Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 471
Filtrar
1.
Cell Mol Neurobiol ; 44(1): 36, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637346

RESUMEN

Surgical brain injury (SBI), induced by neurosurgical procedures or instruments, has not attracted adequate attention. The pathophysiological process of SBI remains sparse compared to that of other central nervous system diseases thus far. Therefore, novel and effective therapies for SBI are urgently needed. In this study, we found that neutrophil extracellular traps (NETs) were present in the circulation and brain tissues of rats after SBI, which promoted neuroinflammation, cerebral edema, neuronal cell death, and aggravated neurological dysfunction. Inhibition of NETs formation by peptidylarginine deiminase (PAD) inhibitor or disruption of NETs with deoxyribonuclease I (DNase I) attenuated SBI-induced damages and improved the recovery of neurological function. We show that SBI triggered the activation of cyclic guanosine monophosphate-adenosine monophosphate synthase stimulator of interferon genes (cGAS-STING), and that inhibition of the cGAS-STING pathway could be beneficial. It is worth noting that DNase I markedly suppressed the activation of cGAS-STING, which was reversed by the cGAS product cyclic guanosine monophosphate-adenosine monophosphate (cGMP-AMP, cGAMP). Furthermore, the neuroprotective effect of DNase I in SBI was also abolished by cGAMP. NETs may participate in the pathophysiological regulation of SBI by acting through the cGAS-STING pathway. We also found that high-dose vitamin C administration could effectively inhibit the formation of NETs post-SBI. Thus, targeting NETs may provide a novel therapeutic strategy for SBI treatment, and high-dose vitamin C intervention may be a promising translational therapy with an excellent safety profile and low cost.


Asunto(s)
Lesiones Encefálicas , Trampas Extracelulares , Animales , Ratas , Encéfalo , Lesiones Encefálicas/tratamiento farmacológico , Ácido Ascórbico , Desoxirribonucleasa I/farmacología
2.
PeerJ ; 12: e16748, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304189

RESUMEN

Acute lung injury (ALI) is one of the most serious complications of sepsis, characterized by high morbidity and mortality rates. Ferroptosis has recently been reported to play an essential role in sepsis-induced ALI. Excessive neutrophil extracellular traps (NETs) formation induces exacerbated inflammation and is crucial to the development of ALI. In this study, we explored the effects of ferroptosis and NETs and observed the therapeutic function of mesenchymal stem cells (MSCs) on sepsis-induced ALI. First, we produced a cecal ligation and puncture (CLP) model of sepsis in rats. Ferrostain-1 and DNase-1 were used to inhibit ferroptosis and NETs formation separately, to confirm their effects on sepsis-induced ALI. Next, U0126 was applied to suppress the MEK/ERK signaling pathway, which is considered to be vital to NETs formation. Finally, the therapeutic effect of MSCs was observed on CLP models. The results demonstrated that both ferrostain-1 and DNase-1 application could improve sepsis-induced ALI. DNase-1 inhibited ferroptosis significantly in lung tissues, showing that ferroptosis could be regulated by NETs formation. With the inhibition of the MEK/ERK signaling pathway by U0126, NETs formation and ferroptosis in lung tissues were both reduced, and sepsis-induced ALI was improved. MSCs also had a similar protective effect against sepsis-induced ALI, not only inhibiting MEK/ERK signaling pathway-mediated NETs formation, but also alleviating ferroptosis in lung tissues. We concluded that MSCs could protect against sepsis-induced ALI by suppressing NETs formation and ferroptosis in lung tissues. In this study, we found that NETs formation and ferroptosis were both potential therapeutic targets for the treatment of sepsis-induced ALI, and provided new evidence supporting the clinical application of MSCs in sepsis-induced ALI treatment.


Asunto(s)
Lesión Pulmonar Aguda , Butadienos , Trampas Extracelulares , Ferroptosis , Células Madre Mesenquimatosas , Nitrilos , Sepsis , Ratas , Animales , Trampas Extracelulares/metabolismo , Lesión Pulmonar Aguda/etiología , Desoxirribonucleasa I/farmacología , Sepsis/complicaciones , Células Madre Mesenquimatosas/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/efectos adversos
3.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38339001

RESUMEN

UV-B radiation induces sunburn, and neutrophils are pivotal in this inflammation. In this study, we examined the potential involvement of neutrophil extracellular traps (NETs) in ultraviolet B (UVB)-induced skin inflammation, correlating the skin inflammation-mitigating effects of Hochu-ekki-to on UV-B irradiation and NETs. To elucidate NET distribution in the dorsal skin, male ICR mice, exposed to UVB irradiation, were immunohistologically analyzed to detect citrullinated histone H3 (citH3) and peptidylarginine deiminase 4 (PAD4). Reactive oxygen species (ROS) production in the bloodstream was analyzed. To establish the involvement of NET-released DNA in this inflammatory response, mice were UV-B irradiated following the intraperitoneal administration of DNase I. In vitro experiments were performed to scrutinize the impact of Hochu-ekki-to on A23187-induced NETs in neutrophil-like HL-60 cells. UV-B irradiation induced dorsal skin inflammation, coinciding with a significant increase in citH3 and PAD4 expression. Administration of DNase I attenuated UV-B-induced skin inflammation, whereas Hochu-ekki-to administration considerably suppressed the inflammation, correlating with diminished levels of citH3 and PAD4 in the dorsal skin. UV-B irradiation conspicuously augmented ROS and hydrogen peroxide (H2O2) production in the blood. Hochu-ekki-to significantly inhibited ROS and H2O2 generation. In vitro experiments demonstrated that Hochu-ekki-to notably inhibited A23187-induced NETs in differentiated neutrophil-like cells. Hence, NETs have been implicated in UV-B-induced skin inflammation, and their inhibition reduces cutaneous inflammation. Additionally, Hochu-ekki-to mitigated skin inflammation by impeding neutrophil infiltration and NETs in the dorsal skin of mice.


Asunto(s)
Desoxirribonucleasa I , Medicamentos Herbarios Chinos , Trampas Extracelulares , Rayos Ultravioleta , Animales , Masculino , Ratones , Calcimicina/farmacología , Desoxirribonucleasa I/farmacología , Desoxirribonucleasa I/metabolismo , Trampas Extracelulares/efectos de los fármacos , Trampas Extracelulares/efectos de la radiación , Histonas/metabolismo , Peróxido de Hidrógeno/metabolismo , Inflamación/metabolismo , Ratones Endogámicos ICR , Neutrófilos/metabolismo , Desiminasas de la Arginina Proteica/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rayos Ultravioleta/efectos adversos
4.
Dev Comp Immunol ; 153: 105107, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38036049

RESUMEN

Artificial insemination has been a predominant technique employed in goat husbandry for breeding purposes. Subsequent to artificial insemination, sperm can elicit inflammation in the reproductive tract, resulting in substantial the accumulation of neutrophils. Recognized as foreign entities, sperm may become entrapped within neutrophil extracellular traps (NETs) released by neutrophils, thereby exploiting their properties of pathogen elimination. Deoxyribonuclease I (DNase I), which is known for disintegrating NETs and causing loss of function, has been utilized to ameliorate liver and brain damage resulting from NETs, as well as to enhance sperm quality. This study investigated the mechanism of sperm-induced NETs and further explored the impact of DNase I on NETs. Sperm quality was evaluated using optical microscopy, while the structure of NETs was observed through immunofluorescence staining. The formation mechanism of NETs was examined using inhibitors and PicoGreen. The findings revealed that sperm induced the formation of NETs, a process regulated by glycolysis, NADPH oxidase, ERK1/2, and p38 signaling pathways. The composition of NETs encompassed DNA, citrullinated histone H3 (citH3), and elastase (NE). DNase I protects sperm by degrading NETs, thereby concurrently preserving the integrity of plasma membrane and motility of sperm. In summary, the release of sperm-induced NETs leads to its damage, but this detrimental effect is counteracted by DNase I through degradation of NETs. These observations provide novel insights into reproductive immunity in goats.


Asunto(s)
Trampas Extracelulares , Masculino , Animales , Trampas Extracelulares/metabolismo , Cabras , Semen , Neutrófilos , Espermatozoides , Desoxirribonucleasa I/metabolismo , Desoxirribonucleasa I/farmacología
5.
ASAIO J ; 70(3): 241-247, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37923309

RESUMEN

Sepsis is an unusual systemic reaction with high mortality and secondary septic liver injury is proposed to be the major cause of mortality. Extracorporeal membrane oxygenation (ECMO) can enhance terminal organ perfusion by elevating circulatory support which is used in severe sepsis patients. However, the interaction of blood components with the biomaterials of the extracorporeal membrane elicits a systemic inflammatory response. Besides, inflammation and apoptosis are the main mediators in the pathophysiology of septic liver injury. Therefore, we investigated the protective effect of Deoxyribonuclease I (DNase I) against septic liver injury supported by ECMO in rats. Sepsis was induced by lipopolysaccharide (LPS) and 24 hours after the administration, the rats were treated with ECMO. Then blood samples and liver tissues were collected. DNase I significantly attenuated the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and significantly decreased hepatic levels of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, myeloperoxidase (MPO), downstream inflammatory factor interleukin-1ß (IL-1ß) and interleukin-18 (IL-18), and improved neutrophil infiltration. Additionally, DNase I significantly reduced the expression of apoptosis key protein and terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL)-labeled apoptotic hepatocytes. In summary, our findings demonstrated that DNase I alleviates liver injury in ECMO-supported septic rats by reducing the inflammatory and apoptotic responses.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Sepsis , Humanos , Ratas , Animales , Hígado/metabolismo , Hepatocitos , Sepsis/terapia , Desoxirribonucleasa I/metabolismo , Desoxirribonucleasa I/farmacología
6.
Adv Sci (Weinh) ; 10(32): e2303053, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37759381

RESUMEN

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are prevalent critical illnesses with a high mortality rate among patients in intensive care units. Neutrophil extracellular traps (NETs) are implicated in the pathogenesis of ALI/ARDS and represent a promising therapeutic target. However, the clinical application of deoxyribonuclease I (DNase I), the only drug currently available to clear NETs, is limited due to the lack of precise and efficient delivery strategies. Therefore, targeted delivery of DNase I to the inflamed lung remains a critical issue to be addressed. Herein, a novel biomimetic DNase I delivery system is developed (DCNV) that employs genetically and bioorthogonally engineered cellular nanovesicles for pulmonary NETs clearance. The CXC motif chemokine receptor 2 overexpressed cellular nanovesicles can mimic the inflammatory chemotaxis of neutrophils in ALI/ARDS, leading to enhanced lung accumulation. Furthermore, DNase I immobilized through bioorthogonal chemistry exhibits remarkable enzymatic activity in NETs degradation, thus restraining inflammation and safeguarding lung tissue in the lipopolysaccharide-induced ALI murine model. Collectively, the findings present a groundbreaking proof-of-concept in the utilization of biomimetic cellular nanovesicles to deliver DNase I for treating ALI/ARDS. This innovative strategy may usher in a new era in the development of pharmacological interventions for various inflammation-related diseases.


Asunto(s)
Lesión Pulmonar Aguda , Trampas Extracelulares , Síndrome de Dificultad Respiratoria , Humanos , Animales , Ratones , Trampas Extracelulares/metabolismo , Lesión Pulmonar Aguda/metabolismo , Inflamación/metabolismo , Desoxirribonucleasa I/metabolismo , Desoxirribonucleasa I/farmacología , Desoxirribonucleasa I/uso terapéutico
7.
J Tradit Chin Med ; 43(4): 661-666, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37454250

RESUMEN

OBJECTIVE: To explore the synergistic effect of deoxyribonuclease I (DNase I) knockdown combined with Schizandrin A (Sch A) in protecting islet beta-cells (ß-cells) from apoptosis under high-glucose (HG) conditions. METHODS: The concentration of Sch A was detected by Cell Counting Kit-8 (CCK-8). High glucose-cultured rat insulinoma beta cell line (RIN-M5F) cells were treated with Sch A and transfected with DNase I small interfering RNA (siRNA). Cell apoptosis rate and apoptosis-related protein level were examined by flow cytometry and Western blot method respectively. In addition, Na-K-adenosine triphosphatease (Na-K-ATPase) and Ca-Mg-ATPase activity, cell membrane potential, and intracellular Ca concentration was also examined respectively. RESULTS: Our study revealed that HG stimulation can cause a significant increase in DNase I level and cell apoptosis rate. However, Sch A combined with DNase I knockdown can significantly decrease the cell apoptosis rate and apoptosis-related protein levels such as BAX ( 0.05) and Caspase-3 ( 0.01). In addition, we also found that the combination of Sch A and DNase I knockdown can dramatically increase cell membrane potential level, Na-K-ATPase, and Ca-Mg-ATPase activity. Meanwhile, intracellular Ca concentration was also found to be significantly decreased by the synergistic effect of Sch A and DNase I knockdown. CONCLUSION: Overall, our study reveals a synergistic effect of Sch A and DNase I knockdown in protecting ß-cells from HG-induced apoptosis.


Asunto(s)
Calcio , Glucosa , Animales , Ratas , Calcio/metabolismo , Apoptosis , Desoxirribonucleasa I/farmacología , Adenosina Trifosfatasas
8.
Vestn Otorinolaringol ; 88(2): 59-66, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-37184556

RESUMEN

ANNOTATION: Dornase alfa (Pulmozyme, Tigerase) is a purified solution of recombinant human DNase, clinically developed for the treatment of pulmonary diseases in patients with cystic fibrosis (CF). The action of the drug is aimed at destroying the viscous secretion, rich in DNA strands of neutrophils, through their fragmentation, the density of the secretion decreases, and the aeration of the lower respiratory tract improves. The similarity of pathological processes with the formation of viscous exudate on the surface of the mucous membrane in diseases of the upper respiratory tract and ear initiated studies on the use of Dornase alpha in otorhinolaryngology. MATERIAL AND METHODS: The analysis of materials of domestic and foreign authors on the effectiveness of the use of the drug Dornase alfa in otorhinolaryngology was carried out. RESULTS: The review included 132 patients (10 studies) in whom Dornase alfa was used to treat CF-associated nasal and paranasal sinus diseases. Analysis of the literature revealed only 3 studies, one of which consisted of two parts, examining the effect of Dornase alpha on middle ear exudate: two studies were demonstrated in an animal model; one - in vitro on samples of middle ear effusion which were aspirated through a myringotomy incision from patients with recurrent acute otitis media; and one in clinical 40 patients (40 ears) for hydrolysis of exudate in the tympanostomy tubes. CONCLUSION: Analysis of studies on the use of Dornase alfa demonstrates an improvement in clinical symptoms in all patients with CF and chronic rhinosinusitis. In experimental studies on an animal model, as well as in vitro research on exudate from the middle ear, Dornase alfa has demonstrated high efficacy and safety. Dornase alfa is a drug with high potential, further research is needed for wider use in ENT practice, especially in otiatrics.


Asunto(s)
Fibrosis Quística , Sinusitis , Animales , Humanos , Desoxirribonucleasa I/farmacología , Desoxirribonucleasa I/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Sinusitis/tratamiento farmacológico , Enfermedad Crónica
9.
Respir Res ; 24(1): 66, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864506

RESUMEN

BACKGROUND: COVID-19 is characterized by severe acute lung injury, which is associated with neutrophil infiltration and the release of neutrophil extracellular traps (NETs). COVID-19 treatment options are scarce. Previous work has shown an increase in NETs release in the lung and plasma of COVID-19 patients suggesting that drugs that prevent NETs formation or release could be potential therapeutic approaches for COVID-19 treatment. METHODS: Here, we report the efficacy of NET-degrading DNase I treatment in a murine model of COVID-19. SARS-CoV-2-infected K18-hACE2 mice were performed for clinical sickness scores and lung pathology. Moreover, the levels of NETs were assessed and lung injuries were by histopathology and TUNEL assay. Finally, the injury in the heart and kidney was assessed by histopathology and biochemical-specific markers. RESULTS: DNase I decreased detectable levels of NETs, improved clinical disease, and reduced lung, heart, and kidney injuries in SARS-CoV-2-infected K18-hACE2 mice. Furthermore, our findings indicate a potentially deleterious role for NETs lung tissue in vivo and lung epithelial (A549) cells in vitro, which might explain part of the pathophysiology of severe COVID-19. This deleterious effect was diminished by the treatment with DNase I. CONCLUSIONS: Together, our results support the role of NETs in COVID-19 immunopathology and highlight NETs disruption pharmacological approaches as a potential strategy to ameliorate COVID-19 clinical outcomes.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Trampas Extracelulares , Animales , Humanos , Ratones , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Modelos Animales de Enfermedad , Neutrófilos , Desoxirribonucleasa I/farmacología , Desoxirribonucleasa I/uso terapéutico
10.
Pathog Dis ; 812023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36633541

RESUMEN

Klebsiella pneumoniae is an opportunistic pathogen associated with biofilm-based infections, which are intrinsically antibiotic resistant. Extracellular DNA plays a crucial role in biofilm formation and self-defence, with nucleases being proposed as promising agents for biofilm disruption. This study evaluated the in vitro and in vivo efficacy of DNase I in improving the activity of cefotaxime, amikacin, and ciprofloxacin against K. pneumoniae biofilms. K. pneumoniae ATCC 700603 and a clinical isolate from catheter-related bloodstream infection were cultured for biofilm formation on microtiter plates, and the antibiofilm activity of the antibiotics (0.03-64 mg/L), with or without bovine pancreatic DNase I (1-32 mg/L) was determined by XTT dye reduction test and viable counting. The effect of ciprofloxacin (2 mg/L) and DNase I (16 mg/L) was further evaluated in vitro on 1-cm-long silicon catheter segments, and in a mouse model of subcutaneous catheter-associated infection. Combination with DNase I did not improve the biofilm-preventive capacity of the three antibiotics or the biofilm-eradicating capacity of cefotaxime and amikacin. The biofilm-eradicating capacity of ciprofloxacin was increased by 8-fold and 4-fold in K. pneumoniae ATCC 700603 and clinical isolate, respectively, with DNase I. The combination therapy caused 99% reduction in biofilm biomass in the mouse model.


Asunto(s)
Antibacterianos , Klebsiella pneumoniae , Ratones , Animales , Bovinos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Amicacina/farmacología , Desoxirribonucleasa I/farmacología , Pruebas de Sensibilidad Microbiana , Ciprofloxacina/farmacología , Biopelículas , Modelos Animales de Enfermedad , Cefotaxima/farmacología
11.
Sci Rep ; 13(1): 1059, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658182

RESUMEN

Biofilm-associated Burkholderia pseudomallei infection contributes to antibiotic resistance and relapse of melioidosis. Burkholderia pseudomallei biofilm matrix contains extracellular DNA (eDNA) that is crucial for biofilm establishment. However, the contribution of eDNA to antibiotic resistance by B. pseudomallei remains unclear. In this study, we first demonstrated in vitro that DNase I with the administration of ceftazidime (CAZ) at 24 h considerably inhibited the 2-day biofilm formation and reduced the number of viable biofilm cells of clinical B. pseudomallei isolates compared to biofilm treated with CAZ alone. A 3-4 log reduction in numbers of viable cells embedded in the 2-day biofilm was observed when CAZ was combined with DNase I. Confocal laser-scanning microscope visualization emphasized the competence of DNase I followed by CAZ supplementation to significantly limit B. pseudomallei biofilm development and to eradicate viable embedded B. pseudomallei biofilm cells. Furthermore, DNase I supplemented with chitosan (CS) linked with CAZ (CS/CAZ) significantly eradicated shedding planktonic and biofilm cells. These findings indicated that DNase I effectively degraded eDNA leading to biofilm inhibition and dispersion, subsequently allowing CAZ and CS/CAZ to eradicate both shedding planktonic and embedded biofilm cells. These findings provide efficient strategies to interrupt biofilm formation and improve antibiotic susceptibility of biofilm-associated infections.


Asunto(s)
Burkholderia pseudomallei , Quitosano , Melioidosis , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Burkholderia pseudomallei/genética , Ceftazidima/farmacología , Ceftazidima/uso terapéutico , Quitosano/farmacología , Quitosano/uso terapéutico , Desoxirribonucleasa I/farmacología , Melioidosis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
12.
Mol Cell Biochem ; 478(4): 887-898, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36112238

RESUMEN

Colon cancer is a common malignant tumor of the digestive tract. Tea catechin exerts anti-tumor effects in colon cancer. This work aimed to determine the functions of epigallocatechin-3-gallate (EGCG), one of the main active components of Tea catechins, in the progression of colon cancer. In this work, enzyme-linked immune-sorbent assay, quantitative real-time PCR and western blotting was utilized to examine the levels of IL-1ß, TNF-α, STAT3, p-STAT3 and CXCL8 in colon cancer patients and healthy controls. Compared with healthy controls, the levels of IL-1ß and TNF-α were significantly increased in the peripheral blood of colon cancer patients, and the expression of STAT3, p-STAT3 and CXCL8 was elevated in the neutrophils derived from colon cancer patients. Moreover, neutrophils were treated with phorbol ester (PMA) or DNase I to induce or impede the formation of neutrophil extracellular traps (NETs). Both STAT3 overexpression and PMA treatment promoted the expression of CXCL8, myeloperoxidase (MPO) and citrullinated histone H3 (H3Cit) in the colon cancer-derived neutrophils, indicating that STAT3 overexpression facilitated the formation of NETs. STAT3 deficiency suppressed the formation of NETs, which consistent with the results of DNase I treatment. Transwell assay was utilized to detect the migration and invasion of colon cancer cell line SW480. EGCG treatment suppressed the formation of NETs and the expression of STAT3 and CXCL8 in the colon cancer-derived neutrophils, and then inhibited the migration and invasion of SW480 cells. In conclusion, this work demonstrated that EGCG inhibited the formation of NETs and subsequent suppressed the migration and invasion of colon cancer cells by regulating STAT3/CXCL8 signalling pathway. Thus, this study suggests that EGCG may become a potential drug for colon cancer therapy.


Asunto(s)
Catequina , Neoplasias del Colon , Trampas Extracelulares , Humanos , Catequina/farmacología , Trampas Extracelulares/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Neutrófilos/metabolismo , , Desoxirribonucleasa I/metabolismo , Desoxirribonucleasa I/farmacología , Factor de Transcripción STAT3/metabolismo
13.
Mikrobiyol Bul ; 56(4): 606-619, 2022 Oct.
Artículo en Turco | MEDLINE | ID: mdl-36458708

RESUMEN

Biofilm structures, which are the predominant form of microbial life, are a formation that allows pathogenic microorganisms to remain alive by colonizing in different tissues and organs in the human body, as well as on inanimate surfaces. One of the important criteria in the fight against biofilm structures is the weakening of the exopolymeric matrix (EPS). Although it is known that extracellular DNA (eDNA) is one of the most abundant macromolecules in EPS in enterococcal biofilms, its function in biofilm structure is controversial. Since biofilm-forming enterococci are more resistant to antibiotics, the use of antibiotics together with agents that will damage the biofilm structure is being investigated. In this study, it was aimed to target eDNA with enzyme application for the eradication of Enterococcus faecalis biofilm structures and to investigate the increase of the effectiveness of antibiotic therapy on it. The amount of eDNA and optimal production time in biofilm structures of four different strains and isolates of E.faecalis (two clinical isolates coded 74 and 114, and two control strains coded ATCC 29212 and ATCC OG1RF) were determined by spectrophotometric measurement of PicoGreen fluorescence. For the eradication of biofilm; the effects of kanamycin, tetracycline, nalidixic acid, and ampicillin alone and in combination with Benzonase® and DNase I enzymes were investigated by viable cell count on Tryptic Soy Agar. It was determined that optimum biofilm production of E.faecalis strains and isolates occurred at 37°C for 12 hours. E.faecalis 114 isolate was identified as the strongest biofilm producer among the tested bacteria and the isolate containing the highest amount of eDNA (286 98 ng/µl) in the biofilm structure. While the tested antibiotics did not show significant antibiofilm activity against E.faecalis biofilm structures alone, strong antibiofilm activity was detected when ampicillin and tetracycline were applied together with DNase I enzyme. In this study, the use of DNA-degrading enzyme/antibiotic combinations in the eradication of enterococcal biofilms and the effectiveness of these combinations against eDNA were investigated for the first time in the literature. As a result, supportive results were obtained that the use of antibiotics together with the DNase I enzyme targeting the DNA molecule in the EPS structure will be more successful in the fight against the biofilm structures of E.faecalis, which is an important cause of nosocomial infection. These results need to be supported by further clinical studies.


Asunto(s)
Antibacterianos , Enterococcus faecalis , Humanos , Enterococcus faecalis/genética , Antibacterianos/farmacología , Biopelículas , Ampicilina/farmacología , Tetraciclina , ADN , Desoxirribonucleasa I/farmacología
14.
Ann Clin Microbiol Antimicrob ; 21(1): 53, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434697

RESUMEN

BACKGROUND: Corynebacterium striatum is a microorganism with an excellent capacity for biofilm production and thus has been correlated with nosocomial transmission and invasive infections. However, little is known about the mechanism of biofilm formation of this commensal pathogen. In this study, we aimed to investigate the biofilm formation abilities of multidrug-resistant Corynebacterium striatum clinical isolates and the roles of extracellular proteins, exopolysaccharides and extracellular DNA in mediating more robust biofilm formation by the isolates of C. striatum. METHODS: C. striatum isolates were identified using VITEK-2 ANC card, matrix-assisted laser desorption/ionization-time of flight mass spectrometry and 16S rRNA sequencing. The antibiotic susceptibility test was performed using the broth microdilution method. The distribution of spaDEF genes among C. striatum isolates was detected by polymerase chain reaction, and pulsed-field gel electrophoresis typing was employed to analyze the genotypes of the isolates. Crystal violet staining and scanning electron microscopy techniques were used to detect biofilm production by C. striatum isolates. Biofilm degradation assay was performed to observe the effects of extracellular matrix degradative agents (proteinase K, dispersin B, and DNase I) on C. striatum biofilms. RESULTS: Twenty-seven C. striatum isolates were enrolled in the study, and the resistance rates were the highest (100%, 27/27) against penicillin and ceftriaxone. Approximately 96.3% (26/27) C. striatum isolates were resistant to at least three different types of antimicrobial agents tested. All isolates were confirmed to be biofilm producers, and 74.07% (20/27) isolates presented moderate to strong biofilm production abilities. P7 genotype (44.4%, 12/27) was identified to as the predominant genotype, and all of isolates belonging to this genotype were multidrug-resistant and had stronger biofilm-forming abilities. Most C. striatum isolates (74.07%, 20/27) carry spaD, spaE, and spaF genes, which encode spa-type pili. However, the correlation between the expression of spa-type genes and the biofilm production abilities of the C. striatum isolates was not found. The biofilms of 80% (8/10), 90% (9/10), and 100% (10/10) C. striatum isolates with moderate to strong biofilm production abilities were significantly eliminated upon the treatment of dispersin B (20 µg/mL), DNase I (20 µg/mL), and proteinase K (20 µg/mL) (p < 0.05), respectively. For the combination groups with two kinds of biofilm-degradative agents, the combination of 20 µg/mL proteinase K/dispersin B showed the strongest biofilm-eliminating effects, when the biofilms of 90% (9/10) C. striatum isolates degraded more than 50%. CONCLUSIONS: The C. striatum isolates that belonged to the predominant genotype showed a multidrug resistance (MDR) phenotype and strong biofilm formation abilities. Extracellular matrix seems to be an essential determinant in mediating biofilm formation of MDR C. striatum, since extracellular matrix degradative agents (proteinase K, dispersin B and DNase I) showed strong biofilm-eliminating effects toward multidrug-resistant C. striatum isolates. The findings of this study highlight new ideas/directions to explore the whole nature of biofilm formation of C. striatum and the function of extracellular matrix in this process.


Asunto(s)
Antibacterianos , Biopelículas , ARN Ribosómico 16S/genética , Endopeptidasa K/farmacología , Antibacterianos/farmacología , Desoxirribonucleasa I/farmacología , Matriz Extracelular
15.
Front Cell Infect Microbiol ; 12: 917038, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36310876

RESUMEN

Anti-infection strategies against pleural empyema include the use of antibiotics and drainage treatments, but bacterial eradication rates remain low. A major challenge is the formation of biofilms in the pleural cavity. DNase has antibiofilm efficacy in vitro, and intrapleural therapy with DNase is recommended to treat pleural empyema, but the relevant mechanisms remain limited. Our aim was to investigate whether DNase I inhibit the early biofilm formation in Pseudomonas aeruginosa- or Staphylococcus aureus-induced empyema models. We used various assays, such as crystal violet staining, confocal laser scanning microscopy (CLSM) analysis, peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH), and scanning electron microscopy (SEM) analysis. Our results suggested that DNase I significantly inhibited early biofilm formation in a dose-dependent manner, without affecting the growth of P. aeruginosa or S. aureus in vitro. CLSM analysis confirmed that DNase I decreased the biomass and thickness of both bacterial biofilms. The PNA-FISH and SEM analyses also revealed that DNase I inhibited early (24h) biofilm formation in two empyema models. Thus, the results indicated that DNase inhibited early (24h) biofilm formation in P. aeruginosa- or S. aureus-induced rabbit empyema models and showed its therapeutic potential against empyema biofilms.


Asunto(s)
Empiema Pleural , Infecciones Estafilocócicas , Animales , Conejos , Pseudomonas aeruginosa , Staphylococcus aureus , Desoxirribonucleasas/farmacología , Hibridación Fluorescente in Situ , Infecciones Estafilocócicas/tratamiento farmacológico , Biopelículas , Antibacterianos/uso terapéutico , Desoxirribonucleasa I/farmacología
16.
Arch Toxicol ; 96(11): 2913-2926, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35962800

RESUMEN

With the widespread use of copper oxide nanoparticles (CuO-NPs), their potential toxicity to the environment and biological health has attracted close attention. Heterophil extracellular traps (HETs) are an innate immune mechanism of chicken heterophils against adverse stimuli, but excessive HETs cause damage. Here, we explored the effect and mechanism of CuO-NPs on HETs formation in vitro and further evaluated the potential role of HETs in chicken liver and kidney injury. Heterophils were exposed to 5, 10, and 20 µg/mL of CuO-NPs for 2 h. The results showed that CuO-NPs induced typical HETs formation, which was dependent on NADPH oxidase, P38 and extracellular regulated protein kinases (ERK1/2) pathways, and glycolysis. In in vivo experiments, fluorescence microplate and morphological analysis showed that CuO-NPs elevated the level of HETs in chicken serum and caused liver and kidney damage. Meanwhile, CuO-NPs caused hepatic oxidative stress (MDA, SOD, CAT, and GSH-PX imbalance), and also induced an increase in mRNA expression of their inflammatory and apoptosis-related factors (IL-1ß, IL-6, TNF-α, COX-2, iNOS, NLRP3, and Caspase-1, 3, 11). However, these results were significantly altered by DNase I (HETs degradation reagent). In conclusion, the present study demonstrates for the first time that CuO-NPs induce the formation of HETs and that HETs exacerbate pathological damage in chicken liver and kidney by promoting oxidative stress and inflammation, providing insights into immunotoxicity and potential prevention and treatment targets caused by CuO-NPs overexposure.


Asunto(s)
Trampas Extracelulares , Nanopartículas del Metal , Animales , Caspasas , Pollos , Cobre/toxicidad , Ciclooxigenasa 2 , Desoxirribonucleasa I/farmacología , Interleucina-6 , Hígado , Nanopartículas del Metal/toxicidad , NADPH Oxidasas/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , Óxidos , Proteínas Quinasas , ARN Mensajero , Superóxido Dismutasa , Factor de Necrosis Tumoral alfa
17.
Fish Shellfish Immunol ; 129: 22-29, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35932984

RESUMEN

Zinc oxide nanoparticles (ZnO-NPs) are widely used in sunscreens, cosmetics, paint, construction materials, and other products. ZnO-NPs released into the environment can harm aquatic creatures and pose a health risk to humans through the food chain. ZnO-NPs are toxic to fish, but there are few reports on its immunotoxicity on crucian carp (Carassius carassius). In this study, ZnO-NPs increased the biochemical indexes of the liver in serum, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT). In histopathological observation, many inflammatory cells were filled in the liver's central vein stimulated by ZnO-NPs. Furthermore, ZnO-NPs could increase malondialdehyde (MDA) level, lessen superoxide dismutase (SOD) level, and elevate the level of neutrophil extracellular traps (NETs). However, deoxyribonuclease I (DNase I) alleviated all biochemical indexes and histopathological changes. Immunofluorescence in vitro confirmed that NETs were composed of citrullinated histone 3, myeloperoxidase, and neutrophil elastase. ZnO-NPs-increased NETs were dependent on reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase and were also related to partial processes of glycolysis. Our study confirms that ZnO-NPS has a toxic effect on the liver of crucian carp. DNase I can prevent liver damage caused by ZnO-NPs, which provides a new insight into the immunotoxicity of ZnO-NPs to fish.


Asunto(s)
Carpas , Trampas Extracelulares , Nanopartículas , Óxido de Zinc , Alanina Transaminasa , Animales , Aspartato Aminotransferasas , Carpas/metabolismo , Desoxirribonucleasa I/farmacología , Histonas , Humanos , Elastasa de Leucocito/farmacología , Malondialdehído , Nanopartículas del Metal/toxicidad , NADP/farmacología , Nanopartículas/toxicidad , Estrés Oxidativo , Peroxidasa , Especies Reactivas de Oxígeno/metabolismo , Protectores Solares/farmacología , Superóxido Dismutasa/metabolismo , Óxido de Zinc/toxicidad
18.
Mol Pharm ; 19(6): 1906-1916, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35543327

RESUMEN

Drug delivery systems such as liposomes are widely used to stabilize and increase the plasma half-life of therapeutics. In this article, we have investigated two strategies to increase the half-life of deoxyribonuclease I, an FDA-approved enzyme used for the treatment of cystic fibrosis, and a potential candidate for the reduction of uncontrolled inflammation induced by neutrophil extracellular traps. We demonstrate that our optimized preparation procedure resulted in nanoparticles with improved plasma half-life and total exposure relative to native protein, while maintaining enzymatic activity.


Asunto(s)
Trampas Extracelulares , Nanopartículas , Desoxirribonucleasa I/farmacología , Trampas Extracelulares/metabolismo , Semivida , Liposomas/metabolismo
19.
ChemMedChem ; 17(5): e202100694, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34994078

RESUMEN

A library of 31 butyrylcholinesterase (BChE) and cathepsin B (CatB) inhibitors was screened in vitro for inhibition of deoxyribonuclease I (DNase I). Compounds 22, 8 and 7 are among the most potent synthetic non-peptide DNase I inhibitors reported to date. Three 8-hydroxyquinoline analogues inhibited both DNase I and BChE with IC50 values below 35 µM and 50 nM, respectively, while two nitroxoline derivatives inhibited DNase I and Cat B endopeptidase activity with IC50 values below 60 and 20 µM. Selected derivatives were screened for various co-target binding affinities at dopamine D2 and D3 , histamine H3 and H4 receptors and inhibition of 5-lipoxygenase. Compound 8 bound to the H3 receptor and is highlighted as the most promising multifunctional ligand with a favorable pharmacokinetic profile and one of the most potent non-peptide DNase I inhibitors. The present study demonstrates that 8-hydroxyquinoline is a structural fragment critical for DNase I inhibition in the presented series of compounds.


Asunto(s)
Butirilcolinesterasa , Catepsina B , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Desoxirribonucleasa I/química , Desoxirribonucleasa I/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Oxiquinolina , Relación Estructura-Actividad
20.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34769514

RESUMEN

Tumor-associated cell-free DNAs (cfDNA) play an important role in the promotion of metastases. Previous studies proved the high antimetastatic potential of bovine pancreatic DNase I and identified short interspersed nuclear elements (SINEs) and long interspersed nuclear elements (LINEs)and fragments of oncogenes in cfDNA as the main molecular targets of enzyme in the bloodstream. Here, recombinant human DNase I (commercial name Pulmozyme®), which is used for the treatment of cystic fibrosis in humans, was repurposed for the inhibition of lung metastases in the B16 melanoma model in mice. We found that Pulmozyme® strongly reduced migration and induced apoptosis of B16 cells in vitro and effectively inhibited metastases in lungs and liver in vivo. Pulmozyme® was shown to be two times more effective when administered intranasally (i.n.) than bovine DNase I, but intramuscular (i.m.) administration forced it to exhibit as high an antimetastatic activity as bovine DNase I. Both DNases administered to mice either i.m. or i.n. enhanced the DNase activity of blood serum to the level of healthy animals, significantly decreased cfDNA concentrations, efficiently degraded SINE and LINE repeats and c-Myc fragments in the bloodstream and induced apoptosis and disintegration of neutrophil extracellular traps in metastatic foci; as a result, this manifested as the inhibition of metastases spread. Thus, Pulmozyme®, which is already an approved drug, can be recommended for use in the treatment of lung metastases.


Asunto(s)
Ácidos Nucleicos Libres de Células/sangre , Desoxirribonucleasa I/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , Neoplasias Pulmonares/tratamiento farmacológico , Melanoma Experimental/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Elementos de Nucleótido Esparcido Corto/genética , Animales , Línea Celular Tumoral , Desoxirribonucleasa I/farmacología , Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Masculino , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Proteínas Proto-Oncogénicas c-myc/sangre , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Recombinantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA