Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 846
Filtrar
1.
Acta Odontol Scand ; 83: 264-272, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709122

RESUMEN

PURPOSE: The purpose of the present in vitro study is to investigate and compare the remineralising potential of Moringa Oleifera extract, eggshell, and sodium fluoride varnish on microhardness of artificially demineralised enamel of primary teeth with biomimetic minimally invasive approach following the world paradigm shift towards natural products in paediatric dentistry. MATERIAL AND METHODS: Sample size included 44 primary molars. The mineral content and surface microhardness of all specimens were initially assessed using energy dispersive x-ray examination (EDX) and Vickers microhardness. The specimens were artificially demineralised for 96 h at a temperature of 37°C and then reassessed directly after demineralisation. The demineralised enamel specimens were randomly divided into four groups according to the remineralisation regimen utilised. Group 1: Artificial saliva (control); Group 2: Sodium fluoride varnish; Group 3: Eggshell hydrogel; and Group 4: Moringa Oleifera hydrogel. The specimens were stored for 8 days and then subsequently evaluated using EDX and microhardness assessment by Vickers microhardness test and scanning electron microscope (SEM).  Results: Regarding the microhardness test, there was a significant difference between the Moringa Oleifera group and Eggshell group compared to fluoride varnish (p < 0.05). Regarding EDX analysis, there was a statistically significant difference (p < 0.05) between Moringa Oleifera group and Eggshell group compared to fluoride varnish as the highest values were for Moringa Oleifera and Eggshell. On the other hand, there was no statistically significant difference (p > 0.05) between Moringa Oleifera and Eggshell in both the measurements. CONCLUSION: Moringa Oleifera and Eggshell might be considered as a biomimetic natural material capable of guiding enamel tissue remineralisation in early carious lesion of primary teeth. CLINICAL RELEVANCE: This research demonstrated the capability for early enamel caries to be remineralised using novel materials with a naturally counterpart implicated in biomineralisation as proved to be more effective than traditionally used fluoride varnish in primary teeth.


Asunto(s)
Cáscara de Huevo , Hidrogeles , Moringa oleifera , Fluoruro de Sodio , Diente Primario , Fluoruro de Sodio/administración & dosificación , Diente Primario/efectos de los fármacos , Cáscara de Huevo/química , Humanos , Moringa oleifera/química , Remineralización Dental/métodos , Animales , Técnicas In Vitro , Fluoruros Tópicos/administración & dosificación , Microscopía Electrónica de Rastreo , Esmalte Dental/efectos de los fármacos , Dureza/efectos de los fármacos , Espectrometría por Rayos X , Desmineralización Dental/prevención & control , Desmineralización Dental/tratamiento farmacológico
2.
Biomolecules ; 14(5)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786012

RESUMEN

BACKGROUND: Enamel plays an essential role in protecting the underlying layers of the human tooth; therefore, preserving it is vital. This experimental study aimed to evaluate the potential ability of L. brevis to counteract the action of a demineralizing agent on dental enamel morphology and mineral composition in vitro. METHODS: The sample consisted of 12 healthy human posterior teeth. The coronal portion of each tooth was subdivided into two equal parts longitudinally. The specimens were randomly divided into four groups: artificial saliva, L. brevis suspension, demineralizing agent (DA), and DA plus L. brevis. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were used to evaluate the surface micromorphology and the mineral content, respectively. The statistical analysis was conducted using a one-way ANOVA, followed by Tukey's post hoc test. RESULTS: SEM analysis did not highlight significant changes in the enamel microstructure of L. brevis-treated specimens compared to the control. DA-induced damage to the enamel structure was drastically reduced when the specimens were contextually exposed to the probiotic. The treatment with DA substantially reduced the weight % of crucial enamel minerals, i.e., Ca and P. Notably, the probiotic was able to reverse the demineralization process, bringing Ca and P weight % back to basal levels, including the Ca/P ratio. CONCLUSIONS: The findings indicate that L. brevis is able to efficiently protect the dental enamel surface from the damage caused by DA and increase the enamel resistance to demineralization. Overall, L. brevis confirms its efficacy in preventing or counteracting the action of carious lesions through a novel mechanism that protects the tooth surface under a chemical challenge that mimics the caries process.


Asunto(s)
Esmalte Dental , Probióticos , Desmineralización Dental , Humanos , Esmalte Dental/efectos de los fármacos , Desmineralización Dental/prevención & control , Microscopía Electrónica de Rastreo , Espectrometría por Rayos X , Propiedades de Superficie , Técnicas In Vitro
3.
Braz Dent J ; 35: e245616, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38775592

RESUMEN

The aim of this in vitro study was to evaluate the potential of different fluoridated varnishes to inhibit the progression of incipient caries lesions after cariogenic challenge. Seventy-five enamel specimens of bovine teeth were prepared and selected based on the initial surface microhardness (SMH). The specimens were first subjected to artificial demineralization (in buffer solution) after which SMH was re-analyzed (SM1). They were then randomly assigned to five experimental groups: 1- CONTROL (pH cycling), 2 - MI VAR (MI Varnish with RECALDENTTM - CPP-ACP), 3 - PROFL (Profluorid®), 4 - CLIN (ClinproTM White Varnish with TCP), and 5 - DUR (Duraphat®) (n=15). The varnishes were applied in a thin layer and the specimens were then subjected to pH cycling for eight days. The SMH and cross-sectional microhardness (CSMH) were then analyzed (SM2). The fluoride and calcium ion concentrations in the solution were analyzed by the indirect method and atomic absorption spectrophotometry, respectively. Data were statistically analyzed by Student's t-test, ANOVA/Tukey-Kramer, or Kruskall-Wallis/Dunn tests for individual comparisons (p˂0.05). All varnishes led to significantly higher surface and subsurface remineralization compared with the control group but did not differ from each other. The varnishes with the highest fluoride release were: PROFL and CLIN, followed by MI VAR and DUR. The varnishes with significantly higher release of calcium were: DUR, CLIN, and PROFL. In conclusion, all commercial fluoridated varnishes tested have good potential to inhibit the progression of demineralization, regardless of the ion release mechanisms.


Asunto(s)
Cariostáticos , Caries Dental , Esmalte Dental , Progresión de la Enfermedad , Fluoruros Tópicos , Dureza , Desmineralización Dental , Bovinos , Animales , Caries Dental/prevención & control , Cariostáticos/farmacología , Esmalte Dental/efectos de los fármacos , Desmineralización Dental/prevención & control , Concentración de Iones de Hidrógeno , Calcio , Distribución Aleatoria , Remineralización Dental/métodos , Caseínas , Ensayo de Materiales , Espectrofotometría Atómica , Fluoruro de Sodio
4.
J Dent ; 145: 104997, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38621525

RESUMEN

OBJECTIVE: To assess the effects of arginine, with or without sodium fluoride (NaF; 1,450 ppm), on saliva-derived microcosm biofilms and enamel demineralization. METHODS: Saliva-derived biofilms were grown on bovine enamel blocks in 0.2 % sucrose-containing modified McBain medium, according to six experimental groups: control (McBain 0.2 %); 2.5 % arginine; 8 % arginine; NaF; 2.5 % arginine with NaF; and 8 % arginine with NaF. After 5 days of growth, biofilm viability was assessed by colony-forming units counting, laser scanning confocal microscopy was used to determine biofilm vitality and extracellular polysaccharide (EPS) production, while biofilm metabolism was evaluated using the resazurin assay and lactic acid quantification. Demineralization was evaluated by measuring pH in the culture medium and calcium release. Data were analyzed by Kruskal-Wallis' and Dunn's tests (p < 0.05). RESULTS: 8 % arginine with NaF showed the strongest reduction in total streptococci and total microorganism counts, with no significant difference compared to arginine without NaF. Neither 2.5 % arginine alone nor NaF alone significantly reduced microbial counts compared to the control, although in combination, a reduction in all microbial groups was observed. Similar trends were found for biofilm vitality and EPS, and calcium released to the growth medium. CONCLUSIONS: 8 % Arginine, with or without NaF, exhibited the strongest antimicrobial activity and reduced enamel calcium loss. Also, NaF enhanced the effects of 2.5 % arginine, yielding similar results to 8 % arginine for most parameters analyzed. CLINICAL SIGNIFICANCE: The results provided further evidence on how arginine, with or without NaF, affects oral microcosm biofilms and enamel mineral loss.


Asunto(s)
Arginina , Biopelículas , Cariostáticos , Esmalte Dental , Microscopía Confocal , Saliva , Fluoruro de Sodio , Desmineralización Dental , Biopelículas/efectos de los fármacos , Arginina/farmacología , Fluoruro de Sodio/farmacología , Esmalte Dental/efectos de los fármacos , Esmalte Dental/microbiología , Bovinos , Animales , Desmineralización Dental/prevención & control , Desmineralización Dental/microbiología , Cariostáticos/farmacología , Saliva/microbiología , Saliva/metabolismo , Saliva/efectos de los fármacos , Concentración de Iones de Hidrógeno , Viabilidad Microbiana/efectos de los fármacos , Calcio/análisis , Calcio/metabolismo , Streptococcus/efectos de los fármacos , Xantenos/farmacología , Recuento de Colonia Microbiana , Oxazinas/farmacología
5.
Dent Med Probl ; 61(2): 241-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686967

RESUMEN

BACKGROUND: Nano-silver fluoride (NSF) has been introduced to improve enamel lesions. The effective use of varnishes is important in the prevention of dental caries. OBJECTIVES: The study aimed to compare the effect of conventional sodium fluoride varnish with the same varnish containing 1% and 2% silver nanoparticles (AgNP) on the surface microhardness of enamel. MATERIAL AND METHODS: The baseline surface microhardness of 40 premolar teeth was measured using a Vickers microhardness tester. After immersing the samples in a demineralizing agent for 24 h, the microhardness was measured again. In group B, a layer of conventional fluoride varnish was applied to the tooth surfaces using a microbrush with soft bristles, following the manufacturer's instructions. Groups C and D were treated with 1% and 2% NSF varnishes, respectively, while group A received no varnish. Surface microhardness tests were conducted on all specimens, including those previously tested. RESULTS: The microhardness of the enamel surface increased significantly in all 3 test groups compared to the microhardness after demineralization (p < 0.05). CONCLUSIONS: Conventional fluoride varnish and fluoride varnishes containing 1% and 2% AgNP are equally effective in remineralizing initial caries.


Asunto(s)
Cariostáticos , Esmalte Dental , Fluoruros Tópicos , Fluoruros , Dureza , Nanopartículas del Metal , Compuestos de Plata , Fluoruro de Sodio , Esmalte Dental/efectos de los fármacos , Humanos , Fluoruros Tópicos/farmacología , Fluoruros Tópicos/administración & dosificación , Cariostáticos/farmacología , Cariostáticos/administración & dosificación , Compuestos de Plata/farmacología , Compuestos de Plata/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Fluoruro de Sodio/farmacología , Fluoruro de Sodio/administración & dosificación , Desmineralización Dental/prevención & control , Plata/farmacología , Remineralización Dental/métodos , Diente Premolar , Propiedades de Superficie , Caries Dental/prevención & control
6.
Clin Oral Investig ; 28(5): 261, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642171

RESUMEN

OBJECTIVE: This study was designed in two-legs. In the in vivo, we explored the potential of a rinse solution containing a combination (Comb) of 0.1 mg/mL CaneCPI-5 (sugarcane-derive cystatin), 1.88 × 10- 5M StN15 (statherin-derived peptide) and 1.0 mg/mL hemoglobin (Hb) to change the protein profile of the acquired enamel pellicle(AEP) and the microbiome of the enamel biofilm. The in vitro, was designed to reveal the effects of Comb on the viability and bacterial composition of the microcosm biofilm, as well as on enamel demineralization. MATERIALS AND METHODS: In vivo study, 10 participants rinsed (10mL,1 min) with either deionized water (H2O-control) or Comb. AEP and biofilm were collected after 2 and 3 h, respectively, after rinsing. AEP samples underwent proteomics analysis, while biofilm microbiome was assessed via 16 S-rRNA Next Generation Sequencing(NGS). In vitro study, a microcosm biofilm protocol was employed. Ninety-six enamel specimens were treated with: 1)Phosphate-Buffered Solution-PBS(negative-control), 2)0.12%Chlorhexidine, 3)500ppmNaF and 4)Comb. Resazurin, colony-forming-units(CFU) and Transversal Microradiography(TMR) were performed. RESULTS: The proteomic results revealed higher quantity of proteins in the Comb compared to control associated with immune system response and oral microbial adhesion. Microbiome showed a significant increase in bacteria linked to a healthy microbiota, in the Comb group. In the in vitro study, Comb group was only efficient in reducing mineral-loss and lesion-depth compared to the PBS. CONCLUSIONS: The AEP modification altered the subsequent layers, affecting the initial process of bacterial adhesion of pathogenic and commensal bacteria, as well as enamel demineralization. CLINICAL RELEVANCE: Comb group shows promise in shaping oral health by potentially introducing innovative approaches to prevent enamel demineralization and deter tooth decay.


Asunto(s)
Caries Dental , Desmineralización Dental , Humanos , Película Dental/química , Película Dental/microbiología , Caries Dental/prevención & control , Proteómica , Biopelículas , Hemoglobinas/análisis , Desmineralización Dental/prevención & control
7.
J Dent ; 145: 104966, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554802

RESUMEN

INTRODUCTION: The decline in dental caries has been attributed to the widespread use of fluoride (F). Two forms of presentation are fluoridated toothpaste (FT) and mouthwash (MW), widely used by the population. MATERIALS AND METHODS: This study aimed to evaluate in vitro the effects of combining FT and MW, whether supplemented with sodium trimetaphosphate (TMP) or not, on dental enamel demineralization. Bovine enamel blocks (n = 60) were selected based on initial surface hardness (SHi) and divided into 5 experimental groups (n = 12 each): I) Placebo Toothpaste (without F/TMP); II) 1100 ppm F Toothpaste (FT); III) 1100F associated with a MW at 100 ppm F (FT + MW 100F); IV) 1100F associated with a MW at 225 ppm F (FT + MW 250F); and V) 1100F associated with a MW at 100 ppm F supplemented with 0.4 % TMP (FT + MW 100F-TMP). The blocks were treated twice a day, undergoing 5 pH cycles over 7 days. Thus, the percentage change in surface hardness (%SH), integrated subsurface hardness loss (ΔKHN), and the concentration of F, phosphorus (P), and calcium (Ca) in the enamel were determined. The data were submitted to ANOVA and Student-Newman-Keuls test (p < 0.001). RESULTS: The 1100F group was statistically inferior to the groups associated with MW for %SH, ΔKHN, and the concentration of P and Ca in the enamel (p < 0.001). Blocks treated with FT + MW 225F and FT + MW 100F-TMP showed significantly lower %SH compared to the other groups (p < 0.001). The FT + MW 100F - TMP group exhibited the lowest depth mineral loss (ΔKHN), and higher concentration de P in enamel (p < 0.001). CONCLUSION: The adjunct use of MW with FT produces a greater protective effect in inhibiting enamel demineralization, and the supplementation of TMP to the MW with 100F provides a superior effect compared to MW with 225F. CLINICAL SIGNIFICANCE: This combination of treatments could be regarded as one of several alternative fluoride supplements for subjects at elevated risk of caries.


Asunto(s)
Cariostáticos , Esmalte Dental , Fluoruros , Dureza , Antisépticos Bucales , Polifosfatos , Desmineralización Dental , Pastas de Dientes , Animales , Bovinos , Polifosfatos/uso terapéutico , Polifosfatos/farmacología , Desmineralización Dental/prevención & control , Esmalte Dental/efectos de los fármacos , Cariostáticos/uso terapéutico , Pastas de Dientes/uso terapéutico , Pastas de Dientes/química , Antisépticos Bucales/uso terapéutico , Fluoruros/uso terapéutico , Concentración de Iones de Hidrógeno , Calcio/uso terapéutico , Calcio/análisis , Ensayo de Materiales
8.
Clin Oral Investig ; 28(1): 119, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277034

RESUMEN

OBJECTIVES: To evaluate the anti-demineralizing effect of a mouthwash comprising pomegranate peel extract (PPE 3%), sodium trimetaphosphate (TMP 0.3%), and fluoride (F 225 ppm) in an in situ study, and to assess its irritation potential in an ex vivo study. METHODS: This double-blind crossover study was conducted in four phases with 7 days each. Twelve volunteers used palatal appliances containing enamel blocks, which were subjected to cariogenic challenges. The ETF formulation (PPE + TMP + F, pH 7.0), TF formulation (TMP + F, pH 7.0), deionized water (W, pH 7.0), and essential oil commercial mouthwash (CM, 220 ppm F, pH 4.3) were dropped onto the enamel twice daily. The percentage of surface hardness loss, integrated loss of subsurface hardness, calcium, phosphorus, and fluoride in enamel and biofilms were determined. In addition, alkali-soluble extracellular polysaccharide concentrations were analyzed in the biofilms. The irritation potential was evaluated using the hen's egg chorioallantoic membrane test through the vascular effect produced during 300-s of exposure. RESULTS: ETF was the most efficacious in preventing demineralization. It also showed the highest concentrations of calcium and phosphorus in the enamel and in the biofilm, as well as the lowest amount of extracellular polysaccharides in the biofilm. In the eggs, ETF produced light reddening, whereas CM led to hyperemia and hemorrhage. CONCLUSIONS: The addition of PPE to formulations containing TMP and F increased its anti-demineralizing property, and this formulation presented a lower irritation potential than the CM. CLINICAL RELEVANCE: ETF can be a promising alternative alcohol-free mouthwash in patients at high risk of caries.


Asunto(s)
Antisépticos Bucales , Extractos Vegetales , Granada (Fruta) , Desmineralización Dental , Humanos , Calcio/análisis , Estudios Cruzados , Esmalte Dental , Fluoruros , Dureza , Antisépticos Bucales/química , Antisépticos Bucales/farmacología , Fósforo , Polifosfatos , Desmineralización Dental/prevención & control , Extractos Vegetales/farmacología
9.
J Dent ; 142: 104838, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211686

RESUMEN

OBJECTIVES: Calcium-coacervate emulsions (CC) might be considered as mineral precursors to foster remineralization of carious dental hard tissues. This study analyzed the instant effect of repeated infiltration of artificial caries lesions with a CC emulsion as well as the effects of subsequent exposure of CC-infiltrated lesions to demineralizing and remineralizing environments. METHODS: Bovine enamel specimens were partly covered with varnish to leave three exposed windows. Artificial enamel caries lesions were created (pH 4.95, 17d). Baseline controls (BL) were obtained by preparing a thin section of each specimen. Specimens were allocated to five groups. In three groups lesions were etched with 37 % phosphoric acid gel, infiltrated with dipotassium hydrogen phosphate and subsequently with a calcium coacervate emulsion, prepared by mixing CaCl2 ⋅ 2H2O with polyacrylic acid sodium salt (PAA-Na). Subsequently, the infiltration effect was either analyzed immediately (Inf.) or after exposition to either de- (Inf.+DS) or remineralizing solution (Inf.+RS) for 10 or 20 days, respectively. In two control groups specimens were exposed to either DS or RS, respectively without prior CC infiltration. Integrated mineral loss [ΔZ(vol%×µm)] was analyzed using transverse microradiography (TMR). RESULTS: Infiltration of enamel caries lesions with coacervate solution resulted in only subtle immediate mineral gain even if repeated. When exposed to demineralizing conditions, infiltrated lesions showed significantly less mineral loss compared to untreated controls (p < 0.05; Kruskal Wallis) and exhibited characteristic mineral depositions within the lesion body. CONCLUSIONS: While immediate mineral gain by infiltration was only modest, the CC-emulsion might be able to prevent demineralization in acidic conditions. CLINICAL SIGNIFICANCE: Calcium coacervates might act protective against further demineralization when infiltrated into enamel caries lesions.


Asunto(s)
Caries Dental , Desmineralización Dental , Animales , Bovinos , Calcio , Susceptibilidad a Caries Dentarias , Emulsiones , Caries Dental/patología , Minerales/uso terapéutico , Remineralización Dental/métodos , Microrradiografía , Desmineralización Dental/prevención & control
10.
J Dent ; 142: 104844, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253119

RESUMEN

OBJECTIVE: The article reviewed novel orthodontic devices and materials with bioactive capacities in recent years and elaborated on their properties, aiming to provide guidance and reference for future scientific research and clinical applications. DATA, SOURCES AND STUDY SELECTION: Researches on remineralization, protein repellent, antimicrobial activity and multifunctional novel bioactive orthodontic devices and materials were included. The search of articles was carried out in Web of Science, PubMed, Medline and Scopus. CONCLUSIONS: The new generation of orthodontic devices and materials with bioactive capacities has broad application prospects. However, most of the current studies are limited to in vitro studies and cannot explore the true effects of various bioactive devices and materials applied in oral environments. More research, especially in vivo researches, is needed to assist in clinical application. CLINICAL SIGNIFICANCE: Enamel demineralization (ED) is a common complication in orthodontic treatments. Prolonged ED can lead to dental caries, impacting both the aesthetics and health of teeth. It is of great significance to develop antibacterial orthodontic devices and materials that can inhibit bacterial accumulation and prevent ED. However, materials with only preventive effect may fall short of addressing actual needs. Hence, the development of novel bioactive orthodontic materials with remineralizing abilities is imperative. The article reviewed the recent advancements in bioactive orthodontic devices and materials, offering guidance and serving as a reference for future scientific research and clinical applications.


Asunto(s)
Caries Dental , Soportes Ortodóncicos , Desmineralización Dental , Humanos , Caries Dental/prevención & control , Estética Dental , Esmalte Dental , Desmineralización Dental/prevención & control
11.
Arch Oral Biol ; 159: 105873, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38215591

RESUMEN

OBJECTIVES: This study evaluated the effect of xylitol combined or not with fluoride (F) on reduction of demineralization and increase of remineralization of shallow and deep artificial enamel lesions. METHODS: Bovine enamel samples were allocated to the following solutions groups: no xylitol (negative control), 5% xylitol, 10% xylitol, 20% xylitol, 500 ppm F (as NaF), 5% xylitol+F, 10% xylitol+F or 20% xylitol+F (n = 12-15). For the demin study, a pH-cycling model (demineralization-6 h, pH 4.7/remineralization 18 h, pH 7.0) was employed for 7 days. Treatments were applied 2 × 1 min. In the remin study, specimens were pre-demineralized for 2, 5 or 10 days. Afterwards, a pH-cycling protocol was conducted (2 h demineralizing and 22 h remineralizing solution/day for 8 days) and the same treatments were done. The response variables were percentage surface hardness loss (%SHL) and transverse microradiography. Data were analyzed by RM ANOVA/Tukey or Kruskal-Wallis/Dunn (p < 0.05) RESULTS: F and Xylitol combined with F reduced the %SHL (23-30%) compared to the negative control (61.5%). The integrated mineral loss and the lesion depth were not reduced by any treatment. Surface hardness recovery was seen only for shallow lesions in case of 20% xylitol+F compared to negative control. No lesion depth recovery, but significant mineral recovery was seen for F (2-days and 10-days lesion). CONCLUSIONS: All concentrations of xylitol+F reduced enamel surface demineralization, while only 20% xylitol+F improved surface remineralization of shallow lesions in vitro. CLINICAL SIGNIFICANCE: Our results suggest that while F or any concentration of xylitol + F reduces surface demineralization, only 20% xylitol+F improves surface remineralization of shallow lesions in vitro. Therefore, xylitol may be added into oral products, combined to F, to control dental caries.


Asunto(s)
Caries Dental , Desmineralización Dental , Animales , Bovinos , Fluoruros , Cariostáticos/farmacología , Cariostáticos/uso terapéutico , Caries Dental/tratamiento farmacológico , Caries Dental/prevención & control , Xilitol/farmacología , Remineralización Dental/métodos , Concentración de Iones de Hidrógeno , Minerales , Fluoruro de Sodio/farmacología , Desmineralización Dental/tratamiento farmacológico , Desmineralización Dental/prevención & control
12.
J Mech Behav Biomed Mater ; 151: 106354, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232670

RESUMEN

The aim of this study was to evaluate the effects of supplementing toothpastes containing 1100 ppm F with micrometric or nanometric [beta]-calcium glycerophosphate (ß-CaGPm/ß-CaGPn) on artificial enamel demineralization, using a pH cycling model. Bovine enamel blocks (4 mm × 4 mm, n = 120) selected using initial surface hardness were randomly allocated to ten toothpaste groups (n = 12): without fluoride or ß-CaGPm or ß-CaGPn (Negative control), 1100 ppm F (1100 F), and 1100 ppm F plus 0.125%, 0.25%, 0.5%, and 1.0% of ß-CaGPm or ß-CaGPn. Blocks were treated two times per day with toothpaste slurry and subjected to five pH cycles (demineralizing and remineralizing solutions) at 37 °C. The final surface hardness, percentage of surface hardness loss (%SH), cross-sectional hardness (ΔKHN), and profile analysis and lesion depth subsurface were analysed using polarized light microscopy (PLM). Fluoride (F), calcium (Ca), and phosphorus (P) concentrations were also measured. Data were analysed using ANOVA and Student-Newman-Keuls tests ([alpha] = 0.001). Blocks treated with 1100 F toothpaste containing 0.5%ß-CaGPm or 0.25%ß-CaGPn showed with reduced %SH values when compared with those treated with 1100 F alone (p < 0.001). Reduced lesion depths (ΔKHN and PLM) were observed for the slurry made up of 1100 F and 0.25%ß-CaGPn (p < 0.001). The addition of ß-CaGPm and ß-CaGPn did not influence the enamel F concentration, with the 1100 F/0.25%ß-CaGPn group exhibiting the highest Ca and P enamel concentrations (p < 0.001). Based on the findings of this in vitro study, we can conclude that the fluoride toothpaste produced a superior effect when combined at an appropriate ß-CaGP molar ratio. This effect was achieved with a lower proportion of ß-CaGP in the form of nanometric particles.


Asunto(s)
Fluoruros , Desmineralización Dental , Humanos , Animales , Bovinos , Fluoruros/farmacología , Fluoruros/análisis , Pastas de Dientes/farmacología , Calcio , Glicerofosfatos , Estudios Transversales , Desmineralización Dental/prevención & control , Dureza , Suplementos Dietéticos , Concentración de Iones de Hidrógeno
13.
Clin Oral Investig ; 27(12): 7753-7763, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37999801

RESUMEN

OBJECTIVE: This in situ study aimed to investigate the efficacy of CO2 laser at a 10.6-µm wavelength combined with 1.23% acidulated phosphate fluoride (APF) and fluoridated dentifrice with 1100 µg F/g (FD) to control enamel caries progression. MATERIALS AND METHODS: Sixteen volunteers wore palatal appliances containing eight demineralized enamel specimens for four 14-day phases under sucrose exposure. These specimens were submitted to CO2 laser irradiation and APF alone or combined with FD. Treatment groups were non-fluoridated dentifrice-NFD, NFD + CO2 laser, NFD + APF, NFD + CO2 laser + APF, FD, FD + CO2 laser, FD + APF, and FD + CO2 laser + APF. Mineral loss, calcium fluoride (CaF2), fluorapatite (FAp), and fluoride in the biofilm were analyzed by analysis of variance followed by the Student-Newman-Keuls test, p < 0.05. RESULTS: The highest mineral loss inhibition was noted when FD and CO2 laser irradiation were combined, which did not significantly differ from the FD + CO2 laser + APF group. The CaF2, FAp, and F in the biofilm were more pronounced when the FD and APF were combined. The CO2 laser irradiation promoted a slightly higher concentration of CaF2 in the enamel and F in the biofilm. CONCLUSION: Although APF promotes the high formation of CaF2 and FAp, the combined use of FD with CO2 laser overcomes the APF effect in inhibiting the progression of artificial caries-like lesions in situ. CLINICAL SIGNIFICANCE: Under the in situ design of this study, remineralization of white spot lesions was achieved through CO2 laser irradiation and daily use of fluoridated dentifrice. Future clinical trials are encouraged to substantiate this finding.


Asunto(s)
Caries Dental , Dentífricos , Láseres de Gas , Desmineralización Dental , Humanos , Fluoruro de Fosfato Acidulado/uso terapéutico , Fluoruro de Fosfato Acidulado/farmacología , Dentífricos/uso terapéutico , Dentífricos/farmacología , Dióxido de Carbono/uso terapéutico , Cariostáticos/uso terapéutico , Susceptibilidad a Caries Dentarias , Caries Dental/prevención & control , Caries Dental/tratamiento farmacológico , Fluoruros/uso terapéutico , Apatitas , Láseres de Gas/uso terapéutico , Desmineralización Dental/prevención & control
14.
BMC Oral Health ; 23(1): 906, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37990312

RESUMEN

BACKGROUND: The present study aimed to evaluate the flexural strength, degree of conversion, and demineralization-prevention ability of an experimental fissure sealant containing nano-calcium-phosphate compounds. METHODS: An experimental sealant was formulated using silica and nano hydroxyapatite filler particles. The control group consisted of the DENU Seal (n = 10, each group). The flexural bond strength was evaluated by UTM. DC was evaluated by FTIR. To evaluate the demineralization-prevention ability, Cl V cavities in 10 third molar teeth restored with two sealant products, followed by an acid challenge then the Vickers microhardness test was carried out. RESULTS: The mean flexural strength in the commercial group was higher than the experimental group. However, the mean flexural modulus was not significantly different between the two groups. In the experimental group, DC was significantly higher than the commercial group. Adjacent to the interface, the decrease in microhardness in the experimental group was significantly less than the commercial group. However, on the tooth surface, there were no significant differences between the two groups. In the experimental group, the decrease in microhardness at the interface was less than at the tooth surface, however the situation was opposite in the commercial group. CONCLUSIONS: Incorporating hydroxyapatite into the sealant structure might prevent demineralization, without adverse effects on flexural modulus and degree of conversion.


Asunto(s)
Esmalte Dental , Desmineralización Dental , Humanos , Selladores de Fosas y Fisuras/uso terapéutico , Resistencia Flexional , Fosfatos , Ensayo de Materiales , Desmineralización Dental/prevención & control , Compuestos de Calcio
15.
J Appl Oral Sci ; 31: e20230244, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37937621

RESUMEN

OBJECTIVE: This investigation describes the effects of 5% sodium fluoride varnish and 38% silver diamine fluoride on demineralization protection of human enamel lesions of three different severities after a secondary acid challenge. STUDY DESIGN: Specimens underwent color and enamel surface microhardness change measurements after demineralization and treatment events. Transverse microradiography was conducted following the secondary demineralization. RESULTS: After treatments, enamel surface microhardness change showed that 24-hour lesions treated with fluoride varnish had less rehardening than 24-hour lesions treated with silver diamine fluoride (p<0.05), whereas 144-hour lesions from both treatment groups showed a beneficial decrease in surface microhardness change that was markedly better in samples treated with silver diamine fluoride (p<0.05). After the secondary demineralization, 24- and 144-hour lesions treated with silver diamine fluoride showed a sustained beneficial decrease in enamel surface microhardness change when compared to fluoride varnish-treated samples of the corresponding lesion severity (p<0.05). Transverse microradiography showed no difference between fluoride varnish- and silver diamine fluoride-treated samples of any corresponding lesion severity, indicating that remineralization in both fluoride varnish- and silver diamine fluoride-treated samples was proportional to each other after a secondary acid challenge. CONCLUSIONS: Using silver diamine fluoride may have comparable benefits to fluoride varnish in mineral loss prevention.


Asunto(s)
Caries Dental , Desmineralización Dental , Humanos , Fluoruros Tópicos/farmacología , Fluoruro de Sodio/farmacología , Fluoruros , Desmineralización Dental/prevención & control , Caries Dental/prevención & control
16.
J Dent Res ; 102(12): 1315-1325, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697863

RESUMEN

Dental caries is a dynamic disease induced by the unbalance between demineralization of dental hard tissues caused by biofilm and remineralization of them; however, although various effective remineralization methods have been well documented, it is a challenge to reestablish the balance by enhancing remineralization alone while ignoring the antibacterial therapy. Therefore, the integration of remineralizing and antibacterial technologies offers a promising strategy to halt natural caries progression in clinical practice. Here, the conception of interrupting dental caries (IDC) was proposed based on the development of dual-functional coating with remineralizing and antibacterial properties. In this study, bovine serum albumin (BSA) loaded octenidine (OCT) successfully to form a BSA-OCT composite. Subsequently, through fast amyloid-like aggregation, the phase-transited BSA-OCT (PTB-OCT) coating can be covered on teeth, resin composite, or sealant surfaces in 30 min by a simple smearing process. The PTB-OCT coating showed satisfactory effects in promoting the remineralization of demineralized enamel and dentin in vitro. Moreover, this coating also exerted significant acid-resistance stability and anti-biofilm properties. Equally importantly, this coating exhibited promising abilities in reducing the microleakage between the tooth and resin composite in vitro and preventing primary and secondary caries in vivo. In conclusion, this novel dual-functional PTB-OCT coating could reestablish the balance between demineralization and remineralization in the process of caries, thereby potentially preventing or arresting caries.


Asunto(s)
Caries Dental , Desmineralización Dental , Humanos , Caries Dental/prevención & control , Susceptibilidad a Caries Dentarias , Desmineralización Dental/prevención & control , Esmalte Dental , Resinas Compuestas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Remineralización Dental/métodos
17.
Clin Oral Investig ; 27(10): 6027-6042, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37620439

RESUMEN

OBJECTIVE: To investigate the antibacterial and enamel remineralization performances as well as physicochemical properties and biocompatibility of a fluoride-coated clear aligner plastic (FCAP). MATERIALS AND METHODS: FCAP and normal clear aligner plastic (CAP) was bought from the manufacturer (Angelalign Technology Inc, China). The FCAP was observed under scanning electron microscopy. Its element composition, resistance to separation, contact angle, and protein adhesion performance were characterized. Colony-forming unit (CFU) count and 3-(4,5)-dimethylthiazol(-z-y1)-3,5-diphenyltetrazolium bromide (MTT) assay were used to evaluate the antibacterial ability of Streptococcus mutans. Fluoride release-recharge patterns were obtained. Apatite formation was evaluated after immersing FCAP in artificial saliva. Enamel remineralization capability was evaluated in the demineralization model (immersing samples in demineralization solution for 36 h) and pH cycling model (immersing samples in demineralization solution and remineralization solution in turns for 14 days). Cell Counting Kit-8 (CCK-8) and live/dead cell staining kits were used for cytotoxicity assay. RESULTS: The FCAP showed uniformly distributed fluoride and did not compromise protein adhesion performance. CFU count (5.47 ± 0.55 for CAP, 3.63 ± 0.38 for FCAP) and MTT assay (0.41 ± 0.025 for CAP, 0.28 ± 0.038) indicated that the FCAP had stronger antibacterial activity compared with normal CAP (P < 0.05 for both evaluations). The FCAP could release fluoride continuously for 14 days and could be recharged after immersing in NaF solution. The FCAP could induce the formation of hydroxyapatite in artificial saliva and could reduce the microhardness decrease, color change, and mineral loss of enamels in both two models (P < 0.05 for all evaluations). CCK-8 and live/dead cell staining analyses showed that the coating did not compromise the biocompatibility of the clear aligner (P > 0.05 for CCK-8 evaluation). CONCLUSIONS: The FCAP had antibacterial, fluoride recharge, and enamel remineralization abilities while it did not compromise physicochemical properties and biocompatibility. CLINICAL RELEVANCE: The FCAP has the potential to prevent enamel demineralization during clear aligner treatment.


Asunto(s)
Caries Dental , Aparatos Ortodóncicos Removibles , Desmineralización Dental , Humanos , Fluoruros/farmacología , Desmineralización Dental/prevención & control , Saliva Artificial , Remineralización Dental , Concentración de Iones de Hidrógeno , Esmalte Dental , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Caries Dental/prevención & control , Fluoruro de Sodio/farmacología , Cariostáticos/uso terapéutico
18.
Braz Dent J ; 34(3): 119-128, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37466519

RESUMEN

To assess the in vitro and in situ effect of experimental combined fluoride and calcium nanocomposite solutions on dental caries prevention. Nanocompound mesoporous silica (MS) with calcium (Ca) and sodium fluoride (NaF) - (MSCaNaF); MS with NaF (MSNaF), NaF solution (positive control), and deionized water (negative control - CG) were studied. The specimens (n=130) were submitted in vitro to a multispecies biofilm in the presence of 2% sucrose. After 24 h and 48 h, the culture medium pH, the percent of surface mineral loss (%SML), and lesion depth (ΔZ) were analyzed. In the in situ study, 10 volunteers participated in four phases of 7-days each. The products were applied on the specimens (n=240) before 20% sucrose solution drips. The polysaccharides (SEPS and IEPS), %SML and roughness (Sa) were evaluated. There was an in vitro decrease in pH values in 24h and 48h, compared to baseline. The MSCaNaF and MSNaF groups obtained lower values of %SML and ΔZ (p < 0.05) than CG and NaF after 24h and were similar to NaF after 48h (p<0.05). In situ results showed similar SEPS and IEPS among all groups after 48h. An after 7-days, the nanocomposites had similar values (p>0.05), while NaF was similar to CG (p>0.05). After 48h, the MSCaNaF and MSNaF reduced the %SML (p<0.05). After 7-days, both experimental nanocomposites were similar to NaF (p>0.05). Regarding Sa, MSCaNaF was better than NaF for both periods (p<0.05). The nanocomposites controlled the in vitro and in situ enamel demineralization, mainly in the initial periods.


Asunto(s)
Caries Dental , Desmineralización Dental , Humanos , Fluoruros , Caries Dental/prevención & control , Calcio , Cariostáticos , Susceptibilidad a Caries Dentarias , Fluoruro de Sodio/farmacología , Sacarosa , Desmineralización Dental/prevención & control
19.
J Indian Soc Pedod Prev Dent ; 41(1): 16-21, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37282407

RESUMEN

Introduction: The earliest sign of a new carious lesion is the appearance of chalky white spots on the surface of the tooth, indicating an area of demineralization of enamel. At this stage, the demineralization process can be reversed or arrested. This study aimed to determine the prevalence of white spot lesions (WSLs) among children up to 71 months in Gujarat state and to increase awareness among parents about its various preventive measures. Materials and Methods: Oral examination was done using the mouth mirror and tongue depressor. The prevalence of WSL was recorded using the International Caries Detection and Assessment System II coding and WSL index by Gorelick. Results: The overall prevalence of WSL was 31.8% (n = 2025) in Gujarat state. The parents of the participating children explained the various preventive measures to prevent decay followed by diet counseling and toothbrushing techniques. Conclusion: Knowledge of the actual prevalence of WSL will help in the implementation of appropriate and timely preventive measures required to decrease the incidence of early childhood caries in that region.


Asunto(s)
Caries Dental , Desmineralización Dental , Humanos , Niño , Preescolar , Prevalencia , Caries Dental/prevención & control , Desmineralización Dental/prevención & control , Esmalte Dental , Diagnóstico Bucal
20.
J Dent Res ; 102(7): 777-784, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37283034

RESUMEN

Nano-hydroxyapatite (nHAP) is considered a biocompatible agent that promotes the remineralization of dental hard tissue; however, its antibacterial efficacy is under scientific discussion. Therefore, this investigation aimed to specify the inhibitory effects of disaggregated nano-hydroxyapatite (DnHAP) on regrown biofilms and demineralization. Regrown biofilm models of single-species (Streptococcus mutans), dual-species (S. mutans and Candida albicans), and saliva-derived microcosm biofilms were established in vitro. Repeat treatment with DnHAP was applied to biofilms. The viability, lactic acid, biofilm structure, biomass, the inhibitory effect of demineralization, and virulence factors' expression were determined. In addition, the biofilm microbial community was analyzed by 16S ribosomal RNA gene sequencing. DnHAP inhibited metabolism, lactic acid production, biomass, and water-insoluble polysaccharide production (P < 0.05) of regrown single/dual-species biofilms. Concerning the saliva-derived biofilms, samples treated with DnHAP showed lower biofilm metabolic activity without significant differences from samples treated with sterile deionized water (P > 0.05); in addition, saliva-derived biofilms treated with DnHAP exhibited lower lactic acid production (P < 0.05). The demineralization of bovine enamel was the lowest in the DnHAP group, as detected by transverse microradiography, and the lesion depth and volume decreased significantly (P < 0.05). The application of DnHAP did not change the diversity of regrown saliva-derived microcosm biofilms. In conclusion, this investigation showed that DnHAP could be a promising solution for the management of regrown biofilms to combat dental caries.


Asunto(s)
Caries Dental , Desmineralización Dental , Animales , Bovinos , Desmineralización Dental/prevención & control , Caries Dental/prevención & control , Caries Dental/microbiología , Durapatita/farmacología , Biopelículas , Streptococcus mutans , Ácido Láctico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA