Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 432
Filtrar
1.
J Agric Food Chem ; 72(19): 10995-11001, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701424

RESUMEN

The titer of the microbial fermentation products can be increased by enzyme engineering. l-Sorbosone dehydrogenase (SNDH) is a key enzyme in the production of 2-keto-l-gulonic acid (2-KLG), which is the precursor of vitamin C. Enhancing the activity of SNDH may have a positive impact on 2-KLG production. In this study, a computer-aided semirational design of SNDH was conducted. Based on the analysis of SNDH's substrate pocket and multiple sequence alignment, three modification strategies were established: (1) expanding the entrance of SNDH's substrate pocket, (2) engineering the residues within the substrate pocket, and (3) enhancing the electron transfer of SNDH. Finally, mutants S453A, L460V, and E471D were obtained, whose specific activity was increased by 20, 100, and 10%, respectively. In addition, the ability of Gluconobacter oxidans WSH-004 to synthesize 2-KLG was improved by eliminating H2O2. This study provides mutant enzymes and metabolic engineering strategies for the microbial-fermentation-based production of 2-KLG.


Asunto(s)
Proteínas Bacterianas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Gluconobacter/enzimología , Gluconobacter/genética , Gluconobacter/metabolismo , Azúcares Ácidos/metabolismo , Azúcares Ácidos/química , Fermentación , Ingeniería de Proteínas , Ingeniería Metabólica , Deshidrogenasas de Carbohidratos/metabolismo , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/química , Cinética
2.
Microb Cell Fact ; 23(1): 146, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783303

RESUMEN

BACKGROUND: Cellobiose dehydrogenase (CDH) is an extracellular fungal oxidoreductase with multiple functions in plant biomass degradation. Its primary function as an auxiliary enzyme of lytic polysaccharide monooxygenase (LPMO) facilitates the efficient depolymerization of cellulose, hemicelluloses and other carbohydrate-based polymers. The synergistic action of CDH and LPMO that supports biomass-degrading hydrolases holds significant promise to harness renewable resources for the production of biofuels, chemicals, and modified materials in an environmentally sustainable manner. While previous phylogenetic analyses have identified four distinct classes of CDHs, only class I and II have been biochemically characterized so far. RESULTS: Following a comprehensive database search aimed at identifying CDH sequences belonging to the so far uncharacterized class III for subsequent expression and biochemical characterization, we have curated an extensive compilation of putative CDH amino acid sequences. A sequence similarity network analysis was used to cluster them into the four distinct CDH classes. A total of 1237 sequences encoding putative class III CDHs were extracted from the network and used for phylogenetic analyses. The obtained phylogenetic tree was used to guide the selection of 11 cdhIII genes for recombinant expression in Komagataella phaffii. A small-scale expression screening procedure identified a promising cdhIII gene originating from the plant pathogen Fusarium solani (FsCDH), which was selected for expression optimization by signal peptide shuffling and subsequent production in a 5-L bioreactor. The purified FsCDH exhibits a UV-Vis spectrum and enzymatic activity similar to other characterized CDH classes. CONCLUSION: The successful production and functional characterization of FsCDH proved that class III CDHs are catalytical active enzymes resembling the key properties of class I and class II CDHs. A detailed biochemical characterization based on the established expression and purification strategy can provide new insights into the evolutionary process shaping CDHs and leading to their differentiation into the four distinct classes. The findings have the potential to broaden our understanding of the biocatalytic application of CDH and LPMO for the oxidative depolymerization of polysaccharides.


Asunto(s)
Deshidrogenasas de Carbohidratos , Filogenia , Proteínas Recombinantes , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/enzimología , Celulosa/metabolismo , Secuencia de Aminoácidos
3.
Arch Microbiol ; 206(5): 236, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676717

RESUMEN

Lignocellulolytic enzymes from a novel Myceliophthora verrucosa (5DR) strain was found to potentiate the efficacy of benchmark cellulase during saccharification of acid/alkali treated bagasse by ~ 2.24 fold, indicating it to be an important source of auxiliary enzymes. The De-novo sequencing and analysis of M. verrucosa genome (31.7 Mb) revealed to encode for 7989 putative genes, representing a wide array of CAZymes (366) with a high proportions of auxiliary activity (AA) genes (76). The LC/MS QTOF based secretome analysis of M. verrucosa showed high abundance of glycosyl hydrolases and AA proteins with cellobiose dehydrogenase (CDH) (AA8), being the most prominent auxiliary protein. A gene coding for lytic polysaccharide monooxygenase (LPMO) was expressed in Pichia pastoris and CDH produced by M. verrucosa culture on rice straw based solidified medium were purified and characterized. The mass spectrometry of LPMO catalyzed hydrolytic products of avicel showed the release of both C1/C4 oxidized products, indicating it to be type-3. The lignocellulolytic cocktail comprising of in-house cellulase produced by Aspergillus allahabadii strain spiked with LPMO & CDH exhibited enhanced and better hydrolysis of mild alkali deacetylated (MAD) and unwashed acid pretreated rice straw slurry (UWAP), when compared to Cellic CTec3 at high substrate loading rate.


Asunto(s)
Biomasa , Proteínas Fúngicas , Genoma Fúngico , Lignina , Saccharomycetales , Sordariales , Lignina/metabolismo , Sordariales/genética , Sordariales/enzimología , Sordariales/metabolismo , Hidrólisis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deshidrogenasas de Carbohidratos/metabolismo , Deshidrogenasas de Carbohidratos/genética , Celulosa/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Celulasa/metabolismo , Celulasa/genética
4.
Protein Sci ; 32(8): e4702, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37312580

RESUMEN

Cellobiose dehydrogenase (CDH) is a bioelectrocatalyst that enables direct electron transfer (DET) in biosensors and biofuel cells. The application of this bidomain hemoflavoenzyme for physiological glucose measurements is limited by its acidic pH optimum and slow interdomain electron transfer (IET) at pH 7.5. The reason for this rate-limiting electron transfer step is electrostatic repulsion at the interface between the catalytic dehydrogenase domain and the electron mediating cytochrome domain (CYT). We applied rational interface engineering to accelerate the IET for the pH prevailing in blood or interstitial fluid. Phylogenetic and structural analyses guided the design of 17 variants in which acidic amino acids were mutated at the CYT domain. Five mutations (G71K, D160K, Q174K, D177K, M180K) increased the pH optimum and IET rate. Structure-based analysis of the variants suggested two mechanisms explaining the improvements: electrostatic steering and stabilization of the closed state by hydrogen bonding. Combining the mutations into six combinatorial variants with up to five mutations shifted the pH optimum from 4.5 to 7.0 and increased the IET at pH 7.5 over 12-fold from 0.1 to 1.24 s-1 . While the mutants sustained a high enzymatic activity and even surpassed the IET of the wild-type enzyme, the accumulated positive charges on the CYT domain decreased DET, highlighting the importance of CYT for IET and DET. This study shows that interface engineering is an effective strategy to shift the pH optimum and improve the IET of CDH, but future work needs to maintain the DET of the CYT domain for bioelectronic applications.


Asunto(s)
Deshidrogenasas de Carbohidratos , Electrones , Filogenia , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/química , Citocromos/metabolismo , Transporte de Electrón/fisiología
5.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768294

RESUMEN

Lignin degradation in fungal systems is well characterized. Recently, a potential for lignin depolymerization and modification employing similar enzymatic activities by bacteria is increasingly recognized. The presence of genes annotated as peroxidases in Actinobacteria genomes suggests that these bacteria should contain auxiliary enzymes such as flavin-dependent carbohydrate oxidoreductases. The only auxiliary activity subfamily with significantly similar representatives in bacteria is pyranose oxidase (POx). A biological role of providing H2O2 for peroxidase activation and reduction of radical degradation products suggests an extracellular localization, which has not been established. Analysis of the genomic locus of POX from Kitasatospora aureofaciens (KaPOx), which is similar to fungal POx, revealed a start codon upstream of the originally annotated one, and the additional sequence was considered a putative Tat-signal peptide by computational analysis. We expressed KaPOx including this additional upstream sequence as well as fusion constructs consisting of the additional sequence, the KaPOx mature domain and the fluorescent protein mRFP1 in Streptomyces lividans. The putative signal peptide facilitated secretion of KaPOx and the fusion protein, suggesting a natural extracellular localization and supporting a potential role in providing H2O2 and reducing radical compounds derived from lignin degradation.


Asunto(s)
Deshidrogenasas de Carbohidratos , Lignina , Lignina/metabolismo , Peróxido de Hidrógeno , Oxidorreductasas/metabolismo , Peroxidasas/metabolismo , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Bacterias/metabolismo , Señales de Clasificación de Proteína/genética
6.
J Bacteriol ; 203(19): e0055820, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34309403

RESUMEN

Gluconobacter sp. strain CHM43 oxidizes mannitol to fructose and then oxidizes fructose to 5-keto-d-fructose (5KF) in the periplasmic space. Since NADPH-dependent 5KF reductase was found in the soluble fraction of Gluconobacter spp., 5KF might be transported into the cytoplasm and metabolized. Here, we identified the GLF_2050 gene as the kfr gene encoding 5KF reductase (KFR). A mutant strain devoid of the kfr gene showed lower KFR activity and no 5KF consumption. The crystal structure revealed that KFR is similar to NADP+-dependent shikimate dehydrogenase (SDH), which catalyzes the reversible NADP+-dependent oxidation of shikimate to 3-dehydroshikimate. We found that several amino acid residues in the putative substrate-binding site of KFR were different from those of SDH. Phylogenetic analyses revealed that only a subclass in the SDH family containing KFR conserved such a unique substrate-binding site. We constructed KFR derivatives with amino acid substitutions, including replacement of Asn21 in the substrate-binding site with Ser that is found in SDH. The KFR-N21S derivative showed a strong increase in the Km value for 5KF but a higher shikimate oxidation activity than wild-type KFR, suggesting that Asn21 is important for 5KF binding. In addition, the conserved catalytic dyad Lys72 and Asp108 were individually substituted for Asn. The K72N and D108N derivatives showed only negligible activities without a dramatic change in the Km value for 5KF, suggesting a catalytic mechanism similar to that of SDH. With these data taken together, we suggest that KFR is a new member of the SDH family. IMPORTANCE A limited number of species of acetic acid bacteria, such as Gluconobacter sp. strain CHM43, produce 5-ketofructose, a potential low-calorie sweetener, at a high yield. Here, we show that an NADPH-dependent 5-ketofructose reductase (KFR) is involved in 5-ketofructose degradation, and we characterize this enzyme with respect to its structure, phylogeny, and function. The crystal structure of KFR was similar to that of shikimate dehydrogenase, which is functionally crucial in the shikimate pathway in bacteria and plants. Phylogenetic analysis suggested that KFR is positioned in a small subgroup of the shikimate dehydrogenase family. Catalytically important amino acid residues were also conserved, and their relevance was experimentally validated. Thus, we propose KFR as a new member of shikimate dehydrogenase family.


Asunto(s)
Proteínas Bacterianas/metabolismo , Deshidrogenasas de Carbohidratos/metabolismo , Gluconobacter/enzimología , Proteínas Bacterianas/genética , Deshidrogenasas de Carbohidratos/clasificación , Deshidrogenasas de Carbohidratos/genética , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Gluconobacter/genética , Gluconobacter/metabolismo , Modelos Moleculares , Filogenia , Conformación Proteica
7.
J Microbiol Biotechnol ; 31(8): 1154-1162, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34226414

RESUMEN

The transcriptional capacities of target genes are strongly influenced by promoters, whereas few studies have focused on the development of robust, high-performance and cross-species promoters for wide application in different bacteria. In this work, four novel promoters (Pk.rtufB, Pk.r1, Pk.r2, and Pk.r3) were predicted from Ketogulonicigenium robustum and their inconsistency in the -10 and -35 region nucleotide sequences indicated they were different promoters. Their activities were evaluated by using green fluorescent protein (gfp) as a reporter in different species of bacteria, including K. vulgare SPU B805, Pseudomonas putida KT2440, Paracoccus denitrificans PD1222, Bacillus licheniformis and Raoultella ornithinolytica, due to their importance in metabolic engineering. Our results showed that the four promoters had different activities, with Pk.r1 showing the strongest activity in almost all of the experimental bacteria. By comparison with the commonly used promoters of E. coli (tufB, lac, lacUV5), K. vulgare (Psdh, Psndh) and P. putida KT2440 (JE111411), the four promoters showed significant differences due to only 12.62% nucleotide similarities, and relatively higher ability in regulating target gene expression. Further validation experiments confirmed their ability in initiating the target minCD cassette because of the shape changes under the promoter regulation. The overexpression of sorbose dehydrogenase and cytochrome c551 by Pk.r1 and Pk.r2 resulted in a 22.75% enhancement of 2-KGA yield, indicating their potential for practical application in metabolic engineering. This study demonstrates an example of applying bioinformatics to find new biological components for gene operation and provides four novel promoters with broad suitability, which enriches the usable range of promoters to realize accurate regulation in different genetic backgrounds.


Asunto(s)
Ingeniería Metabólica , Regiones Promotoras Genéticas/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Grupo Citocromo c/genética , Grupo Citocromo c/metabolismo , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Reproducibilidad de los Resultados , Rhodobacteraceae/genética
8.
Cell Death Dis ; 12(3): 277, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33723244

RESUMEN

Glioma stem cells (GSCs) contribute to therapy resistance and poor outcomes for glioma patients. A significant feature of GSCs is their ability to grow in an acidic microenvironment. However, the mechanism underlying the rewiring of their metabolism in low pH remains elusive. Here, using metabolomics and metabolic flux approaches, we cultured GSCs at pH 6.8 and pH 7.4 and found that cells cultured in low pH exhibited increased de novo purine nucleotide biosynthesis activity. The overexpression of glucose-6-phosphate dehydrogenase, encoded by G6PD or H6PD, supports the metabolic dependency of GSCs on nucleotides when cultured under acidic conditions, by enhancing the pentose phosphate pathway (PPP). The high level of reduced glutathione (GSH) under acidic conditions also causes demand for the PPP to provide NADPH. Taken together, upregulation of G6PD/H6PD in the PPP plays an important role in acidic-driven purine metabolic reprogramming and confers a predilection toward glioma progression. Our findings indicate that targeting G6PD/H6PD, which are closely related to glioma patient survival, may serve as a promising therapeutic target for improved glioblastoma therapeutics. An integrated metabolomics and metabolic flux analysis, as well as considering microenvironment and cancer stem cells, provide a precise insight into understanding cancer metabolic reprogramming.


Asunto(s)
Acidosis/metabolismo , Neoplasias Encefálicas/metabolismo , Metabolismo Energético , Glioma/metabolismo , Células Madre Neoplásicas/metabolismo , Purinas/metabolismo , Acidosis/genética , Acidosis/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Línea Celular Tumoral , Glioma/genética , Glioma/patología , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Metabolómica , Células Madre Neoplásicas/patología , Microambiente Tumoral
9.
FEBS Lett ; 595(5): 637-646, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33482017

RESUMEN

Several microorganisms can utilize l-rhamnose as a carbon and energy source through the nonphosphorylative metabolic pathway, in which l-rhamnose 1-dehydrogenase (RhaDH) catalyzes the NAD(P)+ -dependent oxidization of l-rhamnose to l-rhamnono-1,4-lactone. We herein investigated the crystal structures of RhaDH from Azotobacter vinelandii in ligand-free, NAD+ -bound, NADP+ -bound, and l-rhamnose- and NAD+ -bound forms at 1.9, 2.1, 2.4, and 1.6 Å resolution, respectively. The significant interactions with the 2'-phosphate group of NADP+ , but not the 2'-hydroxyl group of NAD+ , were consistent with a preference for NADP+ over NAD+ . The C5-OH and C6-methyl groups of l-rhamnose were recognized by specific residues of RhaDH through hydrogen bonds and hydrophobic contact, respectively, which contribute to the different substrate specificities from other aldose 1-dehydrogenases in the short-chain dehydrogenase/reductase superfamily.


Asunto(s)
Azotobacter vinelandii/enzimología , Proteínas Bacterianas/química , Deshidrogenasas de Carbohidratos/química , Coenzimas/química , NADP/química , Ramnosa/química , Secuencia de Aminoácidos , Azotobacter vinelandii/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Metabolismo de los Hidratos de Carbono , Dominio Catalítico , Clonación Molecular , Coenzimas/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , NADP/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ramnosa/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
10.
Microb Cell Fact ; 20(1): 2, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407462

RESUMEN

BACKGROUND: Cellobiose dehydrogenase from Phanerochaete chrysosporium (PcCDH) is a key enzyme in lignocellulose depolymerization, biosensors and biofuel cells. For these applications, it should retain important molecular and catalytic properties when recombinantly expressed. While homologous expression is time-consuming and the prokaryote Escherichia coli is not suitable for expression of the two-domain flavocytochrome, the yeast Pichia pastoris is hyperglycosylating the enzyme. Fungal expression hosts like Aspergillus niger and Trichoderma reesei were successfully used to express CDH from the ascomycete Corynascus thermophilus. This study describes the expression of basidiomycetes PcCDH in T. reesei (PcCDHTr) and the detailed comparison of its molecular, catalytic and electrochemical properties in comparison with PcCDH expressed by P. chrysosporium and P. pastoris (PcCDHPp). RESULTS: PcCDHTr was recombinantly produced with a yield of 600 U L-1 after 4 days, which is fast compared to the secretion of the enzyme by P. chrysosporium. PcCDHTr and PcCDH were purified to homogeneity by two chromatographic steps. Both enzymes were comparatively characterized in terms of molecular and catalytic properties. The pH optima for electron acceptors are identical for PcCDHTr and PcCDH. The determined FAD cofactor occupancy of 70% for PcCDHTr is higher than for other recombinantly produced CDHs and its catalytic constants are in good accordance with those of PcCDH. Mass spectrometry showed high mannose-type N-glycans on PcCDH, but only single N-acetyl-D-glucosamine additions at the six potential N-glycosylation sites of PcCDHTr, which indicates the presence of an endo-N-acetyl-ß-D-glucosaminidase in the supernatant. CONCLUSIONS: Heterologous production of PcCDHTr is faster and the yield higher than secretion by P. chrysosporium. It also does not need a cellulose-based medium that impedes efficient production and purification of CDH by binding to the polysaccharide. The obtained high uniformity of PcCDHTr glycoforms will be very useful to investigate electron transfer characteristics in biosensors and biofuel cells, which are depending on the spatial restrictions inflicted by high-mannose N-glycan trees. The determined catalytic and electrochemical properties of PcCDHTr are very similar to those of PcCDH and the FAD cofactor occupancy is good, which advocates T. reesei as expression host for engineered PcCDH for biosensors and biofuel cells.


Asunto(s)
Deshidrogenasas de Carbohidratos/metabolismo , Celobiosa/metabolismo , Hypocreales/enzimología , Phanerochaete/enzimología , Proteínas Recombinantes/metabolismo , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/aislamiento & purificación , Glicosilación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Transformación Genética
11.
Cancer Gene Ther ; 28(6): 693-705, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33250514

RESUMEN

Gallbladder cancer (GBC) is a highly malignant cancer with poor prognosis. Extensive studies have reported the vital functionality of several microRNAs (miRNAs) in numerous human cancers, including GBC. Microarray analysis has identified the differentially expressed miR-551b-3p in GBC. Therefore, this study aims to validate the underlying mechanism by which miR-551b-3p participated in epithelial-mesenchymal transition (EMT), invasion and migration of GBCs. Bioinformatic analysis predicted the binding of miR-551b-3p to H6PD. We validated the reduced miR-551b-3p expression and increased H6PD expression in the GBC tissues and GBC cell lines. Artificial modulation of miR-551b-3p and H6PD (down- and upregulation) was conducted to explore their roles in EMT, invasive, and migratory abilities of GBCs, and the tumor-bearing mice were used to determine tumor growth. Overexpression of miR-551b-3p or silencing of H6PD was observed to suppress the expressions of N-cadherin and vimentin, and to promote the expression of E-cadherin, along with reduced invasive and migratory ability of GBCs. Mechanistically, miR-551b-3p could evidently target and inhibit the expression of H6PD. Moreover, in vivo experiments substantiated the tumor-inhibiting activities of miR-551b-3p in nude mice. Conjointly, our study suggests that overexpression of miR-551b-3p inhibited the EMT, migration, and invasion of GBCs by inhibiting the expression of H6PD, indicating that miR-551b-3p may serve as a potential target for future development of therapeutic strategies for GBC.


Asunto(s)
Deshidrogenasas de Carbohidratos/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Vesícula Biliar/genética , MicroARNs/genética , Animales , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Neoplasias de la Vesícula Biliar/patología , Regulación Neoplásica de la Expresión Génica/genética , Xenoinjertos , Humanos , Ratones , Análisis por Micromatrices , Vimentina/genética
12.
Microb Cell Fact ; 19(1): 188, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33008411

RESUMEN

L-rhamnose (6-deoxy-mannose) occurs in nature mainly as a component of certain plant structural polysaccharides and bioactive metabolites but has also been found in some microorganisms and animals. The release of L-rhamnose from these substrates is catalysed by extracellular enzymes including α-L-rhamnosidases, the production of which is induced in its presence. The free sugar enters cells via specific uptake systems where it can be metabolized. Of two L-rhamnose catabolic pathways currently known in microorganisms a non-phosphorylated pathway has been identified in fungi and some bacteria but little is known of the regulatory mechanisms governing it in fungi. In this study two genes (lraA and lraB) are predicted to be involved in the catabolism of L-rhamnose, along with lraC, in the filamentous fungus Aspergillus nidulans. Transcription of all three is co-regulated with that of the genes encoding α-L-rhamnosidases, i.e. induction mediated by the L-rhamnose-responsive transcription factor RhaR and repression of induction in the presence of glucose via a CreA-independent mechanism. The participation of lraA/AN4186 (encoding L-rhamnose dehydrogenase) in L-rhamnose catabolism was revealed by the phenotypes of knock-out mutants and their complemented strains. lraA deletion negatively affects both growth on L-rhamnose and the synthesis of α-L-rhamnosidases, indicating not only the indispensability of this pathway for L-rhamnose utilization but also that a metabolite derived from this sugar is the true physiological inducer.


Asunto(s)
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/genética , Glucosa/metabolismo , Ramnosa/metabolismo , Ureohidrolasas/metabolismo , Aspergillus nidulans/genética , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Regulación Fúngica de la Expresión Génica , Redes y Vías Metabólicas , Fosforilación , Factores de Transcripción
13.
DNA Res ; 27(2)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32531032

RESUMEN

White-rot (WR) fungi are pivotal decomposers of dead organic matter in forest ecosystems and typically use a large array of hydrolytic and oxidative enzymes to deconstruct lignocellulose. However, the extent of lignin and cellulose degradation may vary between species and wood type. Here, we combined comparative genomics, transcriptomics and secretome proteomics to identify conserved enzymatic signatures at the onset of wood-decaying activity within the Basidiomycota genus Pycnoporus. We observed a strong conservation in the genome structures and the repertoires of protein-coding genes across the four Pycnoporus species described to date, despite the species having distinct geographic distributions. We further analysed the early response of P. cinnabarinus, P. coccineus and P. sanguineus to diverse (ligno)-cellulosic substrates. We identified a conserved set of enzymes mobilized by the three species for breaking down cellulose, hemicellulose and pectin. The co-occurrence in the exo-proteomes of H2O2-producing enzymes with H2O2-consuming enzymes was a common feature of the three species, although each enzymatic partner displayed independent transcriptional regulation. Finally, cellobiose dehydrogenase-coding genes were systematically co-regulated with at least one AA9 lytic polysaccharide monooxygenase gene, indicative of enzymatic synergy in vivo. This study highlights a conserved core white-rot fungal enzymatic mechanism behind the wood-decaying process.


Asunto(s)
Deshidrogenasas de Carbohidratos/genética , Proteínas Fúngicas/genética , Lignina/genética , Pycnoporus/enzimología , Deshidrogenasas de Carbohidratos/metabolismo , Celulosa/metabolismo , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Lignina/metabolismo , Filogenia , Pycnoporus/clasificación , Pycnoporus/genética , Madera/metabolismo , Madera/microbiología
14.
Biosci Biotechnol Biochem ; 84(8): 1745-1747, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32427050

RESUMEN

GLUCONOBACTER FRATEURII: CHM 43 have D-mannitol dehydrogenase (quinoprotein glycerol dehydrogenase) and flavoprotein D-fructose dehydrogenase in the membranes. When the two enzymes are functional, D-mannitol is converted to 5-keto-D-fructose with 65% yield when cultivated on D-mannitol. 5-Keto-D-fructose production with almost 100% yield was realized with the resting cells. The method proposed here should give a smart strategy for 5-keto-D-fructose production.


Asunto(s)
Proteínas Bacterianas/metabolismo , Deshidrogenasas de Carbohidratos/genética , Fermentación/genética , Fructosa/análogos & derivados , Gluconobacter/enzimología , Manitol Deshidrogenasas/metabolismo , Proteínas Bacterianas/genética , Deshidrogenasas de Carbohidratos/metabolismo , Membrana Celular/enzimología , Membrana Celular/genética , Fructosa/biosíntesis , Fructosa/aislamiento & purificación , Expresión Génica , Gluconobacter/genética , Humanos , Concentración de Iones de Hidrógeno , Microbiología Industrial , Manitol/metabolismo , Manitol Deshidrogenasas/genética , Estereoisomerismo
15.
Microb Cell Fact ; 19(1): 54, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32131833

RESUMEN

BACKGROUND: 5-Ketofructose (5-KF) has recently been identified as a promising non-nutritive natural sweetener. Gluconobacter oxydans strains have been developed that allow efficient production of 5-KF from fructose by plasmid-based expression of the fructose dehydrogenase genes fdhSCL of Gluconobacter japonicus. As plasmid-free strains are preferred for industrial production of food additives, we aimed at the construction of efficient 5-KF production strains with the fdhSCL genes chromosomally integrated. RESULTS: For plasmid-free 5-KF production, we selected four sites in the genome of G. oxydans IK003.1 and inserted the fdhSCL genes under control of the strong P264 promoter into each of these sites. All four recombinant strains expressed fdhSCL and oxidized fructose to 5-KF, but site-specific differences were observed suggesting that the genomic vicinity influenced gene expression. For further improvement, a second copy of the fdhSCL genes under control of P264 was inserted into the second-best insertion site to obtain strain IK003.1::fdhSCL2. The 5-KF production rate and the 5-KF yield obtained with this double-integration strain were considerably higher than for the single integration strains and approached the values of IK003.1 with plasmid-based fdhSCL expression. CONCLUSION: We identified four sites in the genome of G. oxydans suitable for expression of heterologous genes and constructed a strain with two genomic copies of the fdhSCL genes enabling efficient plasmid-free 5-KF production. This strain will serve as basis for further metabolic engineering strategies aiming at the use of alternative carbon sources for 5-KF production and for bioprocess optimization.


Asunto(s)
Fructosa/análogos & derivados , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Ingeniería Metabólica , Edulcorantes/metabolismo , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Cromosomas Bacterianos , Clonación Molecular , Fructosa/biosíntesis , Expresión Génica , Genoma Bacteriano , Oxidación-Reducción , Plásmidos , Regiones Promotoras Genéticas
16.
Bioorg Chem ; 99: 103759, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32220665

RESUMEN

There is a continuous need to develop new antibacterial agents with non-traditional mechanisms to combat the nonstop emerging resistance to most of the antibiotics used in clinical settings. We identified novel pyrazolidinone derivatives as antibacterial hits in an in-house library screening and synthesized several derivatives in order to improve the potency and increase the polarity of the discovered hit compounds. The oxime derivative 24 exhibited promising antibacterial activity against E. coli TolC, B. subtilis and S. aureus with MIC values of 4, 10 and 20 µg/mL, respectively. The new lead compound 24 was found to exhibit a weak dual inhibitory activity against both the E. coli MurA and MurB enzymes with IC50 values of 88.1 and 79.5 µM, respectively, which could partially explain its antibacterial effect. A comparison with the previously reported, structurally related pyrazolidinediones suggested that the oxime functionality at position 4 enhanced the activity against MurA and recovered the activity against the MurB enzyme. Compound 24 can serve as a lead for further development of novel and safe antibiotics with potential broad spectrum activity.


Asunto(s)
Antibacterianos/farmacología , Deshidrogenasas de Carbohidratos/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Escherichia coli K12/efectos de los fármacos , Pirazoles/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Escherichia coli K12/enzimología , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad
17.
Skelet Muscle ; 10(1): 5, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075690

RESUMEN

BACKGROUND: Hexose-6-Phosphate Dehydrogenase (H6PD) is a generator of NADPH in the Endoplasmic/Sarcoplasmic Reticulum (ER/SR). Interaction of H6PD with 11ß-hydroxysteroid dehydrogenase type 1 provides NADPH to support oxo-reduction of inactive to active glucocorticoids, but the wider understanding of H6PD in ER/SR NAD(P)(H) homeostasis is incomplete. Lack of H6PD results in a deteriorating skeletal myopathy, altered glucose homeostasis, ER stress and activation of the unfolded protein response. Here we further assess muscle responses to H6PD deficiency to delineate pathways that may underpin myopathy and link SR redox status to muscle wide metabolic adaptation. METHODS: We analysed skeletal muscle from H6PD knockout (H6PDKO), H6PD and NRK2 double knockout (DKO) and wild-type (WT) mice. H6PDKO mice were supplemented with the NAD+ precursor nicotinamide riboside. Skeletal muscle samples were subjected to biochemical analysis including NAD(H) measurement, LC-MS based metabolomics, Western blotting, and high resolution mitochondrial respirometry. Genetic and supplement models were assessed for degree of myopathy compared to H6PDKO. RESULTS: H6PDKO skeletal muscle showed adaptations in the routes regulating nicotinamide and NAD+ biosynthesis, with significant activation of the Nicotinamide Riboside Kinase 2 (NRK2) pathway. Associated with changes in NAD+ biosynthesis, H6PDKO muscle had impaired mitochondrial respiratory capacity with altered mitochondrial acylcarnitine and acetyl-CoA metabolism. Boosting NAD+ levels through the NRK2 pathway using the precursor nicotinamide riboside elevated NAD+/NADH but had no effect to mitigate ER stress and dysfunctional mitochondrial respiratory capacity or acetyl-CoA metabolism. Similarly, H6PDKO/NRK2 double KO mice did not display an exaggerated timing or severity of myopathy or overt change in mitochondrial metabolism despite depression of NAD+ availability. CONCLUSIONS: These findings suggest a complex metabolic response to changes in muscle SR NADP(H) redox status that result in impaired mitochondrial energy metabolism and activation of cellular NAD+ salvage pathways. It is possible that SR can sense and signal perturbation in NAD(P)(H) that cannot be rectified in the absence of H6PD. Whether NRK2 pathway activation is a direct response to changes in SR NAD(P)(H) availability or adaptation to deficits in metabolic energy availability remains to be resolved.


Asunto(s)
Músculo Esquelético/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Retículo Sarcoplasmático/metabolismo , Acetilcoenzima A/metabolismo , Animales , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Femenino , Masculino , Metaboloma , Ratones , Ratones Endogámicos C57BL , Mitocondrias Musculares/metabolismo , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Compuestos de Piridinio/metabolismo
18.
Mol Divers ; 24(3): 593-601, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31154590

RESUMEN

Cellobiose dehydrogenase (CDH, EC 1.1.99.18) from white rot fungi Phanerochaete chrysosporium can be used for constructing biosensors and biofuel cells, for bleaching cotton in textile industry, and recently, the enzyme has found an important application in biomedicine as an antimicrobial and antibiofilm agent. Stability and activity of the wild-type (wt) CDH and mutants at methionine residues in the presence of hydrogen peroxide were investigated. Saturation mutagenesis libraries were made at the only methionine in heme domain M65 and two methionines M685 and M738 in the flavin domain that were closest to the active site. After screening the libraries, three mutants with increased activity and stability in the presence of peroxide were found, M65F with 70% of residual activity after 6 h of incubation in 0.3 M hydrogen peroxide, M738S with 80% of residual activity and M685Y with over 90% of residual activity compared to wild-type CDH that retained 40% of original activity. Combined mutants showed no activity. The most stable mutant M685Y with 5.8 times increased half-life in the presence of peroxide showed also 2.5 times increased kcat for lactose compared to wtCDH and could be good candidate for applications in biofuel cells and biocatalysis for lactobionic acid production.


Asunto(s)
Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Peróxidos/farmacología , Ingeniería de Proteínas , Deshidrogenasas de Carbohidratos/química , Estabilidad de Enzimas/efectos de los fármacos , Cinética , Modelos Moleculares , Mutación , Oxidación-Reducción , Phanerochaete/enzimología , Conformación Proteica
19.
Biochim Biophys Acta Proteins Proteom ; 1868(2): 140335, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31785381

RESUMEN

Pyranose oxidase (POx) catalyzes the oxidation of d-glucose to 2-ketoglucose with concurrent reduction of oxygen to H2O2. POx from Trametes ochracea (ToPOx) is known to react with alternative electron acceptors including 1,4-benzoquinone (1,4-BQ), 2,6-dichlorophenol indophenol (DCPIP), and the ferrocenium ion. In this study, enzyme variants with improved electron acceptor turnover and reduced oxygen turnover were characterized as potential anode biocatalysts. Pre-steady-state kinetics of the oxidative half-reaction of ToPOx variants T166R, Q448H, L545C, and L547R with these alternative electron acceptors were evaluated using stopped-flow spectrophotometry. Higher kinetic constants were observed as compared to the wild-type ToPOx for some of the variants. Subsequently, the variants were immobilized on glassy carbon electrodes. Cyclic voltammetry measurements were performed to measure the electrochemical responses of these variants with glucose as substrate in the presence of 1,4-BQ, DCPIP, or ferrocene methanol as redox mediators. High catalytic efficiencies (Imaxapp/KMapp) compared to the wild-type POx proved the potential of these variants for future bioelectrocatalytic applications, in biosensors or biofuel cells. Among the variants, L545C showed the most desirable properties as determined kinetically and electrochemically.


Asunto(s)
Deshidrogenasas de Carbohidratos/metabolismo , Técnicas Electroquímicas/métodos , 2,6-Dicloroindofenol/química , Benzoquinonas/química , Biocatálisis , Deshidrogenasas de Carbohidratos/química , Deshidrogenasas de Carbohidratos/genética , Dominio Catalítico , Electrodos , Compuestos Ferrosos/química , Glucosa/química , Glucosa/metabolismo , Cinética , Metalocenos/química , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Trametes/enzimología
20.
Clin Sci (Lond) ; 133(21): 2189-2202, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31696216

RESUMEN

Excessive glucocorticoid (GC) production in adipose tissue promotes the development of visceral obesity and metabolic syndrome (MS). 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) is critical for controlling intracellular GC production, and this process is tightly regulated by hexose-6-phosphate dehydrogenase (H6PDH). To better understand the integrated molecular physiological effects of adipose H6PDH, we created a tissue-specific knockout of the H6PDH gene mouse model in adipocytes (adipocyte-specific conditional knockout of H6PDH (H6PDHAcKO) mice). H6PDHAcKO mice exhibited almost complete absence of H6PDH expression and decreased intra-adipose corticosterone production with a reduction in 11ß-HSD1 activity in adipose tissue. These mice also had decreased abdominal fat mass, which was paralleled by decreased adipose lipogenic acetyl-CoA carboxylase (ACC) and ATP-citrate lyase (ACL) gene expression and reduction in their transcription factor C/EBPα mRNA levels. Moreover, H6PDHAcKO mice also had reduced fasting blood glucose levels, increased glucose tolerance, and increased insulin sensitivity. In addition, plasma free fatty acid (FFA) levels were decreased with a concomitant decrease in the expression of lipase adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) in adipose tissue. These results indicate that inactivation of adipocyte H6PDH expression is sufficient to cause intra-adipose GC inactivation that leads to a favorable pattern of metabolic phenotypes. These data suggest that H6PDHAcKO mice may provide a good model for studying the potential contributions of fat-specific H6PDH inhibition to improve the metabolic phenotype in vivo. Our study suggests that suppression or inactivation of H6PDH expression in adipocytes could be an effective intervention for treating obesity and diabetes.


Asunto(s)
Tejido Adiposo/enzimología , Adiposidad , Deshidrogenasas de Carbohidratos/metabolismo , Glucocorticoides/metabolismo , Metabolismo de los Lípidos , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Animales , Glucemia , Deshidrogenasas de Carbohidratos/genética , Corticosterona/metabolismo , Ácidos Grasos no Esterificados/sangre , Resistencia a la Insulina , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA