Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.255
Filtrar
1.
Viruses ; 16(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39339888

RESUMEN

Deoxynucleoside triphosphates (dNTPs) are crucial for the replication and maintenance of genomic information within cells. The balance of the dNTP pool involves several cellular enzymes, including dihydrofolate reductase (DHFR), ribonucleotide reductase (RNR), and SAM and HD domain-containing protein 1 (SAMHD1), among others. DHFR is vital for the de novo synthesis of purines and deoxythymidine monophosphate, which are necessary for DNA synthesis. SAMHD1, a ubiquitously expressed deoxynucleotide triphosphohydrolase, converts dNTPs into deoxynucleosides and inorganic triphosphates. This process counteracts the de novo dNTP synthesis primarily carried out by RNR and cellular deoxynucleoside kinases, which are most active during the S phase of the cell cycle. The intracellular levels of dNTPs can influence various viral infections. This review provides a concise summary of the interactions between different viruses and the genes involved in dNTP metabolism.


Asunto(s)
Desoxirribonucleótidos , Proteína 1 que Contiene Dominios SAM y HD , Virosis , Humanos , Virosis/metabolismo , Virosis/virología , Virosis/genética , Desoxirribonucleótidos/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/genética , Replicación Viral , Animales , Virus/genética , Virus/metabolismo , Replicación del ADN , Ribonucleótido Reductasas/metabolismo , Ribonucleótido Reductasas/genética
2.
Biomolecules ; 14(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39199349

RESUMEN

Human terminal deoxynucleotidyl transferase (TdT) can catalyze template-independent DNA synthesis during the V(D)J recombination and DNA repair through nonhomologous end joining. The capacity for template-independent random addition of nucleotides to single-stranded DNA makes this polymerase useful in various molecular biological applications involving sequential stepwise synthesis of oligonucleotides using modified dNTP. Nonetheless, a serious limitation to the applications of this enzyme is strong selectivity of human TdT toward dNTPs in the order dGTP > dTTP ≈ dATP > dCTP. This study involved molecular dynamics to simulate a potential impact of amino acid substitutions on the enzyme's selectivity toward dNTPs. It was found that the formation of stable hydrogen bonds between a nitrogenous base and amino acid residues at positions 395 and 456 is crucial for the preferences for dNTPs. A set of single-substitution and double-substitution mutants at these positions was analyzed by molecular dynamics simulations. The data revealed two TdT mutants-containing either substitution D395N or substitutions D395N+E456N-that possess substantially equalized selectivity toward various dNTPs as compared to the wild-type enzyme. These results will enable rational design of TdT-like enzymes with equalized dNTP selectivity for biotechnological applications.


Asunto(s)
ADN Nucleotidilexotransferasa , Simulación de Dinámica Molecular , Humanos , ADN Nucleotidilexotransferasa/metabolismo , ADN Nucleotidilexotransferasa/química , ADN Nucleotidilexotransferasa/genética , Especificidad por Sustrato , Desoxirribonucleótidos/metabolismo , Desoxirribonucleótidos/química , Nucleótidos de Timina/metabolismo , Nucleótidos de Timina/química , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxicitosina/química , Nucleótidos de Desoxiadenina/metabolismo , Nucleótidos de Desoxiadenina/química , Enlace de Hidrógeno , Nucleótidos de Desoxiguanina/metabolismo , Nucleótidos de Desoxiguanina/química , Sustitución de Aminoácidos
3.
Dis Model Mech ; 17(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39206868

RESUMEN

The size and composition of the intracellular DNA precursor pool is integral to the maintenance of genome stability, and this relationship is fundamental to our understanding of cancer. Key aspects of carcinogenesis, including elevated mutation rates and induction of certain types of DNA damage in cancer cells, can be linked to disturbances in deoxynucleoside triphosphate (dNTP) pools. Furthermore, our approaches to treat cancer heavily exploit the metabolic interplay between the DNA and the dNTP pool, with a long-standing example being the use of antimetabolite-based cancer therapies, and this strategy continues to show promise with the development of new targeted therapies. In this Review, we compile the current knowledge on both the causes and consequences of dNTP pool perturbations in cancer cells, together with their impact on genome stability. We outline several outstanding questions remaining in the field, such as the role of dNTP catabolism in genome stability and the consequences of dNTP pool expansion. Importantly, we detail how our mechanistic understanding of these processes can be utilised with the aim of providing better informed treatment options to patients with cancer.


Asunto(s)
Desoxirribonucleótidos , Inestabilidad Genómica , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Desoxirribonucleótidos/metabolismo , Animales
4.
ACS Synth Biol ; 13(8): 2492-2504, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39083642

RESUMEN

Enzymatic DNA writing technologies based on the template-independent DNA polymerase terminal deoxynucleotidyl transferase (TdT) have the potential to advance DNA information storage. TdT is unique in its ability to synthesize single-stranded DNA de novo but has limitations, including catalytic inhibition by ribonucleotide presence and slower incorporation rates compared to replicative polymerases. We anticipate that protein engineering can improve, modulate, and tailor the enzyme's properties, but there is limited information on TdT sequence-structure-function relationships to facilitate rational approaches. Therefore, we developed an easily modifiable screening assay that can measure the TdT activity in high-throughput to evaluate large TdT mutant libraries. We demonstrated the assay's capabilities by engineering TdT mutants that exhibit both improved catalytic efficiency and improved activity in the presence of an inhibitor. We screened for and identified TdT variants with greater catalytic efficiency in both selectively incorporating deoxyribonucleotides and in the presence of deoxyribonucleotide/ribonucleotide mixes. Using this information from the screening assay, we rationally engineered other TdT homologues with the same properties. The emulsion-based assay we developed is, to the best of our knowledge, the first high-throughput screening assay that can measure TdT activity quantitatively and without the need for protein purification.


Asunto(s)
ADN Nucleotidilexotransferasa , ADN Polimerasa Dirigida por ADN , Ingeniería de Proteínas , Ingeniería de Proteínas/métodos , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/química , ADN Nucleotidilexotransferasa/metabolismo , ADN Nucleotidilexotransferasa/química , ADN Nucleotidilexotransferasa/genética , Ensayos Analíticos de Alto Rendimiento/métodos , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Desoxirribonucleótidos/metabolismo , Mutación
5.
Yeast ; 41(8): 513-524, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38961653

RESUMEN

Saccharomyces cerevisiae has long been used as a model organism to study genome instability. The SAM1 and SAM2 genes encode AdoMet synthetases, which generate S-AdenosylMethionine (AdoMet) from Methionine (Met) and ATP. Previous work from our group has shown that deletions of the SAM1 and SAM2 genes cause changes to AdoMet levels and impact genome instability in opposite manners. AdoMet is a key product of methionine metabolism and the major methyl donor for methylation events of proteins, RNAs, small molecules, and lipids. The methyl cycle is interrelated to the folate cycle which is involved in de novo synthesis of purine and pyrimidine deoxyribonucleotides (dATP, dTTP, dCTP, and dGTP). AdoMet also plays a role in polyamine production, essential for cell growth and used in detoxification of reactive oxygen species (ROS) and maintenance of the redox status in cells. This is also impacted by the methyl cycle's role in production of glutathione, another ROS scavenger and cellular protectant. We show here that sam2∆/sam2∆ cells, previously characterized with lower levels of AdoMet and higher genome instability, have a higher level of each dNTP (except dTTP), contributing to a higher overall dNTP pool level when compared to wildtype. Unchecked, these increased levels can lead to multiple types of DNA damage which could account for the genome instability increases in these cells.


Asunto(s)
S-Adenosilmetionina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Inestabilidad Genómica , Desoxirribonucleótidos/metabolismo , Nucleótidos/metabolismo , Metionina/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-38116988

RESUMEN

This work catalogued oligonucleotide sequences and sequence compositions based on the overall yield of full-length product obtained by the phosphoramidite chemistry-based solid phase synthesis. In total, 76 sequences with different dinucleotide and trinucleotide repeats were synthesized, and the fully-deprotected products were analyzed by denaturing anion exchange HPLC. Overall, sequences containing more 2'-deoxyadenosine residues were obtained in relatively lower yields, likely due to the relative ease of 2'-deoxyadenosine to undergo depurination during the detritylation reaction. Furthermore, dinucleotide steps, such as d(CG)/d(GC) and d(AG)/d(GA), likely contribute the overall lower yields of full-length products as well.


Asunto(s)
Compuestos Organofosforados , Técnicas de Síntesis en Fase Sólida , Técnicas de Síntesis en Fase Sólida/métodos , Compuestos Organofosforados/química , Desoxirribonucleótidos/química , Desoxirribonucleótidos/síntesis química , Secuencia de Bases , Oligonucleótidos/química , Oligonucleótidos/síntesis química , Cromatografía Líquida de Alta Presión
7.
Toxicol Mech Methods ; 34(4): 423-443, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38133498

RESUMEN

Torsional stress in double-stranded DNA enables and regulates facets of chromosomal metabolism, replication, and transcription and requires regulatory enzymatic systems including topoisomerases and histone methyltransferases. As such, this machinery may be subject to deleterious effects from reactive mutagens, including ones from carcinogenic polycyclic aromatic hydrocarbon (PAH) adduct formation with DNA. Supercoiled plasmid DNA was investigated for its torsional responses to adducts formed in vitro from PAH benzylic carbocation reactive intermediates created spontaneously by release of leaving groups. PAH sulfate esters were found to (1) unwind DNA in a concentration dependent manner, and (2) provide maximum unwinding in a pattern consistent with known carcinogenicities of the parent PAHs, that is, 6-methylbenzo[a]pyrene > 7,12-methylbenz[a]anthracene > 3-methylcholanthrene > 9-methylanthracene > 7-methylbenz[a]anthracene > 1-methylpyrene. Supercoil unwinding was demonstrated to be dependent on the presence of sulfate or chloride leaving groups such that reactive carbocations were generated in situ by hydrolysis. In silico modeling of intercalative complex topology showed PAH benzylic carbocation reactive functional groups in alignment with target nucleophiles on guanine bases in a 5'-dCdG-3' pocket in agreement with known formation of nucleotide adducts. Inhibitory or modulatory effects on PAH-induced supercoil unwinding were seen with ascorbic acid and an experimental antineoplastic agent Antineoplaston A10 in agreement with their known anticarcinogenic properties. In summary, the reactive PAH intermediates studied here undoubtedly participate in well-known mutational mechanisms such as frameshifts and apurinic site generation. However, they are also capable of random disruption of chromosomal supercoiling in a manner consistent with the known carcinogenicities of the parent compounds, and this mechanism may represent an additional detrimental motif worthy of further study for a more complete understanding of chemical carcinogenicity.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/toxicidad , ADN/metabolismo , Antracenos , Sulfatos , Desoxirribonucleótidos , Aductos de ADN
8.
Biomolecules ; 13(12)2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38136671

RESUMEN

Cells maintain a fine-tuned balance of deoxyribonucleoside 5'-triphosphates (dNTPs), a crucial factor in preserving genomic integrity. Any alterations in the nucleotide pool's composition or chemical modifications to nucleotides before their incorporation into DNA can lead to increased mutation frequency and DNA damage. In addition to the chemical modification of canonical dNTPs, the cellular de novo dNTP metabolism pathways also produce noncanonical dNTPs. To keep their levels low and prevent them from incorporating into the DNA, these noncanonical dNTPs are removed from the dNTP pool by sanitizing enzymes. In this study, we introduce innovative protocols for the high-throughput fluorescence-based quantification of dUTP, 5-methyl-dCTP, and 5-hydroxymethyl-dCTP. To distinguish between noncanonical dNTPs and their canonical counterparts, specific enzymes capable of hydrolyzing either the canonical or noncanonical dNTP analogs are employed. This approach provides a more precise understanding of the composition and noncanonical constituents of dNTP pools, facilitating a deeper comprehension of DNA metabolism and repair. It is also crucial for accurately interpreting mutational patterns generated through the next-generation sequencing of biological samples.


Asunto(s)
Nucleótidos de Desoxicitosina , Desoxirribonucleótidos , Desoxirribonucleótidos/metabolismo , ADN
9.
Nucleic Acids Res ; 51(20): 11225-11238, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37819038

RESUMEN

The cellular imbalance between high concentrations of ribonucleotides (NTPs) and low concentrations of deoxyribonucleotides (dNTPs), is challenging for DNA polymerases when building DNA from dNTPs. It is currently believed that DNA polymerases discriminate against NTPs through a steric gate model involving a clash between a tyrosine and the 2'-hydroxyl of the ribonucleotide in the polymerase active site in B-family DNA polymerases. With the help of crystal structures of a B-family polymerase with a UTP or CTP in the active site, molecular dynamics simulations, biochemical assays and yeast genetics, we have identified a mechanism by which the finger domain of the polymerase sense NTPs in the polymerase active site. In contrast to the previously proposed polar filter, our experiments suggest that the amino acid residue in the finger domain senses ribonucleotides by steric hindrance. Furthermore, our results demonstrate that the steric gate in the palm domain and the sensor in the finger domain are both important when discriminating NTPs. Structural comparisons reveal that the sensor residue is conserved among B-family polymerases and we hypothesize that a sensor in the finger domain should be considered in all types of DNA polymerases.


Asunto(s)
ADN Polimerasa II , Ribonucleótidos , Saccharomyces cerevisiae , Dominio Catalítico , Cristalografía por Rayos X , Desoxirribonucleótidos/metabolismo , ADN/genética , ADN/química , ADN Polimerasa II/química , Ribonucleótidos/metabolismo , Saccharomyces cerevisiae/enzimología
10.
Front Cell Infect Microbiol ; 13: 1241305, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37674581

RESUMEN

Maintenance of dNTPs pools in Trypanosoma brucei is dependent on both biosynthetic and degradation pathways that together ensure correct cellular homeostasis throughout the cell cycle which is essential for the preservation of genomic stability. Both the salvage and de novo pathways participate in the provision of pyrimidine dNTPs while purine dNTPs are made available solely through salvage. In order to identify enzymes involved in degradation here we have characterized the role of a trypanosomal SAMHD1 orthologue denominated TbHD82. Our results show that TbHD82 is a nuclear enzyme in both procyclic and bloodstream forms of T. brucei. Knockout forms exhibit a hypermutator phenotype, cell cycle perturbations and an activation of the DNA repair response. Furthermore, dNTP quantification of TbHD82 null mutant cells revealed perturbations in nucleotide metabolism with a substantial accumulation of dATP, dCTP and dTTP. We propose that this HD domain-containing protein present in kinetoplastids plays an essential role acting as a sentinel of genomic fidelity by modulating the unnecessary and detrimental accumulation of dNTPs.


Asunto(s)
Proteína 1 que Contiene Dominios SAM y HD , Trypanosoma brucei brucei , Desoxirribonucleótidos/metabolismo , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/genética , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Inestabilidad Genómica , Genoma de Protozoos , Daño del ADN , Ciclo Celular
11.
Elife ; 122023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37022136

RESUMEN

Life requires ribonucleotide reduction for de novo synthesis of deoxyribonucleotides. As ribonucleotide reduction has on occasion been lost in parasites and endosymbionts, which are instead dependent on their host for deoxyribonucleotide synthesis, it should in principle be possible to knock this process out if growth media are supplemented with deoxyribonucleosides. We report the creation of a strain of Escherichia coli where all three ribonucleotide reductase operons have been deleted following introduction of a broad spectrum deoxyribonucleoside kinase from Mycoplasma mycoides. Our strain shows slowed but substantial growth in the presence of deoxyribonucleosides. Under limiting deoxyribonucleoside levels, we observe a distinctive filamentous cell morphology, where cells grow but do not appear to divide regularly. Finally, we examined whether our lines can adapt to limited supplies of deoxyribonucleosides, as might occur in the switch from de novo synthesis to dependence on host production during the evolution of parasitism or endosymbiosis. Over the course of an evolution experiment, we observe a 25-fold reduction in the minimum concentration of exogenous deoxyribonucleosides necessary for growth. Genome analysis reveals that several replicate lines carry mutations in deoB and cdd. deoB codes for phosphopentomutase, a key part of the deoxyriboaldolase pathway, which has been hypothesised as an alternative to ribonucleotide reduction for deoxyribonucleotide synthesis. Rather than complementing the loss of ribonucleotide reduction, our experiments reveal that mutations appear that reduce or eliminate the capacity for this pathway to catabolise deoxyribonucleotides, thus preventing their loss via central metabolism. Mutational inactivation of both deoB and cdd is also observed in a number of obligate intracellular bacteria that have lost ribonucleotide reduction. We conclude that our experiments recapitulate key evolutionary steps in the adaptation to life without ribonucleotide reduction.


Asunto(s)
Ribonucleótido Reductasas , Ribonucleótidos , Ribonucleótidos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Simbiosis , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Desoxirribonucleótidos/metabolismo , Desoxirribonucleósidos/metabolismo
12.
mSystems ; 8(2): e0100522, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36794960

RESUMEN

Ribonucleotide reductases (RNRs) are key enzymes which catalyze the synthesis of deoxyribonucleotides, the monomers needed for DNA replication and repair. RNRs are classified into three classes (I, II, and III) depending on their overall structure and metal cofactors. Pseudomonas aeruginosa is an opportunistic pathogen which harbors all three RNR classes, increasing its metabolic versatility. During an infection, P. aeruginosa can form a biofilm to be protected from host immune defenses, such as the production of reactive oxygen species by macrophages. One of the essential transcription factors needed to regulate biofilm growth and other important metabolic pathways is AlgR. AlgR is part of a two-component system with FimS, a kinase that catalyzes its phosphorylation in response to external signals. Additionally, AlgR is part of the regulatory network of cell RNR regulation. In this study, we investigated the regulation of RNRs through AlgR under oxidative stress conditions. We determined that the nonphosphorylated form of AlgR is responsible for class I and II RNR induction after an H2O2 addition in planktonic culture and during flow biofilm growth. We observed similar RNR induction patterns upon comparing the P. aeruginosa laboratory strain PAO1 with different P. aeruginosa clinical isolates. Finally, we showed that during Galleria mellonella infection, when oxidative stress is high, AlgR is crucial for transcriptional induction of a class II RNR gene (nrdJ). Therefore, we show that the nonphosphorylated form of AlgR, in addition to being crucial for infection chronicity, regulates the RNR network in response to oxidative stress during infection and biofilm formation. IMPORTANCE The emergence of multidrug-resistant bacteria is a serious problem worldwide. Pseudomonas aeruginosa is a pathogen that causes severe infections because it can form a biofilm that protects it from immune system mechanisms such as the production of oxidative stress. Ribonucleotide reductases are essential enzymes which synthesize deoxyribonucleotides used in the replication of DNA. RNRs are classified into three classes (I, II, and III), and P. aeruginosa harbors all three of these classes, increasing its metabolic versatility. Transcription factors, such as AlgR, regulate the expression of RNRs. AlgR is involved in the RNR regulation network and regulates biofilm growth and other metabolic pathways. We determined that AlgR induces class I and II RNRs after an H2O2 addition in planktonic culture and biofilm growth. Additionally, we showed that a class II RNR is essential during Galleria mellonella infection and that AlgR regulates its induction. Class II RNRs could be considered excellent antibacterial targets to be explored to combat P. aeruginosa infections.


Asunto(s)
Peróxido de Hidrógeno , Pseudomonas aeruginosa , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Especies Reactivas de Oxígeno , Desoxirribonucleótidos
13.
Artículo en Inglés | MEDLINE | ID: mdl-36629008

RESUMEN

We describe a new demethylation method for dimethyl phosphonate esters using sodium ethanethiolate. The new procedure allows demethylation of nucleoside dimethyl phosphonate esters without 1'-α-anomerization, providing an improved synthesis of 5'-methylene substituted 2',5'-deoxynucleotides.


Asunto(s)
Ésteres , Organofosfonatos , Desoxirribonucleótidos , Desmetilación
14.
Aging (Albany NY) ; 14(19): 7890-7905, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36202136

RESUMEN

Ribonucleotide reductase (RNR) small subunit M2 (RRM2) levels are known to regulate the activity of RNR, a rate-limiting enzyme in the synthesis of deoxyribonucleotide triphosphates (dNTPs) and essential for both DNA replication and repair. The high expression of RRM2 enhances the proliferation of cancer cells, thereby implicating its role as an anti-cancer agent. However, little research has been performed on its role in the prognosis of different types of cancers. This pan-cancer study aimed to evaluate the effect of high expression of RRM2 the tumor prognosis based on clinical information collected from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases. We found RRM2 gene was highly expressed in 30 types of cancers. And we performed a pan-cancer analysis of the genetic alteration status and methylation of RRM2. Results indicated that RRM2 existed hypermethylation, associated with m6A, m1A, and m5C related genes. Subsequently, we explored the microRNAs (miRNA), long non-coding RNAs (lncRNA), and the transcription factors responsible for the high expression of RRM2 in cancer cells. Results indicated that has-miR-125b-5p and has-miR-30a-5p regulated the expression of RRM2 along with transcription factors, such as CBFB, E2F1, and FOXM. Besides, we established the competing endogenous RNA (ceRNA) diagram of lncRNAs-miRNAs-circular RNAs (circRNA) involved in the regulation of RRM2 expression. Meanwhile, our study demonstrated that high-RRM2 levels correlated with patients' worse prognosis survival and immunotherapy effects through the consensus clustering and risk scores analysis. Finally, we found RRM2 regulated the resistance of immune checkpoint inhibitors through the PI3K-AKT single pathways. Collectively, our findings elucidated that high expression of RRM2 correlates with prognosis and tumor immunotherapy in pan-cancer. Moreover, these findings may provide insights for further investigation of the RRM2 gene as a biomarker in predicting immunotherapy's response and therapeutic target.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Humanos , Ribonucleósido Difosfato Reductasa/genética , Ribonucleósido Difosfato Reductasa/metabolismo , ARN Largo no Codificante/genética , ARN Circular , Biología Computacional , Inhibidores de Puntos de Control Inmunológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pronóstico , MicroARNs/genética , Neoplasias/genética , Neoplasias/terapia , Inmunoterapia , Factores de Transcripción/metabolismo , Desoxirribonucleótidos , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
15.
Bioorg Med Chem ; 72: 116972, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36057217

RESUMEN

The artificial nucleobase 1,3-diaza-2-oxophenoxazine (tCO) and its derivative G-clamp strongly bind to guanine and, when incorporated into double-stranded DNA, significantly increase the stability of the latter. As the phenoxazine skeleton is a constituent of major pharmaceuticals, we hypothesized that oligonucleotides (ONs) containing phenoxazine bases would induce property changes related to intracellular uptake and migration in tissues. In this study, we designed and synthesized a novel G-clamp-linker antisense oligonucleotide (ASO) in which a G-clamp base with a flexible linker was introduced into the 5'-end of an ASO targeting mouse long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (mMALAT1). Compared to unconjugated ASO, the G-clamp-linker ASO induced significantly more effective knockdown of mMALAT1 in mouse skeletal muscle. The ASOs conjugated with 2'-deoxyribonucleotide(s) bearing a tCO nucleobase at the 5'-end exhibited a similar knockdown effect in skeletal muscle. Thus, it may be possible to improve therapeutic effects against skeletal muscle diseases, such as muscular dystrophy, by using ONs with incorporated phenoxazine nucleobases.


Asunto(s)
Oligonucleótidos , ARN Largo no Codificante , Animales , ADN , Desoxirribonucleótidos , Guanina , Ratones , Oligonucleótidos/farmacología , Oligonucleótidos Antisentido/genética , Oxazinas , Preparaciones Farmacéuticas
16.
Subcell Biochem ; 99: 155-197, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36151376

RESUMEN

Herein we present a multidisciplinary discussion of ribonucleotide reductase (RNR), the essential enzyme uniquely responsible for conversion of ribonucleotides to deoxyribonucleotides. This chapter primarily presents an overview of this multifaceted and complex enzyme, covering RNR's role in enzymology, biochemistry, medicinal chemistry, and cell biology. It further focuses on RNR from mammals, whose interesting and often conflicting roles in health and disease are coming more into focus. We present pitfalls that we think have not always been dealt with by researchers in each area and further seek to unite some of the field-specific observations surrounding this enzyme. Our work is thus not intended to cover any one topic in extreme detail, but rather give what we consider to be the necessary broad grounding to understand this critical enzyme holistically. Although this is an approach we have advocated in many different areas of scientific research, there is arguably no other single enzyme that embodies the need for such broad study than RNR. Thus, we submit that RNR itself is a paradigm of interdisciplinary research that is of interest from the perspective of the generalist and the specialist alike. We hope that the discussions herein will thus be helpful to not only those wanting to tackle RNR-specific problems, but also those working on similar interdisciplinary projects centering around other enzymes.


Asunto(s)
Ribonucleótido Reductasas , Animales , Desoxirribonucleótidos , Mamíferos , Oxidorreductasas , Ribonucleótido Reductasas/química , Ribonucleótidos
17.
Biochemistry ; 61(18): 1966-1973, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36044776

RESUMEN

Remdesivir is an adenosine analogue that has a cyano substitution in the C1' position of the ribosyl moiety and a modified base structure to stabilize the linkage of the base to the C1' atom with its strong electron-withdrawing cyano group. Within the replication-transcription complex (RTC) of SARS-CoV-2, the RNA-dependent RNA polymerase nsp12 selects remdesivir monophosphate (RMP) over adenosine monophosphate (AMP) for nucleotide incorporation but noticeably slows primer extension after the added RMP of the RNA duplex product is translocated by three base pairs. Cryo-EM structures have been determined for the RTC with RMP at the nucleotide-insertion (i) site or at the i + 1, i + 2, or i + 3 sites after product translocation to provide a structural basis for a delayed-inhibition mechanism by remdesivir. In this study, we applied molecular dynamics (MD) simulations to extend the resolution of structures to the measurable maximum that is intrinsically limited by MD properties of these complexes. Our MD simulations provide (i) a structural basis for nucleotide selectivity of the incoming substrates of remdesivir triphosphate over adenosine triphosphate and of ribonucleotide over deoxyribonucleotide, (ii) new detailed information on hydrogen atoms involved in H-bonding interactions between the enzyme and remdesivir, and (iii) direct information on the catalytically active complex that is not easily captured by experimental methods. Our improved resolution of interatomic interactions at the nucleotide-binding pocket between remedesivir and the polymerase could help to design a new class of anti-SARS-CoV-2 inhibitors.


Asunto(s)
Adenosina Trifosfato , Antivirales , SARS-CoV-2 , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Alanina/química , Antivirales/química , Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus , Desoxirribonucleótidos , Hidrógeno , Nucleótidos , ARN Viral/genética , Ribonucleótidos , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
18.
Chemistry ; 28(61): e202202052, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-35924666

RESUMEN

Nanozymes have attracted wide attention for the unique advantages of low cost, high stability and designability. Molecularly imprinted polymers (MIPs) have demonstrated great potential as a new type of nanozymes due to their excellent specificity and high affinity. However, effective approaches for creating molecularly imprinted nanozymes still remain limited. Herein, reverse microemulsion template docking surface imprinting (RMTD-SI) is reported as a new approach for the rational design and engineering of nanozymes with free substrate access for the ligation of ssDNA sequences. As a proof of the principle, octa-deoxyribonucleotide-imprinted nanoparticles were successfully prepared. Using tetradeoxyribonucleotides and octa-deoxyribonucleotide as substrates, the properties, catalytic activity and behavior of the imprinted nanoparticles were thoroughly investigated. The imprinted nanozyme exhibited an enhanced reaction speed (by up to 41-fold) and good sequence selectivity towards substrate tetra-deoxyribonucleotides. More interestingly, due to the open substrate access, the imprinted nanozyme also allowed the ligation of a ssDNA that fully matched with the imprinted cavity and other ssDNA substrates to form longer sequences, but at the price of substrate selectivity. Thus, this study provides not only a new avenue to the rational design and synthesis of molecularly imprinted nanozymes but also new insights of their catalytic behavior.


Asunto(s)
Impresión Molecular , Nanopartículas , Polímeros/química , Desoxirribonucleótidos
19.
Plant Cell ; 34(10): 3790-3813, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35861422

RESUMEN

Thymidylates are generated by several partially overlapping metabolic pathways in different subcellular locations. This interconnectedness complicates an understanding of how thymidylates are formed in vivo. Analyzing a comprehensive collection of mutants and double mutants on the phenotypic and metabolic level, we report the effect of de novo thymidylate synthesis, salvage of thymidine, and conversion of cytidylates to thymidylates on thymidylate homeostasis during seed germination and seedling establishment in Arabidopsis (Arabidopsis thaliana). During germination, the salvage of thymidine in organelles contributes predominantly to the thymidylate pools and a mutant lacking organellar (mitochondrial and plastidic) thymidine kinase has severely altered deoxyribonucleotide levels, less chloroplast DNA, and chlorotic cotyledons. This phenotype is aggravated when mitochondrial thymidylate de novo synthesis is additionally compromised. We also discovered an organellar deoxyuridine-triphosphate pyrophosphatase and show that its main function is not thymidylate synthesis but probably the removal of noncanonical nucleotide triphosphates. Interestingly, cytosolic thymidylate synthesis can only compensate defective organellar thymidine salvage in seedlings but not during germination. This study provides a comprehensive insight into the nucleotide metabolome of germinating seeds and demonstrates the unique role of enzymes that seem redundant at first glance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , ADN de Cloroplastos/metabolismo , Desoxirribonucleótidos/metabolismo , Desoxiuridina/metabolismo , Germinación , Metaboloma , Nucleótidos/metabolismo , Fosforilación , Pirofosfatasas/metabolismo , Plantones , Semillas/genética , Semillas/metabolismo , Timidina/metabolismo , Timidina Quinasa/genética , Timidina Quinasa/metabolismo
20.
Mol Ther ; 30(10): 3284-3299, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35765243

RESUMEN

Existing evidence indicates that gut fungal dysbiosis might play a key role in the pathogenesis of colorectal cancer (CRC). We sought to explore whether reversing the fungal dysbiosis by terbinafine, an approved antifungal drug, might inhibit the development of CRC. A population-based study from Sweden identified a total of 185 patients who received terbinafine after their CRC diagnosis and found that they had a decreased risk of death (hazard ratio = 0.50) and metastasis (hazard ratio = 0.44) compared with patients without terbinafine administration. In multiple mouse models of CRC, administration of terbinafine decreased the fungal load, the fungus-induced myeloid-derived suppressor cell (MDSC) expansion, and the tumor burden. Fecal microbiota transplantation from mice without terbinafine treatment reversed MDSC infiltration and partially restored tumor proliferation. Mechanistically, terbinafine directly impaired tumor cell proliferation by reducing the ratio of nicotinamide adenine dinucleotide phosphate (NADP+) to reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), suppressing the activity of glucose-6-phosphate dehydrogenase (G6PD), resulting in nucleotide synthesis disruption, deoxyribonucleotide (dNTP) starvation, and cell-cycle arrest. Collectively, terbinafine can inhibit CRC by reversing fungal dysbiosis, suppressing tumor cell proliferation, inhibiting fungus-induced MDSC infiltration, and restoring antitumor immune response.


Asunto(s)
Neoplasias Colorrectales , Terbinafina , Animales , Antifúngicos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Desoxirribonucleótidos , Disbiosis , Glucosafosfato Deshidrogenasa , Ratones , NADP , Terbinafina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...