Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.382
Filtrar
1.
J Nanobiotechnology ; 22(1): 229, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720321

RESUMEN

Efficiently removing excess reactive oxygen species (ROS) generated by various factors on the ocular surface is a promising strategy for preventing the development of dry eye disease (DED). The currently available eye drops for DED treatment are palliative, short-lived and frequently administered due to the short precorneal residence time. Here, we developed nanozyme-based eye drops for DED by exploiting borate-mediated dynamic covalent complexation between n-FeZIF-8 nanozymes (n-Z(Fe)) and poly(vinyl alcohol) (PVA) to overcome these problems. The resultant formulation (PBnZ), which has dual-ROS scavenging abilities and prolonged corneal retention can effectively reduce oxidative stress, thereby providing an excellent preventive effect to alleviate DED. In vitro and in vivo experiments revealed that PBnZ could eliminate excess ROS through both its multienzyme-like activity and the ROS-scavenging activity of borate bonds. The positively charged nanozyme-based eye drops displayed a longer precorneal residence time due to physical adhesion and the dynamic borate bonds between phenyboronic acid and PVA or o-diol with mucin. The in vivo results showed that eye drops could effectively alleviate DED. These dual-function PBnZ nanozyme-based eye drops can provide insights into the development of novel treatment strategies for DED and other ROS-mediated inflammatory diseases and a rationale for the application of nanomaterials in clinical settings.


Asunto(s)
Síndromes de Ojo Seco , Soluciones Oftálmicas , Especies Reactivas de Oxígeno , Soluciones Oftálmicas/química , Soluciones Oftálmicas/farmacología , Síndromes de Ojo Seco/tratamiento farmacológico , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Córnea/efectos de los fármacos , Córnea/metabolismo , Alcohol Polivinílico/química , Humanos , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Boratos/química , Nanopartículas/química , Masculino
2.
Sci Rep ; 14(1): 10145, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698070

RESUMEN

For centuries, medicinal plants have served as the cornerstone for traditional health care systems and same practice is still prevalent today. In the Himalayan region, Saussurea heteromalla holds a significant place in traditional medicine and is used to address various health issues. Despite its historical use, little exploration has focused on its potential for scavenging free radicals and reducing inflammation. Hence, our current study aims to investigate the free radical scavenging capabilities of S. heteromalla extracts. The n-hexane extract of entire plant revealed promising activity. This extract underwent extensive extraction on a larger scale. Subsequent purification, employing column chromatography, HPLC-DAD techniques, led to the identification of active compounds, confirmed via GC-MS and the NIST database as 1-O-butyl 2-O-octyl benzene-1,2-dicarboxylate and 2,4-ditert-butylphenol. Assessing the free radical scavenging properties involved utilizing RAW-264.7 macrophages activated by lipopolysaccharides. Notably, the compound 2,4-di-tert-butylphenol exhibited remarkable scavenging abilities, demonstrating over 80% inhibition of Nitric oxide. This study stands as the inaugural report on the isolation of these compounds from S. heteromalla.


Asunto(s)
Antioxidantes , Cromatografía de Gases y Espectrometría de Masas , Macrófagos , Óxido Nítrico , Extractos Vegetales , Saussurea , Saussurea/química , Ratones , Óxido Nítrico/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Células RAW 264.7 , Antioxidantes/farmacología , Antioxidantes/química , Lipopolisacáridos/farmacología , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química
3.
Sci Rep ; 14(1): 9195, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649707

RESUMEN

The development of novel antioxidant compounds with high efficacy and low toxicity is of utmost importance in the medicine and food industries. Moreover, with increasing concerns about the safety of synthetic components, scientists are beginning to search for natural sources of antioxidants, especially essential oils (EOs). The combination of EOs may produce a higher scavenging profile than a single oil due to better chemical diversity in the mixture. Therefore, this exploratory study aims to assess the antioxidant activity of three EOs extracted from Cymbopogon flexuosus, Carum carvi, and Acorus calamus in individual and combined forms using the augmented-simplex design methodology. The in vitro antioxidant assays were performed using DPPH and ABTS radical scavenging approaches. The results of the Chromatography Gas-Mass spectrometry (CG-MS) characterization showed that citral (29.62%) and niral (27.32%) are the main components for C. flexuosus, while D-carvone (62.09%) and D-limonene (29.58%) are the most dominant substances in C. carvi. By contrast, ß-asarone (69.11%) was identified as the principal component of A. calamus (30.2%). The individual EO exhibits variable scavenging activities against ABTS and DPPH radicals. These effects were enhanced through the mixture of the three EOs. The optimal antioxidant formulation consisted of 20% C. flexuosus, 53% C. carvi, and 27% A. calamus for DPPHIC50. Whereas 17% C. flexuosus, 43% C. carvi, and 40% A. calamus is the best combination leading to the highest scavenging activity against ABTS radical. These findings suggest a new research avenue for EOs combinations to be developed as novel natural formulations useful in food and biopharmaceutical products.


Asunto(s)
Acorus , Antioxidantes , Carum , Cymbopogon , Aceites Volátiles , Extractos Vegetales , Cymbopogon/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Acorus/química , Carum/química , Cromatografía de Gases y Espectrometría de Masas , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/química , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología
4.
Biomed Pharmacother ; 174: 116540, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579400

RESUMEN

Rheumatoid arthritis (RA) is characterized by high level of reactive oxygen species (ROS) and proinflammatory cytokines, which facilitate the activation of the inflammatory signaling such as NF-κB pathway and exacerbate the development of inflammation. Herein, we designed a nanodrug by encapsulating the NO donor S-nitrosoglutathione (GSNO) into an emulsion and coating the surface with a polydopamine (PDA) layer to yield GSNO@PDA, which simultaneously scavenged the extra ROS and suppressed NF-κB signaling for potent RA treatment. To enhance the cellular uptake and NO generation efficiency, dextran sulfate (DS) and Cu2+ were anchored on the surface of GSNO@PDA to obtain the final formulation GSNO@PDA@DS. Our results demonstrated that GSNO@PDA@DS were successfully prepared and the modification of DS effectively boosted the cellular uptake of GSNO@PDA@DS. Moreover, GSNO@PDA@DS lowered cellular ROS and elevated intracellular NO, resulting in a decrease of M1 phenotype, inhibition of NF-κB pathway and down-regulation of proinflammatory cytokine tumor necrosis factor-α (TNF-α). Further in vivo studies confirmed that GSNO@PDA@DS significantly relieved symptoms and bone erosion by regulating the microenvironment of RA, highlighting the potential of GSNO@PDA@DS for RA therapy through ROS scavenging and NO-mediated suppression of inflammatory signaling.


Asunto(s)
Artritis Reumatoide , FN-kappa B , Donantes de Óxido Nítrico , Polímeros , Especies Reactivas de Oxígeno , S-Nitrosoglutatión , Especies Reactivas de Oxígeno/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Animales , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/administración & dosificación , Ratones , FN-kappa B/metabolismo , S-Nitrosoglutatión/farmacología , S-Nitrosoglutatión/administración & dosificación , Células RAW 264.7 , Polímeros/química , Indoles/farmacología , Indoles/administración & dosificación , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/administración & dosificación , Sinergismo Farmacológico , Masculino , Transducción de Señal/efectos de los fármacos , Sulfato de Dextran , Factor de Necrosis Tumoral alfa/metabolismo , Óxido Nítrico/metabolismo , Sistemas de Liberación de Medicamentos/métodos
5.
Int J Biol Macromol ; 266(Pt 2): 131357, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580010

RESUMEN

The microenvironment of bone defect site is vital for bone regeneration. Severe bone defect is often accompanied with severe inflammation and elevated generation of reactive oxygen species (ROS) during bone repair. In recent years, the unfriendly local microenvironment has been paid more and more attention. Some bioactive materials with the ability to regulate the microenvironment to promote bone regeneration urgently need to be developed. Here, we develop a multifunctional composite hydrogel composed of photo-responsive methacrylate silk fibroin (SFMA), laponite (LAP) nanocomposite and tannic acid (TA), aiming to endow hydrogel with antioxidant, anti-inflammatory and osteogenic induction ability. Characterization results confirmed that the SFMA-LAP@TA hydrogel could significantly improve the mechanical properties of hydrogel. The ROS-Scavenging ability of the hydrogel enabled bone marrow mesenchymal stem cells (BMSCs) to survive against H2O2-induced oxidative stress. In addition, the SFMA-LAP@TA hydrogel effectively decreased the expression of pro-inflammatory factors in RAW264.7. More importantly, the SFMA-LAP@TA hydrogel could enhance the expression of osteogenic markers of BMSCs under inflammatory condition and greatly promote new bone formation in a critical-sized cranial defect model. Above all, the multifunctional hydrogel could effectively promote bone regeneration in vitro and in vivo by scavenging ROS and reducing inflammation, providing a prospective strategy for bone regeneration.


Asunto(s)
Regeneración Ósea , Fibroínas , Hidrogeles , Inflamación , Células Madre Mesenquimatosas , Nanocompuestos , Osteogénesis , Polifenoles , Especies Reactivas de Oxígeno , Taninos , Regeneración Ósea/efectos de los fármacos , Animales , Fibroínas/química , Fibroínas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Taninos/química , Taninos/farmacología , Ratones , Inflamación/tratamiento farmacológico , Nanocompuestos/química , Hidrogeles/química , Hidrogeles/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células RAW 264.7 , Osteogénesis/efectos de los fármacos , Metacrilatos/química , Metacrilatos/farmacología , Ratas , Estrés Oxidativo/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química
6.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474192

RESUMEN

The brain is susceptible to oxidative stress, which is associated with various neurological diseases. Edaravone (MCI-186, 3-methyl-1 pheny-2-pyrazolin-5-one), a free radical scavenger, has promising effects by quenching hydroxyl radicals (∙OH) and inhibiting both ∙OH-dependent and ∙OH-independent lipid peroxidation. Edaravone was initially developed in Japan as a neuroprotective agent for acute cerebral infarction and was later applied clinically to treat amyotrophic lateral sclerosis (ALS), a neurodegenerative disease. There is accumulating evidence for the therapeutic effects of edaravone in a wide range of diseases related to oxidative stress, including ischemic stroke, ALS, Alzheimer's disease, and placental ischemia. These neuroprotective effects have expanded the potential applications of edaravone. Data from experimental animal models support its safety for long-term use, implying broader applications in various neurodegenerative diseases. In this review, we explain the unique characteristics of edaravone, summarize recent findings for specific diseases, and discuss its prospects for future therapeutic applications.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Animales , Femenino , Embarazo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Antioxidantes/uso terapéutico , Antipirina , Edaravona/farmacología , Edaravona/uso terapéutico , Depuradores de Radicales Libres/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Placenta
7.
Biomater Sci ; 12(9): 2312-2320, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38497434

RESUMEN

Postsurgical treatment comprehensively benefits from the application of tissue-adhesive injectable hydrogels, which reduce postoperative complications by promoting wound closure and tissue regeneration. Although various hydrogels have been employed as clinical tissue adhesives, many exhibit deficiencies in adhesive strength under wet conditions or in immunomodulatory functions. Herein, we report the development of reactive oxygen species (ROS) scavenging and tissue-adhesive injectable hydrogels composed of polyamine-modified gelatin crosslinked with the 4-arm poly (ethylene glycol) crosslinker. Polyamine-modified gelatin was particularly potent in suppressing the secretion of proinflammatory cytokines from stimulated primary macrophages. This effect is attributed to its ability to scavenge ROS and inhibit the nuclear translocation of nuclear factor kappa-B. Polyamine-modified gelatin-based hydrogels exhibited ROS scavenging abilities and enhanced tissue adhesive strength on collagen casing. Notably, the hydrogel demonstrated exceptional tissue adhesive properties in a wet environment, as evidenced by its performance using porcine small intestine tissue. This approach holds significant promise for designing immunomodulatory hydrogels with superior tissue adhesion strength compared to conventional medical materials, thereby contributing to advancements in minimally invasive surgical techniques.


Asunto(s)
Gelatina , Hidrogeles , Especies Reactivas de Oxígeno , Adhesivos Tisulares , Hidrogeles/química , Hidrogeles/administración & dosificación , Hidrogeles/farmacología , Animales , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología , Adhesivos Tisulares/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Ratones , Porcinos , Gelatina/química , Polietileneimina/química , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/administración & dosificación , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Polietilenglicoles/química , Inyecciones , Citocinas/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/efectos de los fármacos
8.
Int J Med Mushrooms ; 26(3): 67-76, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505904

RESUMEN

Five kinds of exopolysaccharides (EPS) were obtained by fermentation of Scleroderma areolatum Ehrenb. with sucrose, glucose, maltose, lactose, and fructose as carbon sources. Antioxidant abilities of the obtained EPSs were evaluated by inhibiting AAPH, HO·, and glutathione (GS·) induced oxidation of DNA and quenching 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS· and galvinoxyl radicals. The effects of carbon sources on the antioxidant properties of EPSs could be examined. The results showed that five EPSs can effectively inhibit radicals induced oxidation of DNA, and the thiobarbituric acid reactive substances (TBARS) percentages were 44.7%-80.8%, 52.3%-77.5%, and 44.7%-73.3% in inhibiting AAPH, HO·, and GS· induced oxidation of DNA, respectively. All five EPSs could scavenge ABTS· and galvinoxyh, and exhibit superior activity in scavenging free radicals. Antioxidant abilities of EPS with fructose as carbon source were highest among five EPS.


Asunto(s)
Amidinas , Antioxidantes , Basidiomycota , Benzotiazoles , Carbono , Ácidos Sulfónicos , Antioxidantes/farmacología , Antioxidantes/química , ADN/química , Fructosa , Depuradores de Radicales Libres/farmacología
9.
Int J Biol Macromol ; 267(Pt 1): 131228, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554923

RESUMEN

The extremely low antioxidant, photocatalytic, and antibacterial properties of cellulose limit its application in the biomedical and environmental sectors. To improve these properties, nanohybrides were prepared by mixing carboxylated cellulose nanocrystals (CCNCs) and zinc nitrate hexahydrate. Data from FTIR, XRD, DLS, and SEM spectra showed that, ZnO nanoparticles, with a size ranging from 94 to 351 nm and the smallest nanoparticle size of 164.18 nm, were loaded onto CCNCs. CCNCs/ZnO1 nanohybrids demonstrated superior antibacterial, photocatalytic, and antioxidant performance. More considerable antibacterial activity was shown with a zone of inhibition ranging from 26.00 ± 1.00 to 40.33 ± 2.08 mm and from 31.66 ± 3.51 to 41.33 ± 1.15 mm against Gram-positive and Gram-negative bacteria, respectively. Regarding photodegradation properties, the maximum value (∼91.52 %) of photocatalytic methylene blue degradation was observed after 75 min exposure to a UV lamp. At a concentration of 125.00 µm/ml of the CCNC/ZnO1 nanohybrids sample, 53.15 ± 1.03 % DPPH scavenging activity was obtained with an IC50 value of 117.66 µm/ml. A facile, cost-effective, one-step synthesis technique was applied to fabricate CCNCs/ZnO nanohybrids at mild temperature using Oxytenanthera abyssinica carboxylated cellulose nanocrystals as biotemplate. The result showed that CCNCs/ZnO nanohybrids possess potential applications in developing advanced functional materials for dye removal and antibacterial and antioxidant applications.


Asunto(s)
Antibacterianos , Celulosa , Depuradores de Radicales Libres , Nanopartículas , Nitratos , Óxido de Zinc , Celulosa/química , Óxido de Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Nanopartículas/química , Catálisis , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/síntesis química , Compuestos de Zinc/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/síntesis química , Pruebas de Sensibilidad Microbiana
10.
Int J Biol Macromol ; 266(Pt 1): 131106, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552685

RESUMEN

The process of diabetic wound healing was influenced by the excessive proliferation of reactive oxygen species (ROS). Therefore, in the process of healing diabetic wounds, it was crucial to removing ROS. This study designed composited nanoparticles: KBP, consisted by Konjac glucomannan, bovine serum albumin, and Prussian blue. Then they were embedded in Konjac glucomannan and hydroxypropyl trimethylammonium chloride chitosan composite hydrogel (KH), The KBP@KH hydrogel finally achieved excellent efficacy in diabetic wound healing. The in vitro and in vivo experiments demonstrated that KPB nanoparticles exhibited favorable ROS scavenging capability and biosafety. The KBP@KH hydrogel not only effectively eliminated ROS from diabetic wounds, but also exhibited excellent wound adaptability. The KBP@KH hydrogel facilitated angiogenesis and suppressed the production of inflammatory factors. Overall, the KBP@KH hydrogel dressing was characterized by its user-friendly nature, safety, and high efficiency.


Asunto(s)
Antioxidantes , Diabetes Mellitus Experimental , Ferrocianuros , Hidrogeles , Mananos , Nanocompuestos , Especies Reactivas de Oxígeno , Albúmina Sérica Bovina , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Ferrocianuros/química , Ferrocianuros/farmacología , Nanocompuestos/química , Especies Reactivas de Oxígeno/metabolismo , Albúmina Sérica Bovina/química , Mananos/química , Mananos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratones , Vendajes , Ratas , Masculino , Quitosano/química , Quitosano/análogos & derivados , Quitosano/farmacología , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química , Bovinos , Humanos
11.
Int J Biol Macromol ; 262(Pt 2): 130260, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38368984

RESUMEN

Radical scavengers were employed to evaluate the influence of various active species (•OH, •O, and H2O2) on the rheological properties, antioxidant activity, and molecular conformation of chitosan under solution plasma process (SPP) degradation. ESR analysis showed that •OH and •O radicals played important roles in SPP degradation. The results of rheological properties and antioxidant activity indicated that the •OH scavenger (tert-butanol), •O scavenger (1, 4-benzoquinone), and H2O2 scavenger (MnO2) remarkably inhibited the decrease of G' and G" of the degraded chitosan, the formation of gel structure, and the increase of antioxidant activity. The analysis of molecular conformation of the chitosan by particle size analysis, atomic force microscopy (AFM), and high performance size exclusion chromatography coupled with multi-angle laser light scattering (HPSEC-MALLS) revealed that the decrease of particle size, molecular aggregation, and molecular weight of chitosan was inhibited after the addition of radical scavengers. An evident effect of radical scavengers on the hard sphere conformation of chitosan was observed. It was found that the above effects were strongly dependent on the scavenger concentration. These results proved that •OH, •O, and H2O2 played important roles in SPP treatment. For the rheological properties and molecular conformation, H2O2 exhibited the greatest impact. For the antioxidant activity and molecular weight, •OH presented the biggest influence. Besides, •O expressed the weakest effect. This study will be beneficial to reveal the action mechanisms of SPP technology to the degradation of chitosan.


Asunto(s)
Antioxidantes , Quitosano , Antioxidantes/farmacología , Antioxidantes/química , Quitosano/química , Peróxido de Hidrógeno/química , Compuestos de Manganeso , Óxidos , Radicales Libres , Conformación Molecular , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química
12.
Adv Healthc Mater ; 13(12): e2303229, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38298062

RESUMEN

Diabetic wounds are a prevalent and devastating complication of diabetes, which may impede their healing and regeneration. In diabetic wounds, excess reactive oxygen species (ROS) activate the nuclear factor kappa-B pathway, leading to transcriptional silencing of nuclear factor erythroid 2-related factor 2 (Nrf2), resulting in a vicious cycle of oxidative stress and inflammation. Conventional nanozymes have limitations in preventing the continuous production of ROS, including the most oxidizing reactive hydroxyl radical (·OH), although they can remove pre-existing ROS. Herein, a novel antioxidant nanoplatform addresses this challenge by incorporating JSH-23 into the mesoporous of cupric-doped cerium oxide nanozymes. Additionally, for rapid wound adaptability and durable tissue adhesion, a nanozyme hydrogel spray consisting of oxidized sodium alginate and methacrylate gelatin is constructed, named OG@CCJs. This platform resurrects Nrf2 transcriptional activity of macrophages in vitro, curbing the production of ROS at its source, particularly ·OH, while enabling the nanozymes to scavenge previously generated ROS. OG@CCJs significantly alleviate oxidative stress in diabetic wounds in vivo, promoting wound healing. Overall, the proposed nanozyme-hydrogel spray with enhanced ·OH-scavenging activity uses a "two-track" antioxidant strategy to rebuild the antioxidant defense barrier of macrophages. This pioneering approach highlights the tremendous potential of OG@CCJs for facilitating diabetic wound healing.


Asunto(s)
Cerio , Cobre , Macrófagos , Factor 2 Relacionado con NF-E2 , Cicatrización de Heridas , Factor 2 Relacionado con NF-E2/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Animales , Ratones , Cerio/química , Cerio/farmacología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Cobre/química , Cobre/farmacología , Células RAW 264.7 , Diabetes Mellitus Experimental/metabolismo , Radical Hidroxilo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Masculino , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química , Antioxidantes/farmacología , Antioxidantes/química
13.
Chem Biodivers ; 21(5): e202302115, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38415904

RESUMEN

There is a burgeoning focus on utilizing the antifungal and antioxidant properties of essential oils derived from various plants as a modern and natural approach to combat the growth of fungi that contaminate food. In this study, we used essential oils extracted from Thymus daenensis Celak. subsp. daenensis to address three mycotoxin-producing species of Aspergillus, specifically A. flavus, A. parasiticus, and A. niger, all of which are recognized contaminants of food and agricultural products. Concurrently, the antioxidant properties of the essential oils were evaluated, revealing their noteworthy role in the antifungal activity. Essential oils were derived from T. daenensis subsp. daenensis was observed to have a significant inhibitory effect on all three species of Aspergillus, as evidenced by the minimum inhibitory concentration (MIC) ranging from 575 to 707 ppm and the half-maximal inhibitory concentration (IC50) ranging from 237 to 280 ppm. These results confirm the strong antifungal activity of the essential oils. Furthermore, the essential oil exhibited free radical scavenging activity, resulting in an EC50 value of 37.1 µg/ml. In summary, T. daenensis subsp. daenensis essential oil demonstrated a competitive advantage over other similar plants and synthetic antibiotics. This indicates the promising potential of this essential oil as a natural antifungal agent to control Aspergillus growth and mycotoxin contamination. It offers an alternative or complementary approach to conventional antifungal agents and could be a valuable addition to the arsenal of natural remedies to address fungal contamination in food and agricultural products.


Asunto(s)
Antifúngicos , Aspergillus , Depuradores de Radicales Libres , Pruebas de Sensibilidad Microbiana , Aceites Volátiles , Timol , Thymus (Planta) , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Aspergillus/efectos de los fármacos , Aspergillus/química , Thymus (Planta)/química , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química , Timol/farmacología , Timol/química , Monoterpenos/farmacología , Monoterpenos/química , Monoterpenos/aislamiento & purificación
14.
Drug Res (Stuttg) ; 74(2): 67-76, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38346682

RESUMEN

Parkinson's disease is the loss of dopaminergic neurons in the substantial nigra part of the brain leading to neurodegeneration. Whereas, reactive oxygen species and mitochondrial impairment are considered to be the major pathophysiology of neurodegeneration. The benzylidene-based 2-chloroquinolin derivatives were synthesized and characterized by FT-IR, NMR, and MS spectrometry which were screened using various in-silico approaches. The designed compounds were further assessed using in-vitro cytotoxicity assay by the MTT method, DPPH assay, and Glutathione measurements in the SHSY5Y neuroblastoma cell lines. The compounds JD-7 and JD-4 were found to have a binding affinity of - 7.941 and - 7.633 kcal/mol with an MMGBSA score of - 64.614 and - 62.817 kcal/mol. The compound JD-7 showed the highest % Cell viability of 87.64% at a minimal dose of 125 µg/mL by the MTT method. The neurotoxicity effects were observed at increasing concentrations from 0 to 125, 250, and 500 µg/mL. Further, free radical scavenging activity for the JD-7 was found to be 36.55 at lowest 125 µg/mL concentrations. At 125 µg/mL, GSH % and GSSG % were found to be increasing in rotenone treatment, whereas JD-7 and JD-4 were found in the downregulation of glutathione level in the pre-treated rotenone SHSY5Y neuroblastoma cell lines. The benzylidene-based chloroquinolin derivatives were synthesized, and among the compounds JD-1 to JD-13, the compounds JD-7, and JD-4 were found to have having highest % cell viability, free radical scavenging molecules, and glutathione levels in the SHSY5Y neuroblastoma cell lines and could be used as free radical scavengers in Parkinson's disease.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química , Rotenona , Espectroscopía Infrarroja por Transformada de Fourier , Especies Reactivas de Oxígeno/metabolismo , Glutatión/metabolismo
15.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338912

RESUMEN

Despite significant advancements in understanding the causes and progression of tumors, cancer remains one of the leading causes of death worldwide. In light of advances in cancer therapy, there has been a growing interest in drug repurposing, which involves exploring new uses for medications that are already approved for clinical use. One such medication is edaravone, which is currently used to manage patients with cerebral infarction and amyotrophic lateral sclerosis. Due to its antioxidant and anti-inflammatory properties, edaravone has also been investigated for its potential activities in treating cancer, notably as an anti-proliferative and cytoprotective drug against side effects induced by traditional cancer therapies. This comprehensive review aims to provide updates on the various applications of edaravone in cancer therapy. It explores its potential as a standalone antitumor drug, either used alone or in combination with other medications, as well as its role as an adjuvant to mitigate the side effects of conventional anticancer treatments.


Asunto(s)
Esclerosis Amiotrófica Lateral , Neoplasias , Fármacos Neuroprotectores , Humanos , Edaravona/uso terapéutico , Fármacos Neuroprotectores/farmacología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Antioxidantes/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/inducido químicamente , Depuradores de Radicales Libres/farmacología
16.
Neuroscience ; 540: 1-11, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38242279

RESUMEN

Mitochondrial dysfunction, which results in the overproduction of oxygen free radicals, is a crucial mechanism underlying cerebral ischemia-reperfusion injury. 4'-Hydroxyl-2-substituted phenylnitronyl nitroxide (HPN), which is an antioxidant and free radical scavenger, can effectively scavenge oxygen free radicals, suggesting its potential as a protective agent against cerebral ischemia-reperfusion injury. In this study, we investigated the effects of HPN on mitochondrial function and apoptosis following cerebral ischemia/reperfusion injury in rats. Healthy adult SD rats were chosen as the experimental subjects, and the rat ischemia/reperfusion injury model was generated using the modified Zea Longa method. The administration of HPN significantly enhanced the activity of endogenous antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT). Additionally, HPN effectively preserved the morphology and function of mitochondria, reduced the protein and gene expression of Caspase-3 and Bax, increased the protein and gene expression of Bcl-2, mitigated neuronal apoptosis, improved neurological deficits, and decreased the volume of cerebral infarction. Of interest, the protective effect on brain tissue was more evident with increasing doses of HPN. These findings indicate that HPN can serve as an effective protective agent against cerebral ischemia-reperfusion injury.


Asunto(s)
Isquemia Encefálica , Enfermedades Mitocondriales , Óxidos de Nitrógeno , Daño por Reperfusión , Humanos , Ratas , Animales , Depuradores de Radicales Libres/farmacología , Ratas Sprague-Dawley , Estrés Oxidativo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral , Antioxidantes/farmacología , Apoptosis , Superóxido Dismutasa/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Sustancias Protectoras/farmacología , Reperfusión , Radicales Libres
17.
Drug Chem Toxicol ; 47(2): 227-234, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37553904

RESUMEN

In recent years, the cardiotoxicity and hepatotoxicity induced by chemotherapeutic drugs such as cisplatin (CP) have become significant issues. The current research looks into the effects of sodium hydrosulfide (NaHS) on CP-induced hepatotoxicity and cardiotoxicity in rats. A total of 32 male Sprague Dawley rats were separated into four different groups: (1) control group, received only normal saline; (2) NaHS group, was intraperitoneally injected with NaHS (200 µg/kg/d, dissolved in saline) for 15 days; (3) CP group, was intraperitoneally injected only one dose of CP (5 mg/kg) and (4) CP plus NaHS group, received CP along with NaHS. Blood and tissues samples were harvested for biochemical, histopathological, and immunohistochemical investigations. To determine the data's statistical significance, a one-way analysis of variance was used. CP injection significantly increased alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), Creatine phospho kinase (CK-MB), cholesterol, low-density lipoprotein (LDL), triglyceride (TG), and lipid peroxidation levels, while high-density lipoprotein (HDL), albumin, glutathione peroxidase, superoxide dismutase, and catalase (CAT) levels were significantly reduced with pathological alterations in liver and heart tissues. Co-treatment NaHS with CP ameliorates the biochemical and histological parameters. Also, Treatment solely with CP resulted in increased tissue expression of interleukin-1ß (IL-1ß) in liver and heart but co-treatment NaHS with CP reduced the expression of this inflammatory factor. We conclude that NaHS operates in the liver and heart as an anti-inflammatory and powerful free radicals' scavenger to inhibit the toxic effects of CP, both at the biochemical and histopathological levels.


NaHS protects the liver and heart against Cisplatin-induced toxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Cisplatino , Sulfuros , Ratas , Masculino , Animales , Cisplatino/toxicidad , Cardiotoxicidad , Ratas Sprague-Dawley , Hígado , Depuradores de Radicales Libres/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Estrés Oxidativo , Antioxidantes/farmacología
18.
Life Sci ; 336: 122319, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38035993

RESUMEN

Various strategies can be employed to prevent and manage altitude illnesses, including habituation, oxygenation, nutritional support, and medication. Nevertheless, the utilization of drugs for the prevention and treatment of hypoxia is accompanied by certain adverse effects. Consequently, the quest for medications that exhibit minimal side effects while demonstrating high efficacy remains a prominent area of research. In this context, it is noteworthy that free radical scavengers exhibit remarkable anti-hypoxia activity. These scavengers effectively eliminate excessive free radicals and mitigate the production of reactive oxygen species (ROS), thereby safeguarding the body against oxidative damage induced by plateau hypoxia. In this review, we aim to elucidate the pathogenesis of plateau diseases that are triggered by hypoxia-induced oxidative stress at high altitudes. Additionally, we present a range of free radical scavengers as potential therapeutic and preventive approaches to mitigate the occurrence of common diseases associated with hypoxia at high altitudes.


Asunto(s)
Mal de Altura , Depuradores de Radicales Libres , Humanos , Depuradores de Radicales Libres/farmacología , Mal de Altura/tratamiento farmacológico , Altitud , Estrés Oxidativo , Hipoxia/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico
19.
J Phys Chem B ; 127(51): 11045-11053, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38103025

RESUMEN

Rubiadin (RBD), an anthraquinone derivative, is obtained from Rubia cordifolia, a plant species classified under the Rubiaceae family. Rubiadin has proven beneficial properties, such as anticancer, neuroprotective, anti-inflammatory, and antidiabetic activity. The antioxidant activity of this molecule was suggested by some experimental results but has not been clearly established thus far. In this study, we employ DFT calculations to comprehensively assess the mechanism and kinetics of the HO•/HOO• radical scavenging activity of this compound in relation to solvents. RBD showed moderate HO• radical scavenging activity, with rate constants of 2.95 × 108 and 1.82 × 1010 M-1 s-1 in lipid and polar media, respectively. In the aqueous solution, the compound exhibited remarkable superoxide anion radical scavenging activity (k = 4.93 × 108 M-1 s-1) but modest HOO• antiradical activity. RBD also showed promising antiradical activity against a variety of radicals (CCl3O•, CCl3OO•, NO2, SO4•-, and N3•), while experimental and computational results confirmed that RBD has moderate activity in DPPH/ABTS•+ assays. Thus, RBD is predicted to be a good, albeit selective, radical scavenger.


Asunto(s)
Antraquinonas , Antioxidantes , Antioxidantes/farmacología , Antraquinonas/farmacología , Extractos Vegetales , Solventes , Depuradores de Radicales Libres/farmacología
20.
J Org Chem ; 88(24): 17237-17248, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38011833

RESUMEN

Rosmarinic acid (RA) is reported in separate studies to be either an inducer or reliever of oxidative stress, and this contradiction has not been resolved. In this study, we present a comprehensive examination of the radical scavenging activity of RA using density functional theory calculations in comparison with experimental data. In model physiological media, RA exhibited strong HO• radical scavenging activity with overall rate constant values of 2.89 × 1010 and 3.86 × 109 M-1 s-1. RA is anticipated to exhibit excellent scavenging properties for HOO• in an aqueous environment (koverall = 3.18 × 108 M-1 s-1, ≈2446 times of Trolox) following the hydrogen transfer and single electron transfer pathways of the dianion state. The neutral form of the activity is equally noteworthy in a lipid environment (koverall = 3.16 × 104 M-1 s-1) by the formal hydrogen transfer mechanism of the O6(7,15,16)-H bonds. Chelation with RA may prevent Cu(II) from reduction by the ascorbic acid anion (AA-), hence blocking the OIL-1 pathway, suggesting that RA in an aqueous environment also serves as an OIL-1 antioxidant. The computational findings exhibit strong concurrence with the experimental observations, indicating that RA possesses a significant efficacy as a radical scavenger in physiological environments.


Asunto(s)
Antioxidantes , Antioxidantes/farmacología , Antioxidantes/química , Estrés Oxidativo , Ácido Ascórbico , Agua/química , Hidrógeno , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA