer initial insights on ethical challenges to data stewardship aimed at informing future guidelines and policies.


Asunto(s)
Degeneración Lobar Frontotemporal , Humanos , Degeneración Lobar Frontotemporal/genética , Atrofia , Investigadores
7.
Neurochem Int ; 175: 105719, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452814

RESUMEN

Cortical synaptic loss has emerged as an early abnormality in Alzheimer's disease (AD) with a strong relationship to cognitive performance. However, the status of synapses in frontotemporal lobar degeneration (FTLD) has received meager experimental attention. The purpose of this study was to investigate changes in cortical synaptic proteins in FTLD with tar DNA binding protein-43 (TDP-43) proteinopathy. A second aim was to study phagocytosis of synaptic proteins by microglia as a surrogate for synaptic pruning. Western blot analysis in frozen tissue from the middle frontal gyrus revealed decreased levels of the presynaptic protein synaptophysin, but slightly increased levels of the postsynaptic density protein 95 (PSD95) in FTLD-TDP. Levels of the dendritic spine protein spinophilin displayed the largest decrease. Double immunofluorescent staining visualized aggregate or punctate synaptic protein immunoreactivity in microglia. Overall, the proportion of microglia containing synaptic proteins was larger in FTLD-TDP when compared with normal controls. The increase in PSD95 levels may represent reactive upregulation of this protein, as suggested in AD. While greater numbers of microglia containing synaptic proteins is consistent with loss of synapses in FTLD-TDP, it may also be an indication of abnormal synaptic pruning by microglia.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Proteinopatías TDP-43 , Humanos , Microglía/metabolismo , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Proteinopatías TDP-43/genética , Lóbulo Frontal/metabolismo
8.
Cell ; 187(8): 1971-1989.e16, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38521060

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) share many clinical, pathological, and genetic features, but a detailed understanding of their associated transcriptional alterations across vulnerable cortical cell types is lacking. Here, we report a high-resolution, comparative single-cell molecular atlas of the human primary motor and dorsolateral prefrontal cortices and their transcriptional alterations in sporadic and familial ALS and FTLD. By integrating transcriptional and genetic information, we identify known and previously unidentified vulnerable populations in cortical layer 5 and show that ALS- and FTLD-implicated motor and spindle neurons possess a virtually indistinguishable molecular identity. We implicate potential disease mechanisms affecting these cell types as well as non-neuronal drivers of pathogenesis. Finally, we show that neuron loss in cortical layer 5 tracks more closely with transcriptional identity rather than cellular morphology and extends beyond previously reported vulnerable cell types.


Asunto(s)
Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Corteza Prefrontal , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/genética , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Perfilación de la Expresión Génica , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Análisis de Expresión Génica de una Sola Célula
9.
J Biol Chem ; 300(3): 105703, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301895

RESUMEN

Tandem GGGGCC repeat expansion in C9orf72 is a genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Transcribed repeats are translated into dipeptide repeat proteins via repeat-associated non-AUG (RAN) translation. However, the regulatory mechanism of RAN translation remains unclear. Here, we reveal a GTPase-activating protein, eukaryotic initiation factor 5 (eIF5), which allosterically facilitates the conversion of eIF2-bound GTP into GDP upon start codon recognition, as a novel modifier of C9orf72 RAN translation. Compared to global translation, eIF5, but not its inactive mutants, preferentially stimulates poly-GA RAN translation. RAN translation is increased during integrated stress response, but the stimulatory effect of eIF5 on poly-GA RAN translation was additive to the increase of RAN translation during integrated stress response, with no further increase in phosphorylated eIF2α. Moreover, an alteration of the CUG near cognate codon to CCG or AUG in the poly-GA reading frame abolished the stimulatory effects, indicating that eIF5 primarily acts through the CUG-dependent initiation. Lastly, in a Drosophila model of C9orf72 FTLD/ALS that expresses GGGGCC repeats in the eye, knockdown of endogenous eIF5 by two independent RNAi strains significantly reduced poly-GA expressions, confirming in vivo effect of eIF5 on poly-GA RAN translation. Together, eIF5 stimulates the CUG initiation of poly-GA RAN translation in cellular and Drosophila disease models of C9orf72 FTLD/ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Expansión de las Repeticiones de ADN , Factor 5 Eucariótico de Iniciación , Degeneración Lobar Frontotemporal , Animales , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Proteína C9orf72/genética , Dipéptidos/genética , Expansión de las Repeticiones de ADN/genética , Drosophila/genética , Drosophila/metabolismo , Factor 5 Eucariótico de Iniciación/genética , Factor 5 Eucariótico de Iniciación/metabolismo , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/fisiopatología , Células HeLa , Humanos , Modelos Animales de Enfermedad
10.
Brain ; 147(7): 2357-2367, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38227807

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease (MND) that shares a common clinical, genetic and pathologic spectrum with frontotemporal dementia (FTD). It is highly heterogeneous in its presentation and features. Up to 50% of patients with MND develop cognitive-behavioural symptoms during the course of the disease, meeting criteria for FTD in 10%-15% of cases. In the absence of a precise biomarker, neuropathology is still a valuable tool to understand disease nosology, reach a definite diagnostic confirmation and help define specific subgroups of patients with common phenotypic, genetic and biomarker profiles. However, few neuropathological series have been published, and the frequency of frontotemporal lobar degeneration (FTLD) in MND is difficult to estimate. In this work we describe a large clinicopathological series of MND patients, analysing the frequency of concurrent FTLD changes and trying to define specific subgroups of patients based on their clinical, genetic and pathological characteristics. We performed an observational, retrospective, multicentre case study. We included all cases meeting neuropathological criteria for MND from the Neurological Tissue Bank of the FRCB-IDIBAPS-Hospital Clínic Barcelona Biobank between 1994 and 2022, regardless of their last clinical diagnosis. While brain donation is encouraged in all patients, it is performed in very few, and representativeness of the cohort might not be precise for all patients with MND. We retrospectively reviewed clinical and neuropathological data and describe the main clinical, genetic and pathogenic features, comparing neuropathologic groups between MND with and without FTLD changes and aiming to define specific subgroups. We included brain samples from 124 patients, 44 of whom (35.5%) had FTLD neuropathologic features (i.e. FTLD-MND). Pathologic TDP-43 aggregates were present in 93.6% of the cohort and were more extensive (higher Brettschneider stage) in those with concurrent FTLD (P < 0.001). Motor symptom onset was more frequent in the bulbar region in FTLD-MND cases than in those with isolated MND (P = 0.023), with no differences in survival. We observed a better clinicopathological correlation in the MND group than in the FTLD-MND group (93.8% versus 61.4%; P < 0.001). Pathogenic genetic variants were more common in the FTLD-MND group, especially C9orf72. We describe a frequency of FTLD of 35.5% in our series of neuropathologically confirmed cases of MND. The FTLD-MND spectrum is highly heterogeneous in all aspects, especially in patients with FTLD, in whom it is particularly difficult to define specific subgroups. In the absence of definite biomarkers, neuropathology remains a valuable tool for a definite diagnosis, increasing our knowledge in disease nosology.


Asunto(s)
Degeneración Lobar Frontotemporal , Enfermedad de la Neurona Motora , Humanos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Degeneración Lobar Frontotemporal/patología , Degeneración Lobar Frontotemporal/genética , Estudios Retrospectivos , Enfermedad de la Neurona Motora/patología , Enfermedad de la Neurona Motora/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/patología , Demencia Frontotemporal/genética , Encéfalo/patología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
11.
Alzheimers Dement ; 20(1): 103-111, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37461300

RESUMEN

INTRODUCTION: Biomarkers of TDP-43 pathology are needed to distinguish frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) from phenotypically related disorders. While normal physiological TDP-43 is not a promising biomarker, low-resolution techniques have suggested truncated forms of TDP-43 may be specific to TDP-43 pathology. To advance biomarker efforts for FTLD-TDP, we employed a high-resolution structural technique to characterize TDP-43 post-translational modifications in FTLD-TDP. METHODS: High-resolution mass spectrometry was used to characterize TDP-43 proteoforms in brain tissue from FTLD-TDP, non-TDP-43 dementias and neuropathologically unaffected cases. Findings were then verified in a larger cohort of FTLD-TDP and non-TDP-43 dementias via targeted quantitative mass spectrometry. RESULTS: In the discovery phase, truncated TDP-43 identified FTLD-TDP with 85% sensitivity and 100% specificity. The verification phase revealed similar findings, with 83% sensitivity and 89% specificity. DISCUSSION: The concentration of truncated TDP-43 proteoforms-in particular, in vivo generated C-terminal fragments-have high diagnostic accuracy for FTLD-TDP. HIGHLIGHTS: Discovery: Truncated TDP-43 differentiates FTLD-TDP from related dementias. Verification: Truncated TDP-43 concentration has high accuracy for FTLD-TDP. TDP-43 proteoforms <28 kDa have highest discriminatory power for TDP-43 pathology.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Humanos , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/genética , Proteínas de Unión al ADN/genética , Degeneración Lobar Frontotemporal/diagnóstico , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/patología , Biomarcadores
12.
Alzheimers Dement ; 20(2): 1156-1165, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37908186

RESUMEN

INTRODUCTION: We assessed TAR DNA-binding protein 43 (TDP-43) seeding activity and aggregates detection in olfactory mucosa of patients with frontotemporal lobar degeneration with TDP-43-immunoreactive pathology (FTLD-TDP) by TDP-43 seeding amplification assay (TDP43-SAA) and immunocytochemical analysis. METHODS: The TDP43-SAA was optimized using frontal cortex samples from 16 post mortem cases with FTLD-TDP, FTLD with tau inclusions, and controls. Subsequently, olfactory mucosa samples were collected from 17 patients with FTLD-TDP, 15 healthy controls, and three patients carrying MAPT variants. RESULTS: TDP43-SAA discriminated with 100% accuracy post mortem cases presenting or lacking TDP-43 neuropathology. TDP-43 seeding activity was detectable in the olfactory mucosa, and 82.4% of patients with FTLD-TDP tested positive, whereas 86.7% of controls tested negative (P < 0.001). Two out of three patients with MAPT mutations tested negative. In TDP43-SAA positive samples, cytoplasmatic deposits of phosphorylated TDP-43 in the olfactory neural cells were detected. DISCUSSION: TDP-43 aggregates can be detectable in olfactory mucosa, suggesting that TDP43-SAA might be useful for identifying and monitoring FTLD-TDP in living patients.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Humanos , Demencia Frontotemporal/genética , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/patología , Proteínas tau/genética , Proteínas tau/metabolismo , Lóbulo Frontal/metabolismo , Neuronas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
13.
Alzheimers Dement ; 20(3): 1771-1783, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38109286

RESUMEN

INTRODUCTION: Associations of cerebellar atrophy with specific neuropathologies in Alzheimer's disease and related dementias (ADRD) have not been systematically analyzed. This study examined cerebellar gray matter volume across major pathological subtypes of ADRD. METHODS: Cerebellar gray matter volume was examined using voxel-based morphometry in 309 autopsy-proven ADRD cases and 80 healthy controls. ADRD subtypes included AD, mixed Lewy body disease and AD (LBD-AD), and frontotemporal lobar degeneration (FTLD). Clinical function was assessed using the Clinical Dementia Rating (CDR) scale. RESULTS: Distinct patterns of cerebellar atrophy were observed in all ADRD subtypes. Significant cerebellar gray matter changes appeared in the early stages of most subtypes and the very early stages of AD, LBD-AD, FTLD-TDP type A, and progressive supranuclear palsy. Cortical atrophy positively predicted cerebellar atrophy across all subtypes. DISCUSSION: Our findings establish pathology-specific profiles of cerebellar atrophy in ADRD and propose cerebellar neuroimaging as a non-invasive biomarker for differential diagnosis and disease monitoring. HIGHLIGHTS: Cerebellar atrophy was examined in 309 patients with autopsy-proven neurodegeneration. Distinct patterns of cerebellar atrophy are found in all pathological subtypes of Alzheimer's disease and related dementias (ADRD). Cerebellar atrophy is seen in early-stage (Clinical Dementia Rating [CDR] ≤1) AD, Lewy body dementia (LBD), frontotemporal lobar degeneration with tau-positive inclusion (FTLD-tau), and FTLD-transactive response DNA binding protein (FTLD-TDP). Cortical atrophy positively predicts cerebellar atrophy across all neuropathologies.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Enfermedad por Cuerpos de Lewy , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/patología , Degeneración Lobar Frontotemporal/genética , Enfermedad por Cuerpos de Lewy/diagnóstico , Atrofia , Proteínas tau/metabolismo
14.
Neuroimage Clin ; 41: 103559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38147792

RESUMEN

Genetic mutations causative of frontotemporal lobar degeneration (FTLD) are highly predictive of a specific proteinopathy, but there exists substantial inter-individual variability in their patterns of network degeneration and clinical manifestations. We collected clinical and 18Fluorodeoxyglucose-positron emission tomography (FDG-PET) data from 39 patients with genetic FTLD, including 11 carrying the C9orf72 hexanucleotide expansion, 16 carrying a MAPT mutation and 12 carrying a GRN mutation. We performed a spectral covariance decomposition analysis between FDG-PET images to yield unbiased latent patterns reflective of whole brain patterns of metabolism ("eigenbrains" or EBs). We then conducted linear discriminant analyses (LDAs) to perform EB-based predictions of genetic mutation and predominant clinical phenotype (i.e., behavior/personality, language, asymptomatic). Five EBs were significant and explained 58.52 % of the covariance between FDG-PET images. EBs indicative of hypometabolism in left frontotemporal and temporo-parietal areas distinguished GRN mutation carriers from other genetic mutations and were associated with predominant language phenotypes. EBs indicative of hypometabolism in prefrontal and temporopolar areas with a right hemispheric predominance were mostly associated with predominant behavioral phenotypes and distinguished MAPT mutation carriers from other genetic mutations. The LDAs yielded accuracies of 79.5 % and 76.9 % in predicting genetic status and predominant clinical phenotype, respectively. A small number of EBs explained a high proportion of covariance in patterns of network degeneration across FTLD-related genetic mutations. These EBs contained biological information relevant to the variability in the pathophysiological and clinical aspects of genetic FTLD, and for offering valuable guidance in complex clinical decision-making, such as decisions related to genetic testing.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Humanos , Fluorodesoxiglucosa F18 , Péptidos y Proteínas de Señalización Intercelular/genética , Progranulinas/genética , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Degeneración Lobar Frontotemporal/genética , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Tomografía de Emisión de Positrones , Mutación/genética , Fenotipo
15.
Acta Neuropathol Commun ; 11(1): 199, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38105257

RESUMEN

The hypomethylation of fused in sarcoma (FUS) in frontotemporal lobar degeneration promotes the formation of irreversible condensates of FUS. However, the mechanisms by which these hypomethylated FUS condensates cause neuronal dysfunction are unknown. Here we report that expression of FUS constructs mimicking hypomethylated FUS causes aberrant dendritic FUS condensates in CA1 neurons. These hypomethylated FUS condensates exhibit spontaneous, and activity induced movement within the dendrite. They impair excitatory synaptic transmission, postsynaptic density-95 expression, and dendritic spine plasticity. These neurophysiological defects are dependent upon both the dendritic localisation of the condensates, and their ability to undergo liquid-liquid phase separation. These results indicate that the irreversible liquid-liquid phase separation is a key component of hypomethylated FUS pathophysiology in sporadic FTLD, and this can cause synapse dysfunction in sporadic FTLD.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Humanos , Separación de Fases , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Degeneración Lobar Frontotemporal/genética , Metilación de ADN
16.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139294

RESUMEN

The Transactivating response (TAR) element DNA-binding of 43 kDa (TDP-43) is mainly implicated in the regulation of gene expression, playing multiple roles in RNA metabolism. Pathologically, it is implicated in amyotrophic lateral sclerosis and in a class of neurodegenerative diseases broadly going under the name of frontotemporal lobar degeneration (FTLD). A common hallmark of most forms of such diseases is the presence of TDP-43 insoluble inclusions in the cell cytosol. The molecular mechanisms of TDP-43-related cell toxicity are still unclear, and the contribution to cell damage from either loss of normal TDP-43 function or acquired toxic properties of protein aggregates is yet to be established. Here, we investigate the effects on cell viability of FTLD-related TDP-43 mutations in both yeast and mammalian cell models. Moreover, we focus on nucleolin (NCL) gene, recently identified as a genetic suppressor of TDP-43 toxicity, through a thorough structure/function characterization aimed at understanding the role of NCL domains in rescuing TDP-43-induced cytotoxicity. Using functional and biochemical assays, our data demonstrate that the N-terminus of NCL is necessary, but not sufficient, to exert its antagonizing effects on TDP-43, and further support the relevance of the DNA/RNA binding central region of the protein. Concurrently, data suggest the importance of the NCL nuclear localization for TDP-43 trafficking, possibly related to both TDP-43 physiology and toxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Degeneración Lobar Frontotemporal , Nucleolina , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , ADN , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Nucleolina/metabolismo , ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Elife ; 122023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37819053

RESUMEN

TDP-43 proteinopathies including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by aggregation and mislocalization of the nucleic acid-binding protein TDP-43 and subsequent neuronal dysfunction. Here, we developed endogenous models of sporadic TDP-43 proteinopathy based on the principle that disease-associated TDP-43 acetylation at lysine 145 (K145) alters TDP-43 conformation, impairs RNA-binding capacity, and induces downstream mis-regulation of target genes. Expression of acetylation-mimic TDP-43K145Q resulted in stress-induced nuclear TDP-43 foci and loss of TDP-43 function in primary mouse and human-induced pluripotent stem cell (hiPSC)-derived cortical neurons. Mice harboring the TDP-43K145Q mutation recapitulated key hallmarks of FTLD, including progressive TDP-43 phosphorylation and insolubility, TDP-43 mis-localization, transcriptomic and splicing alterations, and cognitive dysfunction. Our study supports a model in which TDP-43 acetylation drives neuronal dysfunction and cognitive decline through aberrant splicing and transcription of critical genes that regulate synaptic plasticity and stress response signaling. The neurodegenerative cascade initiated by TDP-43 acetylation recapitulates many aspects of human FTLD and provides a new paradigm to further interrogate TDP-43 proteinopathies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Disfunción Cognitiva , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Proteinopatías TDP-43 , Humanos , Animales , Ratones , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Modelos Animales de Enfermedad , ARN
18.
Acta Neuropathol Commun ; 11(1): 126, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37533060

RESUMEN

Early pathological features of frontotemporal lobar degeneration (FTLD) due to MAPT pathogenic variants (FTLD-MAPT) are understudied, since early-stage tissue is rarely available. Here, we report unique pathological data from three presymptomatic/early-stage MAPT variant carriers (FTLD Clinical Dementia Rating [FTLD-CDR] = 0-1). We examined neuronal degeneration semi-quantitatively and digitally quantified tau burden in 18 grey matter (9 cortical, 9 subcortical) and 13 white matter (9 cortical, 4 subcortical) regions. We compared presymptomatic/early-stage pathology to an intermediate/end-stage cohort (FTLD-CDR = 2-3) with the same variants (2 L315R, 10 P301L, 6 G272V), and developed a clinicopathological staging model for P301L and G272V variants. The 68-year-old presymptomatic L315R carrier (FTLD-CDR = 0) had limited tau burden morphologically similar to L315R end-stage carriers in middle frontal, antero-inferior temporal, amygdala, (para-)hippocampus and striatum, along with age-related Alzheimer's disease neuropathological change. The 59-year-old prodromal P301L carrier (FTLD-CDR = 0.5) had highest tau burden in anterior cingulate, anterior temporal, middle/superior frontal, and fronto-insular cortex, and amygdala. The 45-year-old early-stage G272V carrier (FTLD-CDR = 1) had highest tau burden in superior frontal and anterior cingulate cortex, subiculum and CA1. The severity and distribution of tau burden showed some regional variability between variants at presymptomatic/early-stage, while neuronal degeneration, mild-to-moderate, was similarly distributed in frontotemporal regions. Early-stage tau burden and neuronal degeneration were both less severe than in intermediate-/end-stage cases. In a subset of regions (10 GM, 8 WM) used for clinicopathological staging, clinical severity correlated strongly with neuronal degeneration (rho = 0.72, p < 0.001), less strongly with GM tau burden (rho = 0.57, p = 0.006), and did not with WM tau burden (p = 0.9). Clinicopathological staging showed variant-specific patterns of early tau pathology and progression across stages. These unique data demonstrate that tau pathology and neuronal degeneration are present already at the presymptomatic/early-stage of FTLD-MAPT, though less severely compared to intermediate/end-stage disease. Moreover, early pathological patterns, especially of tau burden, differ partly between specific MAPT variants.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Humanos , Anciano , Persona de Mediana Edad , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/patología , Demencia Frontotemporal/patología , Proteínas tau/genética , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Sustancia Gris/patología , Giro del Cíngulo/metabolismo
19.
ACS Chem Neurosci ; 14(16): 2827-2829, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37530644

RESUMEN

Recent studies involving four research teams have revealed that amyloid fibrils in FTLD-TDP patients and cognitively healthy individuals primarily consist of TMEM106B, a protein previously identified as a risk factor for FTLD-TDP. Through cryogenic electron microscopy, the studies identified various protofilament structures of TMEM106B fibrils from individuals with several neurodegenerative diseases. These findings raise new questions and opportunities for future research, as they suggest that TMEM106B plays a central role in FTLD pathology. These discoveries also prompt the need for the development of specific antibodies for fibrillar TMEM106B and necessitate further investigation of the potential mechanistic link between TMEM106B and other filamentous aggregates. The power of cryo-EM techniques is underscored in these unexpected findings and may be a vital tool for gaining further molecular insights into neurodegenerative diseases characterized by amyloid deposits.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Humanos , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Genotipo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Polimorfismo de Nucleótido Simple
20.
Nat Rev Dis Primers ; 9(1): 40, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563165

RESUMEN

Frontotemporal lobar degeneration (FTLD) is one of the most common causes of early-onset dementia and presents with early social-emotional-behavioural and/or language changes that can be accompanied by a pyramidal or extrapyramidal motor disorder. About 20-25% of individuals with FTLD are estimated to carry a mutation associated with a specific FTLD pathology. The discovery of these mutations has led to important advances in potentially disease-modifying treatments that aim to slow progression or delay disease onset and has improved understanding of brain functioning. In both mutation carriers and those with sporadic disease, the most common underlying diagnoses are linked to neuronal and glial inclusions containing tau (FTLD-tau) or TDP-43 (FTLD-TDP), although 5-10% of patients may have inclusions containing proteins from the FUS-Ewing sarcoma-TAF15 family (FTLD-FET). Biomarkers definitively identifying specific pathological entities in sporadic disease have been elusive, which has impeded development of disease-modifying treatments. Nevertheless, disease-monitoring biofluid and imaging biomarkers are becoming increasingly sophisticated and are likely to serve as useful measures of treatment response during trials of disease-modifying treatments. Symptomatic trials using novel approaches such as transcranial direct current stimulation are also beginning to show promise.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Estimulación Transcraneal de Corriente Directa , Humanos , Demencia Frontotemporal/patología , Degeneración Lobar Frontotemporal/diagnóstico , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...