Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073255

RESUMEN

Whole genome sequences of two Acinetobacter baumannii clinical isolates, 48-1789 and MAR24, revealed that they carry the KL106 and KL112 capsular polysaccharide (CPS) biosynthesis gene clusters, respectively, at the chromosomal K locus. The KL106 and KL112 gene clusters are related to the previously described KL11 and KL83 gene clusters, sharing genes for the synthesis of l-rhamnose (l-Rhap) and 6-deoxy-l-talose (l-6dTalp). CPS material isolated from 48-1789 and MAR24 was studied by sugar analysis and Smith degradation along with one- and two-dimensional 1H and 13C NMR spectroscopy. The structures of K106 and K112 oligosaccharide repeats (K units) l-6dTalp-(1→3)-D-GlcpNAc tetrasaccharide fragment share the responsible genes in the respective gene clusters. The K106 and K83 CPSs also have the same linkage between K units. The KL112 cluster includes an additional glycosyltransferase gene, Gtr183, and the K112 unit includes α l-Rhap side chain that is not found in the K106 structure. K112 further differs in the linkage between K units formed by the Wzy polymerase, and a different wzy gene is found in KL112. However, though both KL106 and KL112 share the atr8 acetyltransferase gene with KL83, only K83 is acetylated.


Asunto(s)
Acinetobacter baumannii , Desoxiazúcares , Hexosas , Polisacáridos Bacterianos , Acinetobacter baumannii/química , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Desoxiazúcares/química , Desoxiazúcares/genética , Desoxiazúcares/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Hexosas/química , Hexosas/genética , Hexosas/metabolismo , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/metabolismo , Especificidad de la Especie
2.
Int J Biol Macromol ; 161: 891-897, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32553974

RESUMEN

The lipopolysaccharide (LPS) of Herbaspirillum frisingense GSF30T (HfGSF30), a non-pathogenic diazotrophic endobiont, was isolated by phenol-water extraction from bacterial cells and was characterized by chemical analyses and SDS PAGE. The O-specific polysaccharide (OPS, O-antigen), obtained by mild acid hydrolysis of the LPS, was examined by sugar and methylation analysis, along with 1H and 13C NMR spectroscopy, including 2D 1H,1H COSY, 1H,1H TOCSY, 1H,1H ROESY, 1H,13C HSQC, and 1H,13C HMBC experiments. The OPS was found to consist of branched tetrasaccharide repeating units of the following structure: [Formula: see text] This structure is unique among the known bacterial polysaccharide structures. Analysis of the HfGSF30 genome showed that it contained a set of sequentially arranged operons (presumably a cluster of genes) associated with the O-antigen. Amino acid sequence analysis using the BLAST program demonstrated the specificity of this putative cluster for Herbaspirillum spp. The genes responsible for the biosynthesis of the OPS of HfGSF30 were dispersed in the genome, constituting small operons. A putative O-antigen gene cluster of HfGSF30 was identified and found to be consistent with the OPS structure.


Asunto(s)
Desoxiazúcares/genética , Herbaspirillum/genética , Lipopolisacáridos/genética , Antígenos O/genética , Polisacáridos Bacterianos/genética , Conformación de Carbohidratos , Hidrólisis , Espectroscopía de Resonancia Magnética/métodos , Metilación , Operón/genética
3.
J Biol Chem ; 294(46): 17612-17625, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31582566

RESUMEN

In Lactococcus lactis, cell-wall polysaccharides (CWPSs) act as receptors for many bacteriophages, and their structural diversity among strains explains, at least partially, the narrow host range of these viral predators. Previous studies have reported that lactococcal CWPS consists of two distinct components, a variable chain exposed at the bacterial surface, named polysaccharide pellicle (PSP), and a more conserved rhamnan chain anchored to, and embedded inside, peptidoglycan. These two chains appear to be covalently linked to form a large heteropolysaccharide. The molecular machinery for biosynthesis of both components is encoded by a large gene cluster, named cwps In this study, using a CRISPR/Cas-based method, we performed a mutational analysis of the cwps genes. MALDI-TOF MS-based structural analysis of the mutant CWPS combined with sequence homology, transmission EM, and phage sensitivity analyses enabled us to infer a role for each protein encoded by the cwps cluster. We propose a comprehensive CWPS biosynthesis scheme in which the rhamnan and PSP chains are independently synthesized from two distinct lipid-sugar precursors and are joined at the extracellular side of the cytoplasmic membrane by a mechanism involving a membrane-embedded glycosyltransferase with a GT-C fold. The proposed scheme encompasses a system that allows extracytoplasmic modification of rhamnan by complex substituting oligo-/polysaccharides. It accounts for the extensive diversity of CWPS structures observed among lactococci and may also have relevance to the biosynthesis of complex rhamnose-containing CWPSs in other Gram-positive bacteria.


