Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(7): e0235718, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32639976

RESUMEN

Sugar alcohols (polyols) are abundant carbohydrates in lichen-forming algae and transported to other lichen symbionts, fungi, and bacteria. Particularly, ribitol is an abundant polyol in the lichen Cetraria sp. Polyols have important physiological roles in lichen symbiosis, but polyol utilization in lichen-associated bacteria has been largely unreported. Herein, we purified and characterized a novel ribitol dehydrogenase (RDH) from a Cetraria sp.-associated bacterium Sphingomonas sp. PAMC 26621 grown on a minimal medium containing D-ribitol (the RDH hereafter referred to as SpRDH). SpRDH is present as a trimer in its native form, and the molecular weight of SpRDH was estimated to be 39 kDa by SDS-PAGE and 117 kDa by gel filtration chromatography. SpRDH converted D-ribitol to D-ribulose using NAD+ as a cofactor. As far as we know, SpRDH is the first RDH belonging to the medium-chain dehydrogenase/reductase family. Multiple sequence alignments indicated that the catalytic amino acid residues of SpRDH consist of Cys37, His65, Glu66, and Glu157, whereas those of short-chain RDHs consist of Ser, Tyr, and Lys. Furthermore, unlike other short-chain RDHs, SpRDH did not require divalent metal ions for its catalytic activity. Despite SpRDH originating from a psychrophilic Arctic bacterium, Sphingomonas sp., it had maximum activity at 60°C and exhibited high thermal stability within the 4-50°C range. Further studies on the structure/function relationship and catalytic mechanism of SpRDH will expand our understanding of its role in lichen symbiosis.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Líquenes/microbiología , Ribitol/metabolismo , Sphingomonas/enzimología , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Homología de Secuencia , Sphingomonas/crecimiento & desarrollo , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/genética
2.
J Microbiol Biotechnol ; 30(2): 271-278, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-31635443

RESUMEN

Glycerol dehydrogenase (GlyDH) catalyzes the oxidation of glycerol to dihydroxyacetone (DHA), which is the first step in the glycerol metabolism pathway. GlyDH has attracted great interest for its potential industrial applications, since DHA is a precursor for the synthesis of many commercially valuable chemicals and various drugs. In this study, GlyDH from Klebsiella pneumoniae (KpGlyDH) was overexpressed in E. coli and purified to homogeneity for biochemical and molecular characterization. KpGlyDH exhibits an exclusive preference for NAD+ over NADP+. The enzymatic activity of KpGlyDH is maximal at pH 8.6 and pH 10.0. Of the three common polyol substrates, KpGlyDH showed the highest kcat/Km value for glycerol, which is three times higher than for racemic 2,3-butanediol and 32 times higher than for ethylene glycol. The kcat value for glycerol oxidation is notably high at 87.1 ± 11.3 sec-1. KpGlyDH was shown to exist in an equilibrium between two different oligomeric states, octamer and hexadecamer, by size-exclusion chromatography analysis. KpGlyDH is structurally thermostable, with a Tm of 83.4°C, in thermal denaturation experiment using circular dichroism spectroscopy. The biochemical and biophysical characteristics of KpGlyDH revealed in this study should provide the basis for future research on its glycerol metabolism and possible use in industrial applications.


Asunto(s)
Klebsiella pneumoniae/metabolismo , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Catálisis , Cromatografía en Gel , Dicroismo Circular , Activación Enzimática , Estabilidad de Enzimas , Expresión Génica , Glicerol/metabolismo , Cinética , Klebsiella pneumoniae/genética , Metabolismo de los Lípidos , Oxidación-Reducción , Plásmidos/genética , Proteínas Recombinantes , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación
3.
PLoS One ; 11(1): e0147333, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26808202

RESUMEN

Archaea use glycolytic pathways distinct from those found in bacteria and eukaryotes, where unique enzymes catalyze each reaction step. In this study, we isolated three isozymes of glyceraldehyde oxidoreductase (GAOR1, GAOR2 and GAOR3) from the thermoacidophilic archaeon Sulfolobus tokodaii. GAOR1-3 belong to the xanthine oxidoreductase superfamily, and are composed of a molybdo-pyranopterin subunit (L), a flavin subunit (M), and an iron-sulfur subunit (S), forming an LMS hetero-trimer unit. We found that GAOR1 is a tetramer of the STK17810/STK17830/STK17820 hetero-trimer, GAOR2 is a dimer of the STK23390/STK05620/STK05610 hetero-trimer, and GAOR3 is the STK24840/STK05620/STK05610 hetero-trimer. GAOR1-3 exhibited diverse substrate specificities for their electron donors and acceptors, due to their different L-subunits, and probably participate in the non-phosphorylative Entner-Doudoroff glycolytic pathway. We determined the crystal structure of GAOR2, as the first three-dimensional structure of an archaeal molybdenum-containing hydroxylase, to obtain structural insights into their substrate specificities and subunit assemblies. The gene arrangement and the crystal structure suggested that the M/S-complex serves as a structural scaffold for the binding of the L-subunit, to construct the three enzymes with different specificities. Collectively, our findings illustrate a novel principle of a prokaryotic multicomponent isozyme system.


Asunto(s)
Proteínas Arqueales/metabolismo , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Sulfolobus/enzimología , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/aislamiento & purificación , Cristalografía por Rayos X , Flavinas/análisis , Glucólisis , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación , Proteínas Hierro-Azufre/metabolismo , Isoenzimas/química , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Molibdeno/análisis , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación , Xantina Deshidrogenasa/clasificación
4.
Planta ; 240(1): 223-38, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24817585

RESUMEN

The sorbitol-6-phosphate dehydrogenase (S6PDH) is a key enzyme for sorbitol synthesis and plays an important role in the alleviation of salinity stress in plants. Despite the huge significance, the structure and the mode of action of this enzyme are still not known. In the present study, sequence analysis, cloning, expression, activity assays and enzyme kinetics using various substrates (glucose-6-phosphate, sorbitol-6-phosphate and mannose-6-phosphate) were performed to establish the functional role of S6PDH protein from rice (Oryza sativa). For the structural analysis of the protein, a comparative homology model was prepared on the basis of percentage sequence identity and substrate similarity using the crystal structure of human aldose reductase in complex with glucose-6-phosphate and NADP(+) (PDB ID: 2ACQ) as a template. Molecular docking was performed for studying the structural details of substrate binding and possible enzyme mechanism. The cloned sequence resulted into an active recombinant protein when expressed into a bacterial expression system. The purified recombinant protein was found to be active with glucose-6-phosphate and sorbitol-6-phosphate; however, activity against mannose-6-phosphate was not found. The K m values for glucose-6-phosphate and sorbitol-6-phosphate were found to be 15.9 ± 0.2 and 7.21 ± 0.5 mM, respectively. A molecular-level analysis of the active site of OsS6PDH provides valuable information about the enzyme mechanism and requisite enantioselectivity for its physiological substrates. Thus, the fundamental studies of structure and function of OsS6PDH could serve as the basis for the future studies of bio-catalytic applications of this enzyme.


Asunto(s)
Simulación del Acoplamiento Molecular , Oryza/enzimología , Procesamiento Proteico-Postraduccional , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Hexosafosfatos/metabolismo , Cinética , Oryza/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación
5.
Enzyme Microb Technol ; 58-59: 44-51, 2014 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-24731824

RESUMEN

Galactitol 2-dehydrogenase (GDH) belongs to the protein subfamily of short-chain dehydrogenases/reductases and can be used to produce optically pure building blocks and for the bioconversion of bioactive compounds. An NAD(+)-dependent GDH from Rhizobium leguminosarum bv. viciae 3841 (RlGDH) was cloned and overexpressed in Escherichia coli. The RlGDH protein was purified as an active soluble form using His-tag affinity chromatography. The molecular mass of the purified enzyme was estimated to be 28kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 114kDa by gel filtration chromatography, suggesting that the enzyme is a homotetramer. The enzyme has an optimal pH and temperature of 9.5 and 35°C, respectively. The purified recombinant RlGDH catalyzed the oxidation of a wide range of substrates, including polyvalent aliphatic alcohols and polyols, to the corresponding ketones and ketoses. Among various polyols, galactitol was the preferred substrate of RlGDH with a Km of 8.8mM, kcat of 835min(-1) and a kcat/Km of 94.9min(-1)mM(-1). Although GDHs have been characterized from a few other sources, RlGDH is distinguished from other GDHs by its higher specific activity for galactitol and broad substrate spectrum, making RlGDH a good choice for practical applications.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Rhizobium leguminosarum/enzimología , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catálisis , Cromatografía de Afinidad , Cromatografía en Gel , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Galactitol/metabolismo , Genes Bacterianos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Conformación Proteica , Proteínas Recombinantes de Fusión/metabolismo , Rhizobium leguminosarum/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo
6.
Bioorg Med Chem Lett ; 24(1): 173-6, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24342239

RESUMEN

l-Arabinitol 4-dehydrogenase (LAD) from Hypocrea jecorina (HjLAD) was cloned and overexpressed in Escherichia coli BL21 (DE3). The kinetics of l-arabinitol oxidation by NAD(+), catalyzed by HjLAD, was studied within the pH range of 7.0-9.5 at 25°C. The turnover number (kcat) and the catalytic efficiency (kcat/Km) were 4200min(-1) and 290mM(-1)min(-1), respectively. HjLAD showed the highest turnover number and catalytic efficiency among all previously characterized LADs. In further application of HjLAD, rare l-sugar l-xylulose was produced by the enzymatic oxidation of arabinitol to give a yield of approximately 86%.


Asunto(s)
Hypocrea/enzimología , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Xilulosa/biosíntesis , Biocatálisis , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación , Xilulosa/química
7.
J Bacteriol ; 195(11): 2652-61, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23564164

RESUMEN

Lactobacillus casei strains 64H and BL23, but not ATCC 334, are able to ferment D-ribitol (also called D-adonitol). However, a BL23-derived ptsI mutant lacking enzyme I of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) was not able to utilize this pentitol, suggesting that strain BL23 transports and phosphorylates D-ribitol via a PTS. We identified an 11-kb region in the genome sequence of L. casei strain BL23 (LCABL_29160 to LCABL_29270) which is absent from strain ATCC 334 and which contains the genes for a GlpR/IolR-like repressor, the four components of a mannose-type PTS, and six metabolic enzymes potentially involved in D-ribitol metabolism. Deletion of the gene encoding the EIIB component of the presumed ribitol PTS indeed prevented D-ribitol fermentation. In addition, we overexpressed the six catabolic genes, purified the encoded enzymes, and determined the activities of four of them. They encode a D-ribitol-5-phosphate (D-ribitol-5-P) 2-dehydrogenase, a D-ribulose-5-P 3-epimerase, a D-ribose-5-P isomerase, and a D-xylulose-5-P phosphoketolase. In the first catabolic step, the protein D-ribitol-5-P 2-dehydrogenase uses NAD(+) to oxidize D-ribitol-5-P formed during PTS-catalyzed transport to D-ribulose-5-P, which, in turn, is converted to D-xylulose-5-P by the enzyme D-ribulose-5-P 3-epimerase. Finally, the resulting D-xylulose-5-P is split by D-xylulose-5-P phosphoketolase in an inorganic phosphate-requiring reaction into acetylphosphate and the glycolytic intermediate D-glyceraldehyde-3-P. The three remaining enzymes, one of which was identified as D-ribose-5-P-isomerase, probably catalyze an alternative ribitol degradation pathway, which might be functional in L. casei strain 64H but not in BL23, because one of the BL23 genes carries a frameshift mutation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Lacticaseibacillus casei/enzimología , Ribitol/metabolismo , Aldehído-Liasas/genética , Aldehído-Liasas/aislamiento & purificación , Aldehído-Liasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Secuencia de Bases , Transporte Biológico , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/aislamiento & purificación , Carbohidrato Epimerasas/metabolismo , Fermentación , Expresión Génica , Lacticaseibacillus casei/genética , Manosa/metabolismo , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Mutación , NAD/metabolismo , Operón , Pentosafosfatos/metabolismo , Fosfoenolpiruvato/metabolismo , Proteínas Recombinantes de Fusión , Análisis de Secuencia de ADN , Especificidad de la Especie , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación , Deshidrogenasas del Alcohol de Azúcar/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-23295493

RESUMEN

YisP is an enzyme involved in the pathway of biofilm formation in bacteria and is predicted to possess squalene synthase activity. A BlastP search using the YisP protein sequence from Bacillus subtilis subsp. subtilis strain 168 shows that it shares 23% identity with the dehydrosqualene synthase from Staphylococcus aureus. The YisP from B. subtilis 168 was expressed in Escherichia coli and the recombinant protein was purified and crystallized. The crystals, which belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 43.966, b = 77.576, c = 91.378 Å, were obtained by the sitting-drop vapour-diffusion method and diffracted to 1.92 Šresolution. Structure determination using MAD and MIR methods is in progress.


Asunto(s)
Proteínas Bacterianas/química , Deshidrogenasas del Alcohol de Azúcar/química , Bacillus subtilis/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Secuencia de Bases , Cristalización/métodos , Cristalografía por Rayos X , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación
9.
Fungal Genet Biol ; 49(2): 152-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22155165

RESUMEN

For the catabolism of D-galactose three different metabolic pathways have been described in filamentous fungi. Apart from the Leloir pathway and the oxidative pathway, there is an alternative oxido-reductive pathway. This oxido-reductive pathway has similarities to the metabolic pathway of L-arabinose, and in Trichoderma reesei (Hypocrea jecorina) and Aspergillus nidulans the same enzyme is employed for the oxidation of L-arabitol and galactitol. Here we show evidence that in Aspergillus niger L-arabitol dehydrogenase (LadA) is not involved in the D-galactose metabolism; instead another dehydrogenase encoding gene, ladB, is induced in response to D-galactose and galactitol and functions as a galactitol dehydrogenase. Deletion of ladB in A. niger results in growth arrest on galactitol and significantly slower growth on D-galactose supplemented with a small amount of D-xylose. D-galactose alone cannot be utilised by A. niger and the addition of D-xylose stimulates growth on D-galactose via transcriptional activation of the D-xylose-inducible reductase gene, xyrA. XyrA catalyses the first step of the D-galactose oxido-reductive pathway, the reduction to galactitol, which in turn seems to be an inducer of the downstream genes such as LadB. The deletion of xyrA results in reduced growth on D-galactose. The ladB gene was expressed in the heterologous host Saccharomyces cerevisiae and the tagged and purified enzyme characterised. LadB and LadA have similar in vitro activity with galactitol. It was confirmed that the reaction product of the LadB reaction from galactitol is L-xylo-3-hexulose as in the case of the T. reesei Lad1.


Asunto(s)
Aspergillus niger/enzimología , Galactosa/metabolismo , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Aspergillus niger/genética , Aspergillus niger/metabolismo , Galactitol/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Hexosas/metabolismo , Cetosas/metabolismo , Redes y Vías Metabólicas , Metabolismo , Oxidación-Reducción , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Deshidrogenasas del Alcohol de Azúcar/genética , Xilosa/farmacología
10.
J Biotechnol ; 152(4): 176-83, 2011 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-21392547

RESUMEN

Rapid immobilization with the one-pot purification of galactitol dehydrogenase (GatDH) and formate dehydrogenase (FDH) is achieved by using iminodiacetic acid (IDA) with chelated Co(2+) modified magnetic nanoparticles as a carrier. Lactate dehydrogenase (LDH) from recombinant Escherichia coli and FDH commencing Candida methylica were used as an auxiliary enzyme for the regeneration of NADH/NAD(+) with a representative synthesis of (S)-1,2-propanediol and l-tagatose starting from hydroxyacetone and galactitol. The affinity magnetic nanoparticles were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), while the purity of GatDH and FDH was assayed by SDS-PAGE analysis. The immobilized two-enzyme system, reflecting the pH dependence of its constituent enzymes, showed optimal activity at pH 7 and 8 for (S)-1,2-propanediol and l-tagatose production, respectively. The immobilized enzyme system retained up to 70% of its activity after one week of repeated use. The use of affinity magnetic nanoparticles offers the advantage of a one-pot purification of His(6)-tagged GatDH and FDH followed by the production of rare sugar and chiral diol.


Asunto(s)
Formiato Deshidrogenasas/metabolismo , Proteínas Inmovilizadas/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Nanopartículas/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Candida , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Formiato Deshidrogenasas/aislamiento & purificación , Hexosas , Concentración de Iones de Hidrógeno , Iminoácidos , Magnetismo , Oxidación-Reducción , Propilenglicol , Espectroscopía Infrarroja por Transformada de Fourier , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación
11.
Appl Microbiol Biotechnol ; 90(4): 1285-93, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21347726

RESUMEN

The first hyperthermophilic D-arabitol dehydrogenase from Thermotoga maritima was heterologously purified from Escherichia coli. The protein was purified with and without a Strep-tag. The enzyme exclusively catalyzed the NAD(H)-dependent oxidoreduction of D-arabitol, D-xylitol, D-ribulose, or D-xylulose. A twofold increase of catalytic rates was observed upon addition of Mg(2+) or K(+). Interestingly, only the tag-less protein was thermostable, retaining 90% of its activity after 90 min at 85 °C. However, the tag-less form of D-arabitol dehydrogenase had similar kinetic parameters compared to the tagged enzyme, demonstrating that the Strep-tag was not deleterious to protein function but decreased protein stability. A single band at 27.6 kDa was observed on SDS-PAGE and native PAGE revealed that the protein formed a homohexamer and a homododecamer. The enzyme catalyzed oxidation of D-arabitol to D: -ribulose and therefore belongs to the class of D-arabitol 2-dehydrogenases, which are typically observed in yeast and not bacteria. The product D-ribulose is a rare ketopentose sugar that has numerous industrially applications. Given its thermostability and specificity, D-arabitol 2-dehydrogenase is a desirable biocatalyst for the production of rare sugar precursors.


Asunto(s)
Proteínas Bacterianas/química , Deshidrogenasas del Alcohol de Azúcar/química , Thermotoga maritima/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Estabilidad de Enzimas , Expresión Génica , Cinética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Thermotoga maritima/química , Thermotoga maritima/genética
12.
Biochem J ; 432(2): 237-47, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20809899

RESUMEN

Inositol dehydrogenase from Bacillus subtilis (BsIDH) is a NAD+-dependent enzyme that catalyses the oxidation of the axial hydroxy group of myo-inositol to form scyllo-inosose. We have determined the crystal structures of wild-type BsIDH and of the inactive K97V mutant in apo-, holo- and ternary complexes with inositol and inosose. BsIDH is a tetramer, with a novel arrangement consisting of two long continuous ß-sheets, formed from all four monomers, in which the two central strands are crossed over to form the core of the tetramer. Each subunit in the tetramer consists of two domains: an N-terminal Rossmann fold domain containing the cofactor-binding site, and a C-terminal domain containing the inositol-binding site. Structural analysis allowed us to determine residues important in cofactor and substrate binding. Lys97, Asp172 and His176 are the catalytic triad involved in the catalytic mechanism of BsIDH, similar to what has been proposed for related enzymes and short-chain dehydrogenases. Furthermore, a conformational change in the nicotinamide ring was observed in some ternary complexes, suggesting hydride transfer to the si-face of NAD+. Finally, comparison of the structure and sequence of BsIDH with other putative inositol dehydrogenases allowed us to differentiate these enzymes into four subfamilies based on six consensus sequence motifs defining the cofactor- and substrate-binding sites.


Asunto(s)
Bacillus subtilis/enzimología , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Apoenzimas/química , Apoenzimas/metabolismo , Bacillus subtilis/genética , Sitios de Unión , Catálisis , Cristalización , Enlace de Hidrógeno , Inositol/análogos & derivados , Inositol/biosíntesis , Inositol/metabolismo , Cinética , Modelos Moleculares , Mutación , NAD/metabolismo , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación
13.
Carbohydr Res ; 345(13): 1958-62, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20667525

RESUMEN

Kitasatospora kifunensis, the talosin producer, was used as a source for the dTDP-6-deoxy-l-talose (dTDP-6dTal) biosynthetic gene cluster, serving as a template for four recombinant proteins of RmlA(Kkf), RmlB(Kkf), RmlC(Kkf), and Tal, which complete the biosynthesis of dTDP-6dTal from dTTP, alpha-d-glucose-1-phosphate, and NAD(P)H. The identity of dTDP-6dTal was validated using (1)H and (13)C NMR spectroscopy. K. kifunensistal and tll, the known dTDP-6dTal synthase gene of Actinobacillus actinomycetemcomitans origin, have low sequence similarity and are distantly related within the NDP-6-deoxy-4-ketohexose reductase family, providing an example of the genetic diversity within the dTDP-6dTal biosynthetic pathway.


Asunto(s)
Lactonas/metabolismo , Azúcares de Nucleósido Difosfato/metabolismo , Streptomycetaceae/genética , Streptomycetaceae/metabolismo , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Clonación Molecular , Variación Genética , Datos de Secuencia Molecular , Streptomycetaceae/enzimología , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación
14.
Microbiology (Reading) ; 156(Pt 5): 1538-1546, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20133360

RESUMEN

scyllo-Inositol (SI) is a stereoisomer of inositol whose catabolism has not been characterized in bacteria. We found that Bacillus subtilis 168 was able to grow using SI as its sole carbon source and that this growth was dependent on a functional iol operon for catabolism of myo-inositol (MI; another inositol isomer, which is abundant in nature). Previous studies elucidated the MI catabolic pathway in B. subtilis as comprising multiple stepwise reactions catalysed by a series of Iol enzymes. The first step of the pathway converts MI to scyllo-inosose (SIS) and involves the MI dehydrogenase IolG. Since IolG does not act on SI, we suspected that there could be another enzyme converting SI into SIS, namely an SI dehydrogenase. Within the whole genome, seven genes paralogous to iolG have been identified and two of these, iolX and iolW (formerly known as yisS and yvaA, respectively), were selected as candidate genes for the putative SI dehydrogenase since they were both prominently expressed when B. subtilis was grown on medium containing SI. iolX and iolW were cloned in Escherichia coli and both were shown to encode a functional enzyme, revealing the two distinct SI dehydrogenases in B. subtilis. Since inactivation of iolX impaired growth with SI as the carbon source, IolX was identified as a catabolic enzyme required for SI catabolism and it was shown to be NAD(+) dependent. The physiological role of IolW remains unclear, but it may be capable of producing SI from SIS with NADPH oxidation.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/aislamiento & purificación , Inositol/metabolismo , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Genes Bacterianos , Mutagénesis , Operón , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo
15.
Biochem Genet ; 48(5-6): 480-95, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20111899

RESUMEN

The genes encoding xylitol dehydrogenase (Texdh) and L: -arabitol dehydrogenase (Telad) are involved in the fungal pentose pathway and were isolated from the thermophilic fungus Talaromyces emersonii, expressed in Escherichia coli, and the products purified to homogeneity. TeXDH showed activity toward xylitol and D: -sorbitol. TeLAD was active with L: -arabitol, xylitol, and D: -sorbitol. Phylogenetic analysis showed TeLAD has evolved from D: -sorbitol dehydrogenase as a result of environmental adaptation. Substrate specificity studies indicate that TeXDH is likely to have evolved from the more broadly acting TeLAD. Texdh and Telad expression was inducible by the same carbon sources responsible for induction of genes involved in biomass degradation, suggesting for the first time a coordinated regulatory control mechanism for expression of genes encoding extracellular hydrolases and intracellular metabolic genes in the pentose utilization pathways of T. emersonii. These data also suggest that TeXDH and TeLAD may be valuable in the production of xylitol, L: -arabitol, and ethanol from renewable resources rich in pentose sugars.


Asunto(s)
D-Xilulosa Reductasa/genética , D-Xilulosa Reductasa/metabolismo , Deshidrogenasas del Alcohol de Azúcar/genética , Talaromyces/enzimología , Talaromyces/genética , Secuencia de Aminoácidos , Clonación Molecular , D-Xilulosa Reductasa/química , D-Xilulosa Reductasa/aislamiento & purificación , Escherichia coli/genética , Expresión Génica , Humanos , Espacio Intracelular/enzimología , Cinética , Datos de Secuencia Molecular , Monosacáridos/metabolismo , Filogenia , Análisis de Secuencia de ADN , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación , Talaromyces/citología
16.
Carbohydr Res ; 345(1): 50-4, 2010 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-19896118

RESUMEN

A long-chain mannitol-1-phosphate dehydrogenase (MPD) was characterized for the first time from fungal entomopathogen Beauveria bassiana by gene cloning, heterogeneous expression and activity analysis. The cloned gene BbMPD consisted of a 1334-bp open reading frame (ORF) with a 158-bp intron and the 935-bp upstream and 780-bp downstream regions. The ORF-encoded 391-aa protein (42kDa) showed less than 75% sequence identity to 17 fungal MPDs documented and shared two conserved domains with the fungal MPD family at the N- and C-terminus, respectively. The new enzyme was expressed well in the Luria-Bertani culture of engineered Escherichia coli BL21 by 16-h induction of 0.5 mM isopropyl 1-thio-beta-d-galactopyranoside at 20 degrees C after 5-h growth at 37 degrees C. The purified BbMPD exhibited a high catalytic efficiency (k(cat)/K(m)) of 1.31 x 10(4) mM(-1)s(-1) in the reduction of the highly specific substrate d-fructose-6-phosphate to d-mannitol-1-phosphate. Its activity was maximal at the reaction regime of 37 degrees C and pH 7.0 and was much more sensitive to Cu(2+) and Zn(2+) than to Li(+) and Mn(2+). The results indicate a crucial role of BbMPD in the mannitol biosynthesis of B. bassiana.


Asunto(s)
Beauveria/genética , Biocatálisis , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Escherichia coli/genética , Fructosafosfatos/metabolismo , Indicadores y Reactivos/farmacología , Manitol Fosfatos/metabolismo , Datos de Secuencia Molecular , Ingeniería de Proteínas , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación
17.
Langmuir ; 25(20): 12380-6, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19778027

RESUMEN

Galactitol dehydrogenase (GatDH) from Rhodobacter sphaeroides is a multifunctional enzyme that catalyzes in the presence of oxidized beta-nicotinamide adenine dinucleotide (NAD(+)) the interconversion of various multivalent aliphatic alcohols to the corresponding ketones. The recombinant GatDH was provided with an N-terminal His(6)-tag to which distally up to three cysteine residues were attached. This protein construct maintained nearly full enzymatic activity, and it could be covalently immobilized via thiol bonds onto the surface of a gold electrode. Binding of GatDH onto the gold electrode was verified by SPR measurements, and residual enzyme activity was measured by cyclic voltammetry using 1,2-hexanediol as substrate, the cofactor NAD(+) and the redox mediator CTFM (4-carboxy-2,5,7-trinitrofluorenyliden-malonnitrile) in solute form. The results demonstrate the possibility of a directed functional immobilization of proteins on gold surfaces, which represents a proof-of-concept for the development of reactors for electrochemical synthon preparation using dehydrogenases.


Asunto(s)
Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/genética , Oro/química , Polímeros/química , Rhodobacter sphaeroides/enzimología , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/genética , Cloruro de Calcio/metabolismo , Dominio Catalítico , Cisteína/metabolismo , Electroquímica , Electrodos , Transporte de Electrón , Enzimas Inmovilizadas/aislamiento & purificación , Enzimas Inmovilizadas/metabolismo , Mutación , NAD/metabolismo , Ingeniería de Proteínas , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
18.
Protein J ; 28(6): 263-72, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19629658

RESUMEN

D-Xylulose-forming D-arabitol dehydrogenase (aArDH) is a key enzyme in the bio-conversion of D-arabitol to xylitol. In this study, we cloned the NAD-dependent D-xylulose-forming D-arabitol dehydrogenase gene from an acetic acid bacterium, Acetobacter suboxydans sp. The enzyme was purified from A. suboxydans sp. and was heterogeneously expressed in Escherichia coli. The native or recombinant enzyme was preferred NAD(H) to NADP(H) as coenzyme. The active recombinant aArDH expressed in E. coli is a homodimer, whereas the native aArDH in A. suboxydans is a homotetramer. On SDS-PAGE, the recombinant and native aArDH give one protein band at the position corresponding to 28 kDa. The optimum pH of polyol oxidation and ketone reduction is found to be pH 8.5 and 5.5 respectively. The highest reaction rate is observed when D-arabitol is used as the substrate (K (m) = 4.5 mM) and the product is determined to be D-xylulose by HPLC analysis.


Asunto(s)
Acetobacter/enzimología , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación , Secuencia de Aminoácidos , Clonación Molecular , Ácido Edético/metabolismo , Concentración de Iones de Hidrógeno , Metales/metabolismo , NAD/metabolismo , Oxidación-Reducción , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Temperatura
19.
Chembiochem ; 10(11): 1888-96, 2009 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-19579248

RESUMEN

The acetic acid bacterium Gluconobacter oxydans has a high potential for oxidoreductases with a variety of different catalytic abilities. One putative oxidoreductase gene codes for an enzyme with a high similarity to the NADP+-dependent glycerol dehydrogenase (GlyDH) from Hypocrea jecorina. Due to this homology, the GlyDH (Gox1615) has been cloned, over-expressed in Escherichia coli, purified and characterised. Gox1615 shows an apparent native molecular mass of 39 kDa, which corresponds well to the mass of 37.213 kDa calculated from the primary structure. From HPLC measurements, a monomeric structure can be deduced. Kinetic parameters and the dependence of the activity on temperature and pH were determined. The enzyme shows a broad substrate spectrum in the reduction of different aliphatic, branched and aromatic aldehydes. Additionally, the enzyme has been shown to oxidize a variety of different alcohols. The highest activities were observed for the conversion of D-glyceraldehyde in the reductive and L-arabitol in the oxidative direction. Since high enantioselectivities were observed for the reduction of glyceraldehyde, the kinetic resolution of glyceraldehyde was investigated and found to yield enantiopure L-glyceraldehyde on preparative scale.


Asunto(s)
Gluconobacter oxydans/enzimología , Gliceraldehído/metabolismo , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular , NADP/metabolismo , Oxidación-Reducción , Conejos , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación
20.
Artículo en Inglés | MEDLINE | ID: mdl-19478431

RESUMEN

NADPH-dependent L-sorbose reductase (SR) from Gluconobacter frateurii was expressed in Escherichia coli, purified and crystallized with L-sorbose or NADPH using the sitting-drop vapour-diffusion method at 293 K. Crystals of the SR-L-sorbose complex and the SR-NADPH complex were obtained using reservoir solutions containing PEG 2000 or PEG 400 as precipitants and diffracted X-rays to 2.38 and 1.90 A resolution, respectively. The crystal of the SR-L-sorbose complex belonged to space group C222(1), with unit-cell parameters a = 124.2, b = 124.1, c = 60.8 A. The crystal of the SR-NADPH complex belonged to space group P2(1), with unit-cell parameters a = 124.3, b = 61.0, c = 124.5 A, beta = 89.99 degrees . The crystals contained two and eight molecules, respectively, in the asymmetric unit.


Asunto(s)
Gluconobacter/enzimología , NADP/metabolismo , Sorbosa/metabolismo , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Clonación Molecular , Cristalización , Recolección de Datos , Escherichia coli/genética , Genes Bacterianos , Estadística como Asunto , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/genética , Temperatura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...