Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 217(11)2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32648893

RESUMEN

Wallerian degeneration (WD) is a process of autonomous distal degeneration of axons upon injury. Macrophages (MPs) of the peripheral nervous system (PNS) are the main cellular agent controlling this process. Some evidence suggests that resident PNS-MPs along with MPs of hematogenous origin may be involved, but whether these two subsets exert distinct functions is unknown. Combining MP-designed fluorescent reporter mice and coherent anti-Stokes Raman scattering (CARS) imaging of the sciatic nerve, we deciphered the spatiotemporal choreography of resident and recently recruited MPs after injury and unveiled distinct functions of these subsets, with recruited MPs being responsible for efficient myelin stripping and clearance and resident MPs being involved in axonal regrowth. This work provides clues to tackle selectively cellular processes involved in neurodegenerative diseases.


Asunto(s)
Macrófagos/inmunología , Degeneración Walleriana/diagnóstico por imagen , Degeneración Walleriana/inmunología , Animales , Axones/fisiología , Modelos Animales de Enfermedad , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/fisiología , Microscopía Óptica no Lineal , Remielinización/genética , Nervio Ciático/diagnóstico por imagen , Nervio Ciático/inmunología , Nervio Ciático/lesiones , Transcriptoma
2.
Methods Mol Biol ; 2143: 207-222, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524483

RESUMEN

Injury to the sciatic nerve leads to degeneration and debris clearance in the area distal to the injury site, a process known as Wallerian degeneration. Immune cell infiltration into the distal sciatic nerve plays a major role in the degenerative process and subsequent regeneration of the injured motor and sensory axons. While macrophages have been implicated as the major phagocytic immune cell participating in Wallerian degeneration, recent work has found that neutrophils, a class of short-lived, fast responding white blood cells, also significantly contribute to the clearance of axonal and myelin debris. Detection of specific myeloid subtypes can be difficult as many cell-surface markers are often expressed on both neutrophils and monocytes/macrophages. Here we describe two methods for detecting neutrophils in the axotomized sciatic nerve of mice using immunohistochemistry and flow cytometry. For immunohistochemistry on fixed frozen tissue sections, myeloperoxidase and DAPI are used to specifically label neutrophils while a combination of Ly6G and CD11b are used to assess the neutrophil population of unfixed sciatic nerves using flow cytometry.


Asunto(s)
Citometría de Flujo/métodos , Inmunohistoquímica/métodos , Neutrófilos , Traumatismos de los Nervios Periféricos/patología , Degeneración Walleriana/patología , Animales , Antígenos Ly/análisis , Axotomía , Biomarcadores , Antígeno CD11b/análisis , Separación Celular , Colorantes Fluorescentes/análisis , Secciones por Congelación , Indoles/análisis , Ratones , Neutrófilos/enzimología , Neutrófilos/patología , Traumatismos de los Nervios Periféricos/inmunología , Peroxidasa/análisis , Fagocitosis , Nervio Ciático/lesiones , Nervio Ciático/patología , Coloración y Etiquetado/métodos , Degeneración Walleriana/inmunología , Factor de von Willebrand/análisis
3.
Methods Mol Biol ; 2143: 321-338, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524491

RESUMEN

Axon degeneration elicits a range of immune responses from local glial cells, including striking changes in glial gene expression, morphology, and phagocytic activity. Here, we describe a detailed set of protocols to assess discrete components of the glial reaction to axotomy in the adult nervous system of Drosophila melanogaster. These methods allow one to visualize and quantify transcriptional, morphological, and functional responses of glia to degenerating axons in a model system that is highly amenable to genetic manipulation.


Asunto(s)
Axones/fisiología , Drosophila melanogaster/inmunología , Microscopía Intravital , Microscopía Confocal/métodos , Neuroglía/inmunología , Degeneración Walleriana/inmunología , Animales , Axotomía , Sistema Nervioso Central/patología , ADN Complementario/genética , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Regulación de la Expresión Génica , Genes Reporteros , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica/instrumentación , Inmunohistoquímica/métodos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuroglía/metabolismo , Fagocitosis , Reacción en Cadena de la Polimerasa/métodos , Degeneración Walleriana/fisiopatología
4.
Mol Cell Biochem ; 453(1-2): 187-196, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30191480

RESUMEN

NLRX1, the mitochondrial NOD-like receptor (NLR), modulates apoptosis in response to both intrinsic and extrinsic cues. Insights into the mechanism of how NLRX1 influences apoptosis remain to be determined. Here, we demonstrate that NLRX1 associates with SARM1, a protein with a toll/interleukin-1 receptor (TIR)-containing domain also found in adaptor proteins downstream of toll-like receptors, such as MyD88. While a direct role of SARM1 in innate immunity is unclear, the protein plays essential roles in Wallerian degeneration (WD), a type of neuronal catabolism occurring following axonal severing or damage. In non-neuronal cells, we found that endogenous SARM1 was equally distributed in the cytosol and the mitochondrial matrix, where association with NLRX1 occurred. In these cells, the apoptotic role of NLRX1 was fully dependent on SARM1, indicating that SARM1 was downstream of NLRX1 in apoptosis regulation. In primary murine neurons, however, Wallerian degeneration induced by vinblastine or NGF deprivation occurred in SARM1- yet NLRX1-independent manner, suggesting that WD requires the cytosolic pool of SARM1 or that NLRX1 levels in neurons are too low to contribute to WD regulation. Together, these results shed new light into the mechanisms through which NLRX1 controls apoptosis and provides evidence of a new link between NLR and TIR-containing proteins.


Asunto(s)
Apoptosis , Proteínas del Dominio Armadillo/inmunología , Axones/inmunología , Proteínas del Citoesqueleto/inmunología , Inmunidad Innata , Mitocondrias/inmunología , Proteínas Mitocondriales/inmunología , Animales , Proteínas del Dominio Armadillo/genética , Axones/patología , Proteínas del Citoesqueleto/genética , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Vinblastina/efectos adversos , Vinblastina/farmacología , Degeneración Walleriana/inducido químicamente , Degeneración Walleriana/genética , Degeneración Walleriana/inmunología , Degeneración Walleriana/patología
5.
PLoS One ; 12(5): e0177070, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28475650

RESUMEN

Following injury, distal axons undergo the process of Wallerian degeneration, and then cell debris is cleared to create a permissive environment for axon regeneration. The innate and adaptive immune systems are believed to be critical for facilitating the clearance of myelin and axonal debris during this process. However, immunodeficient animal models are regularly used in transplantation studies investigating cell therapies to modulate the degenerative/regenerative response. Given the importance of the immune system in preparing a permissive environment for regeneration by clearing debris, animals lacking, in part or in full, a functional immune system may have an impaired ability to regenerate due to poor myelin clearance, and may, thus, be poor hosts to study modulators of regeneration and degeneration. To study this hypothesis, three different mouse models with impaired adaptive immunity were compared to wild type animals in their ability to degenerate axons and clear myelin debris one week following sciatic nerve transection. Immunofluorescent staining for axons and quantitation of axon density with nerve histomorphometry of the distal stump showed no consistent discrepancy between immunodeficient and wild type animals, suggesting axons tended to degenerate equally between the two groups. Debris clearance was assessed by macrophage density and relative myelin basic protein expression within the denervated nerve stump, and no consistent impairment of debris clearance was found. These data suggested deficiency of the adaptive immune system does not have a substantial effect on axon degeneration one week following axonal injury.


Asunto(s)
Inmunidad Adaptativa/inmunología , Huésped Inmunocomprometido/inmunología , Regeneración Nerviosa/inmunología , Degeneración Walleriana/inmunología , Animales , Axones/inmunología , Axones/patología , Ratones , Degeneración Walleriana/patología
6.
Sci Rep ; 6: 39828, 2016 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-28008990

RESUMEN

Peripheral nerve long gap defects are a clinical challenge in the regeneration field. Despite the wide variety of surgical techniques and therapies, autografting is the "gold standard" for peripheral nerve gap reconstruction. The pathological process of Wallerian degeneration from the time of acute injury to efficient regeneration requires several weeks. Regeneration time is critical for nerve reconstruction. Immunological demyelination induced by anti-galactocerebroside antibodies plus guinea pig complement was used to shorten the treatment time. Based on an antigen-antibody complex reaction, the demyelinating agent induced an acute and severe demyelination, leading to the pathological process of Wallerian degeneration during the demyelinating period. This method was used to treat a 12 mm-long sciatic nerve defect in rats. The control groups were injected with one of the demyelinating agent components. The results indicated that anti-galactocerebroside antibodies plus guinea pig complement can significantly shorten treatment time and promote nerve regeneration and functional recovery. In addition, the demyelinating agent can increase the mRNA levels of nerve growth factors and can regulate inflammation. In conclusion, treatment with anti-galactocerebroside antibodies plus guinea pig complement can promote axonal regeneration. This therapy provides a novel method to improve functional recovery in the treatment of long nerve defects.


Asunto(s)
Enfermedades Autoinmunes Desmielinizantes SNC/inmunología , Regeneración Nerviosa/inmunología , Nervio Ciático/fisiología , Degeneración Walleriana/inmunología , Animales , Femenino , Cobayas , Ratas , Ratas Sprague-Dawley
7.
Int Rev Neurobiol ; 108: 173-206, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24083435

RESUMEN

This chapter provides a review of immune reactions involved in classic as well as alternative methods of peripheral nerve regeneration, and mainly with a view to understanding their beneficial effects. Axonal degeneration distal to nerve damage triggers a cascade of inflammatory events alongside injured nerve fibers known as Wallerian degeneration (WD). The early inflammatory reactions of WD comprise the complement system, arachidonic acid metabolites, and inflammatory mediators that are related to myelin fragmentation and activation of Schwann cells. Fine-tuned upregulation of the cytokine/chemokine network by Schwann cells activates resident and hematogenous macrophages to complete the clearance of axonal and myelin debris and stimulate regrowth of axonal sprouts. In addition to local effects, immune reactions of neuronal bodies and glial cells are also implicated in the survival and conditioning of neurons to regenerate severed nerves. Understanding of the cellular and molecular interactions between the immune system and peripheral nerve injury opens new possibilities for targeting inflammatory mediators to improve functional reinnervation.


Asunto(s)
Citocinas/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Citocinas/inmunología , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Traumatismos de los Nervios Periféricos/inmunología , Nervios Periféricos/inmunología , Nervios Periféricos/metabolismo , Transducción de Señal/fisiología , Degeneración Walleriana/inmunología , Degeneración Walleriana/metabolismo
8.
J Neurosci Res ; 91(10): 1280-91, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23907999

RESUMEN

Lesions of the spinal cord cause two distinctive types of neuroimmune responses, a response at the lesion site that leads to additional tissue destruction and a more subtle response, termed Wallerian degeneration (WD), that occurs distal to the lesion site. We have evidence that the neuroimmune response associated with WD may support tissue repair. Previously, we found that overexpression of neurotrophin-3 (NT-3) induced axonal growth in the spinal cord after a unilateral corticospinal tract (CST) lesion, but only if the immune system was intact and activated. We reasoned that a neuroimmune response associated with WD was involved in this neuroplasticity. To test this, we compared NT-3-induced axonal sprouting in athymic nude rats that lack functional T cells with rats with functional T cells and in nude rats grafted with CD4(+) T cells or CD8(+) T cells. There was no sprouting in nude rats and in nude rats grafted with CD8(+) T cells. However, nude rats grafted with CD4(+) T cells mounted a sprouting response. To determine which CD4(+) subtype, type 1 T helper (Th1) or type 2 T helper (Th2) cells, was responsible, we grafted Th1 and Th2 cells into nude rats and tested whether they would support sprouting. Axonal sprouting was greater in rats grafted with Th2 cells, demonstrating that the Th2 subtype was responsible for supporting axonal sprouting. These data suggest that WD activates Th2 cells that, along with the direct effects of NT-3 on CST axons, act to support axonal sprouting in the lesioned spinal cord.


Asunto(s)
Regeneración Nerviosa/inmunología , Neuroinmunomodulación/inmunología , Neurotrofina 3/metabolismo , Traumatismos de la Médula Espinal/inmunología , Células Th2/inmunología , Degeneración Walleriana/inmunología , Traslado Adoptivo , Animales , Axones/efectos de los fármacos , Axones/inmunología , Axones/metabolismo , Quimiotaxis de Leucocito/inmunología , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Inmunohistoquímica , Regeneración Nerviosa/efectos de los fármacos , Neuroinmunomodulación/efectos de los fármacos , Neurotrofina 3/farmacología , Ratas , Ratas Desnudas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Traumatismos de la Médula Espinal/metabolismo , Degeneración Walleriana/metabolismo
9.
J Neuroinflammation ; 9: 176, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22818207

RESUMEN

BACKGROUND: The activation of the immune system in neurodegeneration has detrimental as well as beneficial effects. Which aspects of this immune response aggravate the neurodegenerative breakdown and which stimulate regeneration remains an open question. To unravel the neuroprotective aspects of the immune system we focused on a model of acute peripheral nerve injury, in which the immune system was shown to be protective. METHODS: To determine the type of immune response triggered after axotomy of the sciatic nerve, a model for Wallerian degeneration in the peripheral nervous system, we evaluated markers representing the two extremes of a type I and type II immune response (classical vs. alternative) using real-time quantitative polymerase chain reaction (RT-qPCR), western blot, and immunohistochemistry. RESULTS: Our results showed that acute peripheral nerve injury triggers an anti-inflammatory and immunosuppressive response, rather than a pro-inflammatory response. This was reflected by the complete absence of classical macrophage markers (iNOS, IFN γ, and IL12p40), and the strong up-regulation of tissue repair markers (arginase-1, Ym1, and Trem2). The signal favoring the alternative macrophage environment was induced immediately after nerve damage and appeared to be established within the nerve, well before the infiltration of macrophages. In addition, negative regulators of the innate immune response, as well as the anti-inflammatory cytokine IL-10 were induced. The strict regulation of the immune system dampens the potential tissue damaging effects of an over-activated response. CONCLUSIONS: We here demonstrate that acute peripheral nerve injury triggers an inherent protective environment by inducing the M2 phenotype of macrophages and the expression of arginase-1. We believe that the M2 phenotype, associated with a sterile inflammatory response and tissue repair, might explain their neuroprotective capacity. As such, shifting the neurodegeneration-induced immune responses towards an M2/Th2 response could be an important therapeutic strategy.


Asunto(s)
Macrófagos/inmunología , Macrófagos/patología , Traumatismos de los Nervios Periféricos/inmunología , Enfermedad Aguda , Animales , Inmunidad Celular/inmunología , Ratones , Ratones Endogámicos C57BL , Traumatismos de los Nervios Periféricos/patología , Sistema Nervioso Periférico/inmunología , Sistema Nervioso Periférico/patología , Degeneración Walleriana/inmunología , Degeneración Walleriana/patología
10.
J Neuroinflammation ; 8: 109, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21878125

RESUMEN

Traumatic injury to peripheral nerves results in the loss of neural functions. Recovery by regeneration depends on the cellular and molecular events of Wallerian degeneration that injury induces distal to the lesion site, the domain through which severed axons regenerate back to their target tissues. Innate-immunity is central to Wallerian degeneration since innate-immune cells, functions and molecules that are produced by immune and non-immune cells are involved. The innate-immune response helps to turn the peripheral nerve tissue into an environment that supports regeneration by removing inhibitory myelin and by upregulating neurotrophic properties. The characteristics of an efficient innate-immune response are rapid onset and conclusion, and the orchestrated interplay between Schwann cells, fibroblasts, macrophages, endothelial cells, and molecules they produce. Wallerian degeneration serves as a prelude for successful repair when these requirements are met. In contrast, functional recovery is poor when injury fails to produce the efficient innate-immune response of Wallerian degeneration.


Asunto(s)
Inmunidad Innata/inmunología , Nervios Periféricos/inmunología , Nervios Periféricos/patología , Traumatismos del Sistema Nervioso/inmunología , Degeneración Walleriana/inmunología , Animales , Axones/inmunología , Axones/patología , Axones/ultraestructura , Citocinas/inmunología , Galectina 3/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/fisiología , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Regeneración Nerviosa/inmunología , Fagocitosis/fisiología , Células de Schwann/citología , Células de Schwann/inmunología , Traumatismos del Sistema Nervioso/patología , Degeneración Walleriana/patología
11.
J Neuroinflammation ; 8: 110, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21878126

RESUMEN

In this review, we first provide a brief historical perspective, discussing how peripheral nerve injury (PNI) may have caused World War I. We then consider the initiation, progression, and resolution of the cellular inflammatory response after PNI, before comparing the PNI inflammatory response with that induced by spinal cord injury (SCI).In contrast with central nervous system (CNS) axons, those in the periphery have the remarkable ability to regenerate after injury. Nevertheless, peripheral nervous system (PNS) axon regrowth is hampered by nerve gaps created by injury. In addition, the growth-supportive milieu of PNS axons is not sustained over time, precluding long-distance regeneration. Therefore, studying PNI could be instructive for both improving PNS regeneration and recovery after CNS injury. In addition to requiring a robust regenerative response from the injured neuron itself, successful axon regeneration is dependent on the coordinated efforts of non-neuronal cells which release extracellular matrix molecules, cytokines, and growth factors that support axon regrowth. The inflammatory response is initiated by axonal disintegration in the distal nerve stump: this causes blood-nerve barrier permeabilization and activates nearby Schwann cells and resident macrophages via receptors sensitive to tissue damage. Denervated Schwann cells respond to injury by shedding myelin, proliferating, phagocytosing debris, and releasing cytokines that recruit blood-borne monocytes/macrophages. Macrophages take over the bulk of phagocytosis within days of PNI, before exiting the nerve by the circulation once remyelination has occurred. The efficacy of the PNS inflammatory response (although transient) stands in stark contrast with that of the CNS, where the response of nearby cells is associated with inhibitory scar formation, quiescence, and degeneration/apoptosis. Rather than efficiently removing debris before resolving the inflammatory response as in other tissues, macrophages infiltrating the CNS exacerbate cell death and damage by releasing toxic pro-inflammatory mediators over an extended period of time. Future research will help determine how to manipulate PNS and CNS inflammatory responses in order to improve tissue repair and functional recovery.


Asunto(s)
Inflamación/inmunología , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/inmunología , Traumatismos de los Nervios Periféricos/patología , Degeneración Walleriana/inmunología , Animales , Axones/metabolismo , Axones/patología , Humanos , Inflamación/patología , Células de Schwann/citología , Células de Schwann/metabolismo , Degeneración Walleriana/patología
12.
Ann Anat ; 193(4): 267-75, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21458249

RESUMEN

Wallerian degeneration is a cascade of stereotypical events in reaction to injury of nerve fibres. These events consist of cellular and molecular alterations, including macrophage invasion, activation of Schwann cells, as well as neurotrophin and cytokine upregulation. This review focuses on cellular and molecular changes distal to various types of peripheral nerve injury which simultaneously contribute to axonal regeneration and neuropathic pain induction. In addition to the stereotypical events of Wallerian degeneration, various types of nerve damage provide different conditions for both axonal regeneration and neuropathic pain induction. Wallerian degeneration of injured peripheral nerve is associated with an inflammatory response including rapid upregulation of the immune signal molecules like cytokines, chemokines and transcription factors with both beneficial and detrimental effects on nerve regeneration or neuropathic pain induction. A better understanding of the molecular interactions between the immune system and peripheral nerve injury would open the possibility for targeting these inflammatory mediators in therapeutic interventions. Understanding the pleiotropic effects of cytokines/chemokines, however, requires investigating their highly specific pathways and precise points of action.


Asunto(s)
Axones/fisiología , Regeneración Nerviosa/fisiología , Neuralgia/fisiopatología , Nervios Periféricos/fisiopatología , Degeneración Walleriana/fisiopatología , Animales , Humanos , Inmunidad Celular/inmunología , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/fisiopatología , Ratones , Modelos Animales , Modelos Neurológicos , Inflamación Neurogénica/inmunología , Inflamación Neurogénica/metabolismo , Inflamación Neurogénica/fisiopatología , Traumatismos de los Nervios Periféricos , Nervios Periféricos/inmunología , Degeneración Walleriana/inmunología , Degeneración Walleriana/metabolismo
13.
Glia ; 58(14): 1701-9, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20578041

RESUMEN

Toll-like receptors comprise a family of evolutionary conserved pattern recognition receptors that act as a first defense line in the innate immune system. Upon stimulation with microbial ligands, they orchestrate the induction of a host defense response by activating different signaling cascades. Interestingly, they appear to detect the presence of endogenous signals of danger as well and as such, neurodegeneration is thought to trigger an immune response through ligation of TLRs. Though recent data report the expression of various TLRs in the central nervous system, TLR expression patterns in the peripheral nervous system have not been determined yet. We observed that Schwann cells express relatively high levels of TLRs, with especially TLR3 and TLR4 being prominent. Sensory and motor neurons hardly express TLRs at all. Through the use of NF-κB signaling as read-out, we could show that all TLRs are functional in Schwann cells and that bacterial lipoprotein, a ligand for TLR1/TLR2 receptors yields the strongest response. In sciatic nerve, basal levels of TLRs closely reflect the expression patterns as determined in Schwann cells. TLR3, TLR4, and TLR7 are majorly expressed, pointing to their possible role in immune surveillance. Upon axotomy, TLR1 becomes strongly induced, while most other TLR expression levels remain unaffected. Altogether, our data suggest that similar to microglia in the brain, Schwann cells might act as sentinel cells in the PNS. Furthermore, acute neurodegeneration induces a shift in TLR expression pattern, most likely illustrating specialized functions of TLRs in basal versus activated conditions of the peripheral nerve.


Asunto(s)
Nervios Periféricos/metabolismo , Células de Schwann/metabolismo , Receptores Toll-Like/biosíntesis , Animales , Animales Recién Nacidos , Células Cultivadas , Femenino , Inmunidad Innata , Vigilancia Inmunológica/inmunología , Ratones , Ratones Endogámicos C57BL , Nervios Periféricos/citología , Nervios Periféricos/inmunología , Ratas , Ratas Wistar , Células de Schwann/citología , Células de Schwann/inmunología , Degeneración Walleriana/inmunología , Degeneración Walleriana/metabolismo
14.
Neuroimmunomodulation ; 17(5): 314-24, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20407283

RESUMEN

Wallerian degeneration, the self-destructive set of cellular and molecular processes by which degenerating axons and myelin are cleared after injury, is initiated by macrophages and Schwann cells. Molecular inflammatory mediators such as cytokines (IL-1, IL-6, IL-10, and TNF-alpha, among others), transcription factors (NF-kappaB, c-Jun), the complement system and arachidonic acid metabolites have been shown to modulate these processes in various studies. However, the exact role that each of these mediators plays during axonal degeneration and regeneration has not been fully established. Understanding the molecular basis of these interactions between the immune system and peripheral nerve injury would open the possibility of targeting these inflammatory mediators as therapeutic interventions. In this review we attempt to integrate the current evidence generated around this issue, and to explore the therapeutic possibilities that arise.


Asunto(s)
Mediadores de Inflamación/fisiología , Inflamación/fisiopatología , Regeneración Nerviosa/fisiología , Nervios Periféricos/fisiopatología , Degeneración Walleriana/fisiopatología , Animales , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Nervios Periféricos/inmunología , Nervios Periféricos/metabolismo , Degeneración Walleriana/inmunología , Degeneración Walleriana/metabolismo
15.
Neuroimmunomodulation ; 17(4): 252-64, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20203531

RESUMEN

OBJECTIVES: Multiple sclerosis can be characterized by a strong neuroinflammatory and progressive neurodegenerative component leading to prolonged disability. The synthetic compound R(+)WIN55,212-2 is reported to be neuroprotective at moderate doses and both neuroprotective and immunomodulatory at high doses, most likely due to differences in receptor affinities. In order to investigate the effects of neuroprotection and immunomodulation in an animal model of multiple sclerosis, we examined the impact of increasing concentrations of R(+)WIN55,212-2 on the inflammatory profile in CNS during first relapse and related this to demyelination, axonal degeneration and relapse severity. METHODS: Experimental autoimmune encephalomyelitis was induced in Dark Agouti rats and treatment with R(+)WIN55,212-2 was initiated at symptom debut. The animals were scored clinically throughout the experiment, and axonal degeneration, demyelination, T cells, microglia/macrophages, TNF-alpha, IL-12, IFN-gamma, IL-10 and the T(H)17 response were estimated at the peak of the first relapse. RESULTS: Treatment with high-dose R(+)WIN55,212-2 (10 and 20 mg/kg) significantly improved the clinical performance of the animals during relapse. Interestingly, treatment at any dosage did not affect the brain levels of TNF-alpha, IL-12 and IFN-gamma (T(H)1 response), whereas high-dose cannabinoid treatment reduced the number of T cells and microglia/macrophages in addition to the T(H)17 response. At the same time, we observed a significant reduction in axonal degeneration in all treatment groups whereas only high-dose treatment resulted in reduced demyelination. CONCLUSION: High-dose R(+)WIN55,212-2 treatment reduces demyelination and axonal degeneration and has immunomodulatory effects which significantly improve clinical performance, whereas a reduction in axonal degeneration on its own, induced by 5 mg/kg R(+)WIN55,212-2, has no impact on first relapse severity.


Asunto(s)
Benzoxazinas/farmacología , Enfermedades Desmielinizantes/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Morfolinas/farmacología , Naftalenos/farmacología , Fármacos Neuroprotectores/farmacología , Neurotransmisores/farmacología , Animales , Benzoxazinas/uso terapéutico , Citocinas/efectos de los fármacos , Citocinas/metabolismo , Citoprotección/efectos de los fármacos , Citoprotección/inmunología , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Inmunomodulación/efectos de los fármacos , Inmunomodulación/inmunología , Microglía/efectos de los fármacos , Microglía/inmunología , Morfolinas/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/fisiopatología , Naftalenos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Neurotransmisores/uso terapéutico , Ratas , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Resultado del Tratamiento , Degeneración Walleriana/tratamiento farmacológico , Degeneración Walleriana/inmunología , Degeneración Walleriana/fisiopatología
16.
J Neuroimmunol ; 220(1-2): 79-89, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20167380

RESUMEN

Theiler's murine encephalomyelitis virus (TMEV) infection is a well-characterized model of multiple sclerosis (MS). Previous research has shown that chronic restraint stress (RS) during early TMEV infection exacerbates behavioral signs of the disease. The present data suggest that RS-induced increases in CNS inflammation, demyelination, and axonal degeneration may underlie this exacerbation. In addition, we report that males exhibit greater CNS inflammation and higher numbers of demyelinating lesions while females show greater susceptibility to RS-induced exacerbation. These findings indicate that RS during early TMEV infection increases CNS lesion formation during the late phase and suggest that the effects of RS are sex-dependent.


Asunto(s)
Infecciones por Cardiovirus/inmunología , Sistema Nervioso Central/inmunología , Enfermedades Autoinmunes Desmielinizantes SNC/inmunología , Encefalomielitis/inmunología , Estrés Psicológico/inmunología , Theilovirus/inmunología , Animales , Axones/inmunología , Axones/patología , Axones/virología , Infecciones por Cardiovirus/fisiopatología , Sistema Nervioso Central/patología , Sistema Nervioso Central/virología , Enfermedad Crónica , Enfermedades Autoinmunes Desmielinizantes SNC/fisiopatología , Enfermedades Autoinmunes Desmielinizantes SNC/virología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Encefalomielitis/fisiopatología , Encefalomielitis/virología , Femenino , Masculino , Ratones , Fibras Nerviosas Mielínicas/inmunología , Fibras Nerviosas Mielínicas/patología , Fibras Nerviosas Mielínicas/virología , Restricción Física/efectos adversos , Restricción Física/psicología , Índice de Severidad de la Enfermedad , Caracteres Sexuales , Estrés Psicológico/fisiopatología , Degeneración Walleriana/inmunología , Degeneración Walleriana/patología , Degeneración Walleriana/virología
17.
Muscle Nerve ; 41(5): 630-41, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19918773

RESUMEN

Diabetic neuropathy is one of the most frequent complications in diabetes but there are no treatments beyond glucose control, due in part to the lack of an appropriate animal model to assess an effective therapy. This study was undertaken to characterize the degenerative and regenerative responses of peripheral nerves after induced sciatic nerve damage in transgenic rat insulin I promoter / human interferon beta (RIP/IFNbeta) mice made diabetic with a low dose of streptozotocin (STZ) as an animal model of diabetic complications. In vivo, histological and immunohistological studies of cutaneous and sciatic nerves were performed after left sciatic crush. Functional tests, cutaneous innervation, and sciatic nerve evaluation showed pronounced neurological reduction in all groups 2 weeks after crush. All animals showed a gradual recovery but this was markedly slower in diabetic animals in comparison with normoglycemic animals. The delay in regeneration in diabetic RIP/IFNbeta mice resulted in an increase in active Schwann cells and regenerating neurites 8 weeks after surgery. These findings indicate that diabetic-RIP/IFNbeta animals mimic human diabetic neuropathy. Moreover, when these animals are submitted to nerve crush they have substantial deficits in nerve regrowth, similar to that observed in diabetic patients. When wildtype animals were treated with the same dose of STZ, no differences were observed with respect to nontreated animals, indicating that low doses of STZ and the transgene are not implicated in development of the degenerative and regenerative events observed in our study. All these findings indicate that RIP/IFNbeta transgenic mice are a good model for diabetic neuropathy.


Asunto(s)
Neuropatías Diabéticas/inmunología , Neuropatías Diabéticas/fisiopatología , Células Secretoras de Insulina/inmunología , Interferón beta/metabolismo , Nervios Periféricos/patología , Nervios Periféricos/fisiopatología , Animales , Diabetes Mellitus Experimental/complicaciones , Neuropatías Diabéticas/patología , Modelos Animales de Enfermedad , Electrofisiología , Humanos , Células Secretoras de Insulina/metabolismo , Interferón beta/genética , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Regeneración Nerviosa/fisiología , Conducción Nerviosa/fisiología , Regiones Promotoras Genéticas/genética , Ratas , Neuropatía Ciática/inmunología , Neuropatía Ciática/patología , Neuropatía Ciática/fisiopatología , Células Receptoras Sensoriales/inmunología , Células Receptoras Sensoriales/patología , Trastornos Somatosensoriales/diagnóstico , Trastornos Somatosensoriales/fisiopatología , Estreptozocina/farmacología , Degeneración Walleriana/inmunología , Degeneración Walleriana/patología , Degeneración Walleriana/fisiopatología
18.
J Neurosci ; 29(47): 14965-79, 2009 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19940192

RESUMEN

Axonal loss is the principal cause of chronic disability in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). In C57BL/6 mice with EAE induced by immunization with myelin oligodendrocyte glycoprotein peptide 35-55, the first evidences of axonal damage in spinal cord were in acute subpial and perivascular foci of infiltrating neutrophils and lymphocytes and included intra-axonal accumulations of the endovesicular Toll-like receptor TLR8, and the inflammasome protein NAcht leucine-rich repeat protein 1 (NALP1). Later in the course of this illness, focal inflammatory infiltrates disappeared from the spinal cord, but there was persistent activation of spinal cord innate immunity and progressive, bilaterally symmetric loss of small-diameter corticospinal tract axons. These results support the hypothesis that both contact-dependent and paracrine interactions of systemic inflammatory cells with axons and an innate immune-mediated neurodegenerative process contribute to axonal loss in this multiple sclerosis model.


Asunto(s)
Axones/patología , Encefalomielitis Autoinmune Experimental/patología , Médula Espinal/patología , Degeneración Walleriana/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Axones/metabolismo , Quimiotaxis de Leucocito/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/fisiopatología , Inmunidad Innata/inmunología , Leucocitos/patología , Linfocitos/patología , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Esclerosis Múltiple/fisiopatología , Neutrófilos/patología , Tractos Piramidales/inmunología , Tractos Piramidales/patología , Tractos Piramidales/fisiopatología , Médula Espinal/inmunología , Médula Espinal/fisiopatología , Receptor Toll-Like 8/metabolismo , Degeneración Walleriana/inmunología , Degeneración Walleriana/fisiopatología
19.
Exp Neurol ; 220(2): 320-7, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19766118

RESUMEN

Galectin-1 (Gal1) is a multi-functional protein that has key roles in organismal growth and survival. In the adult nervous system, Gal1 promotes axonal regeneration following peripheral nerve injury. Although the mechanism by which Gal1 promotes regeneration is unclear, previous reports suggested that Gal1 acts indirectly by activating macrophages. An appropriate response of macrophages is crucial for repair of injured nerves: these immune cells remove obstructive axon and myelin debris in the distal nerve. Here we establish a role for Gal1 in the accumulation of immune cells following peripheral axotomy. We used immunohistochemistry to visualize macrophages (F4/80) in wild-type (Lgals1(+/+)) and knockout (Lgals1(-/-)) mouse sciatic nerves following injury and/or manipulation of Gal1 levels. Density of F4/80 immunoreactivity, which peaks around 3 days post-injury, was decreased in Lgals1(+/+) nerves injected with Gal1 antibody. The typical injury-induced peak of macrophage/microglial density was delayed in the sciatic nerves and fifth lumbar dorsal root ganglia of Lgals1(-/-) mice relative to control mice. Injection of oxidized Gal1 into uninjured sciatic nerve promoted the accumulation of macrophages in Lgals1(+/+) nerves. Finally, we used transplants of sciatic nerve to uncover a compensatory mechanism in Lgals1(-/-) mice that allows for macrophage accumulation (albeit delayed and diminished) following axotomy. We conclude that Gal1 is necessary to direct the typical accumulation of macrophages in the injured peripheral nerve, and that Gal1 is sufficient to promote macrophage accumulation in the uninjured nerve of wild-type mice.


Asunto(s)
Galectina 1/fisiología , Traumatismos de los Nervios Periféricos , Nervios Periféricos/inmunología , Animales , Axotomía , Galectina 1/genética , Galectina 1/farmacología , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunidad Celular/fisiología , Inmunohistoquímica , Macrófagos/patología , Ratones , Ratones Noqueados , Neuronas/trasplante , Nervio Ciático/lesiones , Nervio Ciático/patología , Degeneración Walleriana/inmunología
20.
Curr Top Microbiol Immunol ; 336: 169-86, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19688334

RESUMEN

Peripheral nerve injury triggers a series of responses in the injured nerve, such as the dissolution of distal axons, the activation of Schwann cells, the production of various proinflammatory mediators, and the infiltration of circulating immune cells. These orchestrated events regulate the degeneration and subsequent regeneration of the injured nerve. In addition, peripheral nerve injury often accompanies chronic pain. Studies in this field have revealed that spinal cord microglia activation plays a critical role in the development of pain hypersensitivity. Recent studies using genetically modified mice indicate that Toll-like receptors (TLRs) are involved in nerve degeneration (Wallerian degeneration) and chronic pain (neuropathic pain) development after nerve injury. Here, we review studies that have implicated TLRs in mediating nerve degeneration/regeneration and neuropathic pain following nerve injury. In addition, we discuss possible mechanisms underlying the roles of TLRs in these neurological disorders.


Asunto(s)
Regeneración Nerviosa/inmunología , Dolor/inmunología , Traumatismos de los Nervios Periféricos , Receptores Toll-Like/inmunología , Degeneración Walleriana/inmunología , Animales , Humanos , Nervios Periféricos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...