Asunto(s)
Pared Celular/metabolismo , Lactococcus lactis/metabolismo , Polisacáridos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Pared Celular/química , Pared Celular/genética , Desoxiazúcares/análisis , Desoxiazúcares/genética , Desoxiazúcares/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Lactococcus lactis/química , Lactococcus lactis/genética , Mananos/análisis , Mananos/genética , Mananos/metabolismo , Familia de Multigenes , Polisacáridos Bacterianos/análisis , Polisacáridos Bacterianos/genética
4.
mBio ; 8(5)2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28900021

RESUMEN

Polysaccharides are ubiquitous components of the Gram-positive bacterial cell wall. In Lactococcus lactis, a polysaccharide pellicle (PSP) forms a layer at the cell surface. The PSP structure varies among lactococcal strains; in L. lactis MG1363, the PSP is composed of repeating hexasaccharide phosphate units. Here, we report the presence of an additional neutral polysaccharide in L. lactis MG1363 that is a rhamnan composed of α-l-Rha trisaccharide repeating units. This rhamnan is still present in mutants devoid of the PSP, indicating that its synthesis can occur independently of PSP synthesis. High-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) analysis of whole bacterial cells identified a PSP at the surface of wild-type cells. In contrast, rhamnan was detected only at the surface of PSP-negative mutant cells, indicating that rhamnan is located underneath the surface-exposed PSP and is trapped inside peptidoglycan. The genetic determinants of rhamnan biosynthesis appear to be within the same genetic locus that encodes the PSP biosynthetic machinery, except the gene tagO encoding the initiating glycosyltransferase. We present a model of rhamnan biosynthesis based on an ABC transporter-dependent pathway. Conditional mutants producing reduced amounts of rhamnan exhibit strong morphological defects and impaired division, indicating that rhamnan is essential for normal growth and division. Finally, a mutation leading to reduced expression of lcpA, encoding a protein of the LytR-CpsA-Psr (LCP) family, was shown to severely affect cell wall structure. In lcpA mutant cells, in contrast to wild-type cells, rhamnan was detected by HR-MAS NMR, suggesting that LcpA participates in the attachment of rhamnan to peptidoglycan.IMPORTANCE In the cell wall of Gram-positive bacteria, the peptidoglycan sacculus is considered the major structural component, maintaining cell shape and integrity. It is decorated with other glycopolymers, including polysaccharides, the roles of which are not fully elucidated. In the ovococcus Lactococcus lactis, a polysaccharide with a different structure between strains forms a layer at the bacterial surface and acts as the receptor for various bacteriophages that typically exhibit a narrow host range. The present report describes the identification of a novel polysaccharide in the L. lactis cell wall, a rhamnan that is trapped inside the peptidoglycan and covalently bound to it. We propose a model of rhamnan synthesis based on an ABC transporter-dependent pathway. Rhamnan appears as a conserved component of the lactococcal cell wall playing an essential role in growth and division, thus highlighting the importance of polysaccharides in the cell wall integrity of Gram-positive ovococci.


Asunto(s)
Desoxiazúcares/química , Lactococcus lactis/química , Lactococcus lactis/metabolismo , Mananos/química , Peptidoglicano/química , Polisacáridos/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular , Pared Celular/metabolismo , Desoxiazúcares/biosíntesis , Desoxiazúcares/genética , Lactococcus lactis/genética , Lactococcus lactis/ultraestructura , Espectroscopía de Resonancia Magnética/métodos , Mananos/biosíntesis , Mananos/genética , Mutación , Peptidoglicano/metabolismo , Polisacáridos/metabolismo
5.
Biosci Biotechnol Biochem ; 80(5): 935-41, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26818633

RESUMEN

Fluvirucins are 14-membered macrolactam polyketides that show antifungal and antivirus activities. Fluvirucins have the ß-alanine starter unit at their polyketide skeletons. To understand the construction mechanism of the ß-alanine moiety in fluvirucin biosyntheses, we have identified the biosynthetic cluster of fluvirucin B2 produced from Actinomadura fulva subsp. indica ATCC 53714. The identified gene cluster contains three polyketide synthases, four characteristic ß-amino acid-carrying enzymes, one decarboxylase, and one amidohydrolase. We next investigated the activity of the adenylation enzyme FlvN, which is a key enzyme for the selective incorporation of a ß-amino acid substrate. FlvN showed strong preference for l-aspartate over other amino acids such as ß-alanine. Based on these results, we propose a biosynthetic pathway for fluvirucin B2.


Asunto(s)
Actinobacteria/genética , Antiinfecciosos/metabolismo , Desoxiazúcares/biosíntesis , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , beta-Alanina/metabolismo , Actinobacteria/enzimología , Adenosina Monofosfato/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Clonación Molecular , Desoxiazúcares/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Lactamas , Anotación de Secuencia Molecular , Familia de Multigenes , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
6.
Glycobiology ; 26(5): 493-500, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26703456

RESUMEN

Colitose, also known as 3,6-dideoxy-L-galactose or 3-deoxy-L-fucose, is one of only five naturally occurring 3,6-dideoxyhexoses. Colitose was found in lipopolysaccharide of a number of infectious bacteria, including Escherichia coli O55 & O111 and Vibrio cholera O22 & O139. To date, no colitosyltransferase (ColT) has been characterized, probably due to the inaccessibility of the sugar donor, GDP-colitose. In this study, starting with chemically prepared colitose, 94.6 mg of GDP-colitose was prepared via a facile and efficient one-pot two-enzyme system involving an L-fucokinase/GDP-L-Fuc pyrophosphorylase and an inorganic pyrophosphatase (EcPpA). WbgN, a putative ColT from E. coliO55:H5 was then cloned, overexpressed, purified and biochemically characterized by using GDP-colitose as a sugar donor. Activity assay and structural identification of the synthetic product clearly demonstrated that wbgN encodes an α1,2-ColT. Biophysical study showed that WbgN does not require metal ion, and is highly active at pH 7.5-9.0. In addition, acceptor specificity study indicated that WbgN exclusively recognizes lacto-N-biose (Galß1,3-GlcNAc). Most interestingly, it was found that WbgN exhibits similar activity toward GDP-l-Fuc (kcat/Km= 9.2 min(-1)mM(-1)) as that toward GDP-colitose (kcat/Km= 12 min(-1)mM(-1)). Finally, taking advantage of this, type 1 H-antigen was successfully synthesized in preparative scale.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Desoxiazúcares/química , Desoxiazúcares/genética , Desoxiazúcares/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glucosiltransferasas/genética , Azúcares de Guanosina Difosfato/química , Azúcares de Guanosina Difosfato/genética , Azúcares de Guanosina Difosfato/metabolismo
7.
Metab Eng ; 20: 92-100, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24060454

RESUMEN

The overall erythromycin biosynthetic pathway can be sub-divided into macrocyclic polyketide formation and polyketide tailoring to produce the final bioactive molecule. In this study, the native deoxysugar tailoring reactions were exchanged for the purpose of demonstrating the production of alternative final erythromycin compounds. Both the d-desosamine and l-mycarose deoxysugar pathways were replaced with the alternative d-mycaminose and d-olivose pathways to produce new erythromycin analogues through the Escherichia coli heterologous system. Both analogues exhibited bioactivity against multiple antibiotic-resistant Bacillus subtilis strains. Besides demonstrating an intrinsic flexibility for the biosynthetic system to accommodate alternative tailoring pathways, the results offer an initial attempt to leverage the E. coli platform for erythromycin analogue production.


Asunto(s)
Amino Azúcares , Desoxiazúcares , Eritromicina , Escherichia coli , Glucosamina/análogos & derivados , Amino Azúcares/genética , Amino Azúcares/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Desoxiazúcares/genética , Desoxiazúcares/metabolismo , Eritromicina/análogos & derivados , Eritromicina/biosíntesis , Escherichia coli/enzimología , Escherichia coli/genética , Glucosamina/genética , Glucosamina/metabolismo , Hexosas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Streptomyces/enzimología , Streptomyces/genética
8.
Glycobiology ; 21(9): 1140-6, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21325338

RESUMEN

Among the 21 O-polysaccharide (OPS) O-antigen-based serotypes described for Yersinia pseudotuberculosis, those of O:6 and O:7 are unusual in that both contain colitose (4-keto-3,6-dideoxy-d-mannose or 4-keto-3,6-dideoxy-l-xylo-hexose), which has not otherwise been reported for this species, and the O:6 OPS also contains yersiniose A (4-C[(R)-1-hydroxyethyl]-3,6-dideoxy-d-xylo-hexose), another unusual dideoxyhexose sugar. In Y. pseudotuberculosis, the genes for OPS synthesis generally cluster together between the hemH and gsk loci. Here, we present the sequences of the OPS gene clusters of Y. pseudotuberculosis O:6 and O:7, and the location of the genes required for synthesis of these OPSs, except that there is still ambiguity regarding allocation of some of the glycosyltransferase functions. The O:6 and O:7 gene clusters have much in common with each other, but differ substantially from the group of 13 gene clusters already sequenced, which share several features and sequence similarities. We also present a possible sequence of events for the derivation of the O:6 and O:7 gene clusters from the most closely related set of 13 sequenced previously.


Asunto(s)
Familia de Multigenes , Antígenos O , Yersinia pseudotuberculosis , Secuencia de Bases , Secuencia de Carbohidratos , ADN Bacteriano/química , Desoxiazúcares/química , Desoxiazúcares/genética , Glicosiltransferasas/metabolismo , Hexosas/química , Hexosas/genética , Manosa/química , Manosa/genética , Datos de Secuencia Molecular , Antígenos O/química , Antígenos O/clasificación , Antígenos O/genética , Análisis de Secuencia de ADN , Serotipificación , Yersinia pseudotuberculosis/química , Yersinia pseudotuberculosis/genética , Infecciones por Yersinia pseudotuberculosis/microbiología
9.
J Biosci Bioeng ; 108(2): 92-8, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19619853

RESUMEN

To enhance doxorubicin (DXR) production, the structural sugar biosynthesis genes desIII and desIV from Streptomyces venezuelae ATCC 15439 and the glycosyltransferase pair dnrS/dnrQ from Streptomyces peucetius ATCC 27952 were cloned into the expression vector pIBR25, which contains a strong ermE promoter. The recombinant plasmids pDnrS25 and pDnrQS25 were constructed for overexpression of dnrS and the dnrS/dnrQ pair, whereas pDesSD25 and pDesQS25 were constructed to express desIII/desIV and dnrS/dnrQ-desIII/desIV, respectively. All of these recombinant plasmids were introduced into S. peucetius ATCC 27952. The recombinant strains produced more DXR than the S. peucetius parental strain: a 1.2-fold increase with pDnrS25, a 2.8-fold increase with pDnrQS25, a 2.6-fold increase with pDesSD25, and a 5.6-fold increase with pDesQS25. This study showed that DXR production was significantly enhanced by overexpression of potential biosynthetic sugar genes and glycosyltransferase.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Desoxiazúcares/metabolismo , Doxorrubicina/biosíntesis , Glicosiltransferasas/biosíntesis , Streptomyces/enzimología , Proteínas Bacterianas/genética , Sistema Enzimático del Citocromo P-450 , Desoxiazúcares/genética , Expresión Génica , Glicosiltransferasas/genética , Metiltransferasas/genética , Plásmidos/genética , Plásmidos/metabolismo , Regiones Promotoras Genéticas/genética , Streptomyces/genética
10.
Carbohydr Res ; 343(6): 1034-40, 2008 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-18346720

RESUMEN

In line with our on-going efforts to create a multivalent anti-Campylobacter jejuni vaccine based on its capsule polysaccharides (CPSs), we report here the chemical structure and the genetic locus of the CPS produced by C. jejuni strain CG8486, which belongs to the serotype HS:4 CPS complex. C. jejuni CG8486 CPS was observed to be composed of approximately 17 disaccharide repeating blocks of 4-substituted N-acetyl-beta-D-glucopyranosamine and 3-substituted 6-deoxy-beta-D-ido-heptopyranose. A small number of 6-deoxy-beta-D-ido-heptopyranose units were observed to carry O-methyl phosphoramidate moieties at the O-2 or O-7 position. The gene content and organization of the CPS locus of C. jejuni CG8486 were comparable to those of C. jejuni strains NCTC 11168 and 81-176, but several CG8486 CPS genes were observed to be more divergent from those present in the CPS loci of NCTC 11168 and 81-176 CPS, which indicated that there are genetic characteristics specific to the C. jejuni HS:4 CPS complex. The efficacy of a glycoconjugate vaccine based on C. jejuni CG8486 CPS is presently being tested in an animal model, the results of which will be presented in future communications.


Asunto(s)
Cápsulas Bacterianas/metabolismo , Campylobacter jejuni/química , Desoxiazúcares/química , Desoxiazúcares/genética , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/genética , Campylobacter jejuni/genética , Secuencia de Carbohidratos , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Estructura Molecular , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
11.
Appl Microbiol Biotechnol ; 64(1): 7-15, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14727096

RESUMEN

Deoxyaminosugars comprise an important class of deoxysugars synthesized by a variety of different microorganisms; they can be structural components of lipopolysaccharides, extracellular polysaccharides, and secondary metabolites such as antibiotics. Genes involved in the biosynthesis of the deoxyaminosugars are often clustered and are located in the vicinity of other genes required for the synthesis of the final compound. Most of the gene clusters for aminosugar biosynthesis have common features, as they contain genes encoding dehydratases, isomerases, aminotransferases, methyltransferases, and glycosyltransferases. In the present mini-review, the proposed biosynthetic pathways for deoxyaminosugar components of both macrolide and non-macrolide antibiotics are highlighted. The possibilities for genetic manipulations of the deoxyaminosugar biosynthetic pathways aimed at production of novel secondary metabolites are discussed.


Asunto(s)
Amino Azúcares/biosíntesis , Antibacterianos/biosíntesis , Bacterias/genética , Bacterias/metabolismo , Desoxiazúcares/biosíntesis , Amino Azúcares/química , Amino Azúcares/genética , Desoxiazúcares/química , Desoxiazúcares/genética , Genes Bacterianos , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Hidroliasas/genética , Hidroliasas/metabolismo , Isomerasas/genética , Isomerasas/fisiología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Familia de Multigenes , Transaminasas/genética , Transaminasas/metabolismo
12.
Chem Biol ; 10(5): 431-41, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12770825

RESUMEN

The PKS genes for biosynthesis of the polyether nanchangmycin are organized to encode two sets of proteins (six and seven ORFs, respectively), but are separated by independent ORFs that encode an epimerase, epoxidase, and epoxide hydrolase, and, notably, an independent ACP. One of the PKS modules lacks a corresponding ACP. We propose that the process of oxidative cyclization to form the polyether structure occurs when the polyketide chain is still anchored on the independent ACP before release. 4-O-methyl-L-rhodinose biosynthesis and its transglycosylation involve four putative genes, and regulation of nanchangmycin biosynthesis seems to involve activation as well as repression. In-frame deletion of a KR6 domain generated the nanchangmycin aglycone with loss of 4-O-methyl-L-rhodinose and antibacterial activity, in agreement with the assignments of the PKS domains catalyzing specific biosynthetic steps.


Asunto(s)
Antibacterianos/biosíntesis , Éteres/metabolismo , Genes Bacterianos , Complejos Multienzimáticos/genética , Familia de Multigenes , Compuestos de Espiro/metabolismo , Streptomyces/genética , Secuencia de Aminoácidos , Antibacterianos/química , Clonación Molecular , Desoxiazúcares/biosíntesis , Desoxiazúcares/genética , Éteres/química , Genes Reguladores , Ionóforos , Datos de Secuencia Molecular , Estructura Molecular , Sistemas de Lectura Abierta , Alineación de Secuencia , Eliminación de Secuencia , Compuestos de Espiro/química , Streptomyces/metabolismo
13.
Chem Biol ; 9(6): 721-9, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12079784

RESUMEN

A plasmid (pLN2) was generated in which genes involved in the biosynthesis of L-oleandrose in the oleandomycin producer Streptomyces antibioticus ATCC11891 were cloned. pLN2 was used to direct the biosynthesis of different deoxysugars by exchanging and/or adding genes from other antibiotic biosynthetic clusters. Transfer of the synthesized deoxysugars to the tetracenomycin C aglycon, 8-demethyl-tetracenomycin C, through the use of the "sugar flexible" glycosyltransferase ElmGT, validated the system. Several pLN2 derivatives were constructed by replacement of the oleU 4-ketoreductase gene by different 4-ketoreductase genes. Some of them, such as EryBIV and UrdR, reduced the keto group of the 4-keto intermediates, generating L-olivosyl and D-olivosyl derivatives, respectively. The system was also used to generate an L-rhamnosyl derivative (through a two-gene deletion) and an L-rhodinosyl derivative (through a combination of a gene replacement and a gene addition).


Asunto(s)
Antibacterianos/biosíntesis , Desoxiazúcares/biosíntesis , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Bacterianos/genética , Hexosas/biosíntesis , Plásmidos/genética , Streptomyces antibioticus/genética , Antibacterianos/química , Clonación Molecular , Desoxiazúcares/química , Desoxiazúcares/genética , Diseño de Fármacos , Eliminación de Gen , Ingeniería Genética , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Hexosas/química , Streptomyces antibioticus/enzimología , Streptomyces antibioticus/metabolismo
14.
Chem Biol ; 8(7): 681-700, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11451669

RESUMEN

BACKGROUND: The avermectins, produced by Streptomyces avermitilis, are potent anthelminthic agents with a polyketide-derived macrolide skeleton linked to a disaccharide composed of two alpha-linked L-oleandrose units. Eight contiguous genes, avrBCDEFGHI (also called aveBI-BVIII), are located within the avermectin-producing gene cluster and have previously been mapped to the biosynthesis and attachment of thymidinediphospho-oleandrose to the avermectin aglycone. This gene cassette provides a convenient way to study the biosynthesis of 2,6-dideoxysugars, namely that of L-oleandrose, and to explore ways to alter the biosynthesis and structures of the avermectins by combinatorial biosynthesis. RESULTS: A Streptomyces lividans strain harboring a single plasmid with the avrBCDEFGHI genes in which avrBEDC and avrIHGF were expressed under control of the actI and actIII promoters, respectively, correctly glycosylated exogenous avermectin A1a aglycone with identical oleandrose units to yield avermectin A1a. Modified versions of this minimal gene set produced novel mono- and disaccharide avermectins. The results provide further insight into the biosynthesis of L-oleandrose. CONCLUSIONS: The plasmid-based reconstruction of the avr deoxysugar genes for expression in a heterologous system combined with biotransformation has led to new information about the mechanism of 2,6-deoxysugar biosynthesis. The structures of the di-demethyldeoxysugar avermectins accumulated indicate that in the oleandrose pathway the stereochemistry at C-3 is ultimately determined by the 3-O-methyltransferase and not by the 3-ketoreductase or a possible 3,5-epimerase. The AvrF protein is therefore a 5-epimerase and not a 3,5-epimerase. The ability of the AvrB (mono-)glycosyltransferase to accommodate different deoxysugar intermediates is evident from the structures of the novel avermectins produced.


Asunto(s)
Antihelmínticos/metabolismo , Desoxiazúcares/biosíntesis , Desoxiazúcares/metabolismo , Hexosas/metabolismo , Ivermectina/metabolismo , Streptomyces/química , Técnicas Químicas Combinatorias , Desoxiazúcares/genética , Expresión Génica , Ivermectina/análogos & derivados , Familia de Multigenes/genética , Plásmidos , Ingeniería de Proteínas , Racemasas y Epimerasas/metabolismo , Estereoisomerismo , Streptomyces/genética , Streptomyces/metabolismo
15.
Biochim Biophys Acta ; 1517(1): 135-8, 2000 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-11118626

RESUMEN

The serotype a-specific polysaccharide antigen (SPA) of Actinobacillus actinomycetemcomitans consists of 6-deoxy-D-talose. A gene cluster associated with the biosynthesis of SPA was cloned and sequenced from the chromosomal DNA of A. actinomycetemcomitans SUNYaB 75 (serotype a). This cluster consisted of 14 open reading frames. Insertional inactivation of eight genes in this cluster resulted in loss of the ability of A. actinomycetemcomitans SUNYaB 75 cells to produce the polysaccharide. A protein database search revealed that the 11 sequential genes containing these eight genes were not found in SPA-associated gene clusters of the other serotypes of A. actinomycetemcomitans. These results suggest that the gene cluster is unique to serotype a and is essential to the synthesis of the SPA.


Asunto(s)
Aggregatibacter actinomycetemcomitans/genética , Antígenos Bacterianos/genética , Hexosas , Antígenos Bacterianos/biosíntesis , Clonación Molecular , Desoxiazúcares/biosíntesis , Desoxiazúcares/genética , Datos de Secuencia Molecular , Familia de Multigenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA