RESUMEN
Vacuolar H+-ATPase (V-ATPase) is a multisubunit protein complex which, along with its accessory proteins, resides in almost every eukaryotic cell. It acts as a proton pump and as such is responsible for regulating pH in lysosomes, endosomes, and the extracellular space. Moreover, V-ATPase has been implicated in receptor-mediated signaling. Although numerous studies have explored the role of V-ATPase in cancer, osteoporosis, and neurodegenerative diseases, research on its involvement in vascular disease remains limited. Vascular diseases pose significant challenges to human health. This review aimed to shed light on the role of V-ATPase in hypertension and atherosclerosis. Furthermore, given that vascular complications are major complications of diabetes, this review also discusses the pathways through which V-ATPase may contribute to such complications. Beginning with an overview of the structure and function of V-ATPase in hypertension, atherosclerosis, and diabetes, this review ends by exploring the pharmacological potential of targeting V-ATPase.
Asunto(s)
Aterosclerosis , Diabetes Mellitus , Hipertensión , ATPasas de Translocación de Protón Vacuolares , Humanos , Aterosclerosis/enzimología , Aterosclerosis/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Hipertensión/enzimología , Animales , Diabetes Mellitus/enzimologíaRESUMEN
Diabetes mellitus (DM) is a non-communicable disease throughout the world in which there is persistently high blood glucose level from the normal range. The diabetes and insulin resistance are mainly responsible for the morbidities and mortalities of humans in the world. This disease is mainly regulated by various enzymes and hormones among which Glycogen synthase kinase-3 (GSK-3) is a principle enzyme and insulin is the key hormone regulating it. The GSK-3, that is the key enzyme is normally showing its actions by various mechanisms that include its phosphorylation, formation of protein complexes, and other cellular distribution and thus it control and directly affects cellular morphology, its growth, mobility and apoptosis of the cell. Disturbances in the action of GSK-3 enzyme may leads to various disease conditions that include insulin resistance leading to diabetes, neurological disease like Alzheimers disease and cancer. Fluoroquinolones are the most common class of drugs that shows dysglycemic effects via interacting with GSK-3 enzyme. Therefore, it is the need of the day to properly understand functions and mechanisms of GSK-3, especially its role in glucose homeostasis via effects on glycogen synthase.
O diabetes mellitus (DM) é uma doença não transmissível em todo o mundo, na qual existe nível glicêmico persistentemente alto em relação à normalidade. O diabetes e a resistência à insulina são os principais responsáveis pelas morbidades e mortalidades de humanos no mundo. Essa doença é regulada principalmente por várias enzimas e hormônios, entre os quais a glicogênio sintase quinase-3 (GSK-3) é uma enzima principal e a insulina é o principal hormônio que a regula. A GSK-3, que é a enzima-chave, normalmente mostra suas ações por vários mecanismos que incluem sua fosforilação, formação de complexos de proteínas e outras distribuições celulares e, portanto, controla e afeta diretamente a morfologia celular, seu crescimento, mobilidade e apoptose do célula. Perturbações na ação da enzima GSK-3 podem levar a várias condições de doença que incluem resistência à insulina que leva ao diabetes, doenças neurológicas como a doença de Alzheimer e câncer. As fluoroquinolonas são a classe mais comum de drogas que apresentam efeitos disglicêmicos por meio da interação com a enzima GSK-3. Portanto, é necessário hoje em dia compreender adequadamente as funções e mecanismos da GSK-3, principalmente seu papel na homeostase da glicose via efeitos na glicogênio sintase.
Asunto(s)
Humanos , Diabetes Mellitus/enzimología , Fluoroquinolonas/análisis , /análisisRESUMEN
Background Lipoprotein lipase (LPL)-derived fatty acid is a major source of energy for cardiac contraction. Synthesized in cardiomyocytes, LPL requires translocation to the vascular lumen for hydrolysis of lipoprotein triglyceride, an action mediated by endothelial cell (EC) release of heparanase. We determined whether flow-mediated biophysical forces can cause ECs to secrete heparanase and thus regulate cardiac metabolism. Methods and Results Isolated hearts were retrogradely perfused. Confluent rat aortic ECs were exposed to laminar flow using an orbital shaker. Cathepsin L activity was determined using gelatin-zymography. Diabetes was induced in rats with streptozotocin. Despite the abundance of enzymatically active heparanase in the heart, it was the enzymatically inactive, latent heparanase that was exceptionally responsive to flow-induced release. EC exposed to orbital rotation exhibited a similar pattern of heparanase secretion, an effect that was reproduced by activation of the mechanosensor, Piezo1. The laminar flow-mediated release of heparanase from EC required activation of both the purinergic receptor and protein kinase D, a kinase that assists in vesicular transport of proteins. Heparanase influenced cardiac metabolism by increasing cardiomyocyte LPL displacement along with subsequent replenishment. The flow-induced heparanase secretion was augmented following diabetes and could explain the increased heparin-releasable pool of LPL at the coronary lumen in these diabetic hearts. Conclusions ECs sense fluid shear-stress and communicate this information to subjacent cardiomyocytes with the help of heparanase. This flow-induced mechanosensing and its dynamic control of cardiac metabolism to generate ATP, using LPL-derived fatty acid, is exquisitely adapted to respond to disease conditions, like diabetes.
Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus , Lipoproteína Lipasa , Animales , Ratas , Diabetes Mellitus/enzimología , Ácidos Grasos/metabolismo , Lipoproteína Lipasa/metabolismo , Diabetes Mellitus Experimental/enzimología , EstreptozocinaRESUMEN
Lysyl oxidases are multifunctional proteins derived from five lysyl oxidase paralogues (LOX) and lysyl oxidase-like 1 through lysyl oxidase-like 4 (LOXL1-LOXL4). All participate in the biosynthesis of and maturation of connective tissues by catalyzing the oxidative deamination of lysine residues in collagens and elastin, which ultimately results in the development of cross-links required to function. In addition, the five LOX genes have been linked to fibrosis and cancer when overexpressed, while tumor suppression by the propeptide derived from pro-LOX has been documented. Similarly, in diabetic retinopathy, LOX overexpression, activity, and elevated LOX propeptide have been documented. The proteolytic processing of pro-forms of the respective proteins is beginning to draw attention as the resultant peptides appear to exhibit their own biological activities. In this review we focus on the LOX paralogue, and what is known regarding its extracellular biosynthetic processing and the still incomplete knowledge regarding the activities and mechanisms of the released lysyl oxidase propeptide (LOX-PP). In addition, a summary of the roles of both LOX and LOX-PP in diabetic retinopathy, and brief mentions of the roles for LOX and closely related LOXL1 in glaucoma, and keratoconus, respectively, are included.
Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Neoplasias , Proteína-Lisina 6-Oxidasa , Colágeno/metabolismo , Diabetes Mellitus/enzimología , Diabetes Mellitus/metabolismo , Retinopatía Diabética/enzimología , Retinopatía Diabética/metabolismo , Humanos , Neoplasias/enzimología , Neoplasias/metabolismo , Péptidos , Proteína-Lisina 6-Oxidasa/metabolismoRESUMEN
BACKGROUND: Natural phenolic compounds and Phenolics-rich medicinal plants are also of great interest in the management of diabetes. The current study was aimed to analyze phenolics in P. hydropiepr L extracts via HPLC-DAD analysis and assess their anti-diabetic potentials using in-vitro and in-silico approaches. METHODS: Plant crude methanolic extract (Ph.Cme) was evaluated for the presence of phenolic compounds using HPLC-DAD analysis. Subsequently, samples including crude (Ph.Cr), hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), butanol (Ph.Bt), aqueous (Ph.Aq) and saponins (Ph.Sp) were tested for α-glucsidase and α-amylase inhibitory potentials and identified compounds were docked against these target enzymes using Molecular Operating Environment (MOE) software. Fractions were also analyzed for the nutritional contents and acute toxicity was performed in animals. RESULTS: In HPLC-DAD analysis of Ph.Cme, 24 compounds were indentfied and quantified. Among these, Kaemferol-3-(p-coumaroyl-diglucoside)-7-glucoside (275.4 mg g- 1), p-Coumaroylhexose-4-hexoside (96.5 mg g- 1), Quercetin-3-glucoronide (76.0 mg g- 1), 4-Caffeoylquinic acid (58.1 mg g- 1), Quercetin (57.9 mg g- 1), 5,7,3'-Trihydroxy-3,6,4',5'-tetramethoxyflavone (55.5 mg g- 1), 5-Feruloylquinic acid (45.8 mg g- 1), Cyanidin-3-glucoside (26.8 mg g- 1), Delphinidin-3-glucoside (24 mg g- 1), Quercetin-3-hexoside (20.7 mg g- 1) were highly abundant compounds. In α-glucosidase inhibition assay, Ph.Sp were most effective with IC50 value of 100 µg mL-1. Likewise in α-amylase inhibition assay, Ph.Chf, Ph.Sp and Ph.Cme were most potent fractions displayed IC50 values of 90, 100 and 200 µg mL-1 respectively. Docking with the α-glucosidase enzyme revealed top ranked conformations for majority of the compounds with Kaemferol-3-(p-coumaroyl-diglucoside)-7-glucoside as the most active compound with docking score of - 19.80899, forming 14 hydrogen bonds, two pi-H and two pi-pi linkages with the Tyr 71, Phe 158, Phe 177, Gln 181, Arg 212, Asp 214, Glu 276, Phe 300, Val 303, Tyr 344, Asp 349, Gln 350, Arg 439, and Asp 408 residues of the enzyme. Likewise, docking with α-amylase revealed that most of the compounds are well accommodated in the active site residues (Trp 59, Tyr 62, Thr 163, Leu 165, Arg 195, Asp 197, Glu 240, Asp 300, His 305, Asp 356) of the enzyme and Cyanidin-3-rutinoside displayed most active compound with docking score of - 15.03757. CONCLUSIONS: Phytochemical studies revealed the presence of highly valuable phenolic compounds, which might be responsible for the anti-diabetic potentials of the plant samples.
Asunto(s)
Inhibidores de Glicósido Hidrolasas/farmacología , Hipoglucemiantes/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Polygonaceae/química , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/enzimología , Inhibidores de Glicósido Hidrolasas/análisis , Humanos , Hipoglucemiantes/análisis , Simulación del Acoplamiento Molecular , Fenoles/análisis , Fenoles/farmacología , Fitoquímicos/análisis , Extractos Vegetales/química , Saponinas/análisis , Saponinas/farmacología , alfa-Amilasas/antagonistas & inhibidoresRESUMEN
1,2,4-Oxadiazole is a heterocycle with wide reactivity and many useful applications. The reactive O-N bond is usually reduced using molecular hydrogen to obtain amidine derivatives. NH4CO2H-Pd/C is here demonstrated as a new system for the O-N reduction, allowing us to obtain differently substituted acylamidine, acylguanidine and diacylguanidine derivatives. The proposed system is also effective for the achievement of a reductive rearrangement of 5-(2'-aminophenyl)-1,2,4-oxadiazoles into 1-alkylquinazolin-4(1H)-ones. The alkaloid glycosine was also obtained with this method. The obtained compounds were preliminarily tested for their biological activity in terms of their cytotoxicity, induced oxidative stress, α-glucosidase and DPP4 inhibition, showing potential application as anti-diabetics.
Asunto(s)
Formiatos/química , Guanidinas/química , Hipoglucemiantes/química , Oxadiazoles/química , Paladio/química , Quinazolinonas/química , Células A549 , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus/enzimología , Diabetes Mellitus/prevención & control , Dipeptidil Peptidasa 4/metabolismo , Guanidinas/síntesis química , Humanos , Hipoglucemiantes/farmacología , Modelos Químicos , Estructura Molecular , Oxidación-Reducción , alfa-Glucosidasas/metabolismoRESUMEN
Diabetes mellitus (DM) is concomitant with significant morbidity and mortality and its prevalence is accumulative in worldwide. The conventional antidiabetic agents are known to mitigate the symptoms of diabetes; however, they may also cause side and adverse effects. There is an imperative necessity to conduct preclinical and clinical trials for the discovery of alternative therapeutic agents that can overcome the drawbacks of current synthetic antidiabetic drugs. This study aimed to investigate the efficacy of lowering blood glucose and underlined mechanism of γ-mangostin, mangosteen (Garcinia mangostana) xanthones. The results showed γ-Mangostin had a antihyperglycemic ability in short (2 h)- and long-term (28 days) administrations to diet-induced diabetic mice. The long-term administration of γ-mangostin attenuated fasting blood glucose of diabetic mice and exhibited no hepatotoxicity and nephrotoxicity. Moreover, AMPK, PPARγ, α-amylase, and α-glucosidase were found to be the potential targets for simulating binds with γ-mangostin after molecular docking. To validate the docking results, the inhibitory potency of γ-mangostin againstα-amylase/α-glucosidase was higher than Acarbose via enzymatic assay. Interestingly, an allosteric relationship between γ-mangostin and insulin was also found in the glucose uptake of VSMC, FL83B, C2C12, and 3T3-L1 cells. Taken together, the results showed that γ-mangostin exerts anti-hyperglycemic activity through promoting glucose uptake and reducing saccharide digestion by inhibition of α-amylase/α-glucosidase with insulin sensitization, suggesting that γ-mangostin could be a new clue for drug discovery and development to treat diabetes.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Glucemia/efectos de los fármacos , Diabetes Mellitus/tratamiento farmacológico , Garcinia mangostana , Inhibidores de Glicósido Hidrolasas/farmacología , Resistencia a la Insulina , PPAR gamma/metabolismo , Extractos Vegetales/farmacología , Xantonas/farmacología , Células 3T3-L1 , Animales , Biomarcadores/sangre , Glucemia/metabolismo , Diabetes Mellitus/sangre , Diabetes Mellitus/enzimología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Regulación hacia Abajo , Garcinia mangostana/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas/toxicidad , Masculino , Ratones , Ratones Endogámicos ICR , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Transducción de Señal , Factores de Tiempo , Xantonas/toxicidad , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismoRESUMEN
INTRODUCTION: Active matrix metalloproteinase (aMMP)-8 utilized in point-of-care testing (POCT) is regarded as a potential biomarker for periodontal and peri-implant diseases. Various host and microbial factors eventually influence the expression, degranulation, levels and activation of aMMP-8. The type of oral fluids (saliva, mouthrinse, gingival crevicular, and peri-implant sulcular fluids [GCF/PISF], respectively) affect the analysis. AREAS COVERED: With this background, we aimed to review here the recent studies on practical, inexpensive, noninvasive and quantitative mouthrinse and GCF/PISF chair-side POCT lateral flow aMMP-8 immunoassays (PerioSafe and ImplantSafe/ORALyzer) and how they help to detect, predict, monitor the course, treatment and prevention of periodontitis and peri-implantitis. The correlations of aMMP-8 POCT to other independent and catalytic activity assays of MMP-8 are also addressed. EXPERT OPINION: The mouthrinse aMMP-8 POCT can also detect prediabetes/diabetes and tissue destructive oral side-effects due to the head and neck cancers' radiotherapy. Chlorhexidine and doxycycline can inhibit collagenolytic human neutrophil and GCF aMMP-8. Furthermore, by a set of case-series we demonstrate the potential of mouthrinse aMMP-8 POCT to real-time/online detect periodontitis as a potential risk disease for coronavirus disease 2019 (COVID-19). The clinical interdisciplinary utilization of aMMP-8 POCT requires additional oral, medical, and interdisciplinary studies.
Asunto(s)
COVID-19/enzimología , Metaloproteinasa 8 de la Matriz/metabolismo , Pandemias , SARS-CoV-2 , Biomarcadores/análisis , Biomarcadores/metabolismo , COVID-19/complicaciones , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/enzimología , Doxiciclina/uso terapéutico , Humanos , Inmunoensayo/métodos , Metaloproteinasa 8 de la Matriz/análisis , Antisépticos Bucales , Higiene Bucal , Periimplantitis/diagnóstico , Periimplantitis/enzimología , Periodontitis/complicaciones , Periodontitis/diagnóstico , Periodontitis/enzimología , Pruebas en el Punto de Atención , Radioterapia/efectos adversos , Factores de Riesgo , Tratamiento Farmacológico de COVID-19RESUMEN
Aminoacyl-tRNA synthetases (ARSs) catalyze the charging of specific amino acids onto cognate tRNAs, an essential process for protein synthesis. Mutations in ARSs are frequently associated with a variety of human diseases. The human EPRS1 gene encodes a bifunctional glutamyl-prolyl-tRNA synthetase (EPRS) with two catalytic cores and appended domains that contribute to nontranslational functions. In this study, we report compound heterozygous mutations in EPRS1, which lead to amino acid substitutions P14R and E205G in two patients with diabetes and bone diseases. While neither mutation affects tRNA binding or association of EPRS with the multisynthetase complex, E205G in the glutamyl-tRNA synthetase (ERS) region of EPRS is defective in amino acid activation and tRNAGlu charging. The P14R mutation induces a conformational change and altered tRNA charging kinetics in vitro. We propose that the altered catalytic activity and conformational changes in the EPRS variants sensitize patient cells to stress, triggering an increased integrated stress response (ISR) that diminishes cell viability. Indeed, patient-derived cells expressing the compound heterozygous EPRS show heightened induction of the ISR, suggestive of disruptions in protein homeostasis. These results have important implications for understanding ARS-associated human disease mechanisms and development of new therapeutics.
Asunto(s)
Enfermedades Óseas , Diabetes Mellitus , Enfermedades Genéticas Congénitas , Glutamato-ARNt Ligasa , Mutación Missense , Estrés Fisiológico/genética , Sustitución de Aminoácidos , Enfermedades Óseas/enzimología , Enfermedades Óseas/genética , Diabetes Mellitus/enzimología , Diabetes Mellitus/genética , Enfermedades Genéticas Congénitas/enzimología , Enfermedades Genéticas Congénitas/genética , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Células HEK293 , Humanos , MasculinoRESUMEN
The protein tyrosine kinase inhibitor imatinib is used in the treatment of various malignancies but may also promote beneficial effects in the treatment of diabetes. The aim of the present investigation was to characterize the mechanisms by which imatinib protects insulin producing cells. Treatment of non-obese diabetic (NOD) mice with imatinib resulted in increased beta-cell AMP-activated kinase (AMPK) phosphorylation. Imatinib activated AMPK also in vitro, resulting in decreased ribosomal protein S6 phosphorylation and protection against islet amyloid polypeptide (IAPP)-aggregation, thioredoxin interacting protein (TXNIP) up-regulation and beta-cell death. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) mimicked and compound C counteracted the effect of imatinib on beta-cell survival. Imatinib-induced AMPK activation was preceded by reduced glucose/pyruvate-dependent respiration, increased glycolysis rates, and a lowered ATP/AMP ratio. Imatinib augmented the fractional oxidation of fatty acids/malate, possibly via a direct interaction with the beta-oxidation enzyme enoyl coenzyme A hydratase, short chain, 1, mitochondrial (ECHS1). In non-beta cells, imatinib reduced respiratory chain complex I and II-mediated respiration and acyl-CoA carboxylase (ACC) phosphorylation, suggesting that mitochondrial effects of imatinib are not beta-cell specific. In conclusion, tyrosine kinase inhibitors modestly inhibit mitochondrial respiration, leading to AMPK activation and TXNIP down-regulation, which in turn protects against beta-cell death.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Metabolismo Energético/efectos de los fármacos , Hipoglucemiantes/farmacología , Mesilato de Imatinib/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Animales , Proteínas Portadoras/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Respiración de la Célula/efectos de los fármacos , Diabetes Mellitus/enzimología , Diabetes Mellitus/patología , Modelos Animales de Enfermedad , Enoil-CoA Hidratasa/metabolismo , Activación Enzimática , Humanos , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/patología , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Masculino , Ratones Endogámicos NOD , Mitocondrias/enzimología , Mitocondrias/patología , Fosforilación , Ratas Sprague-Dawley , Proteína S6 Ribosómica/metabolismoRESUMEN
Ninety percent of plasma fatty acids (FAs) are contained within lipoprotein-triglyceride, and lipoprotein lipase (LPL) is robustly expressed in the heart. Hence, LPL-mediated lipolysis of lipoproteins is suggested to be a key source of FAs for cardiac use. Lipoprotein clearance by LPL occurs at the apical surface of the endothelial cell lining of the coronary lumen. In the heart, the majority of LPL is produced in cardiomyocytes and subsequently is translocated to the apical luminal surface. Here, vascular LPL hydrolyzes lipoprotein-triglyceride to provide the heart with FAs for ATP generation. This article presents an overview of cardiac LPL, explains how the enzyme works, describes key molecules that regulate its activity and outlines how changes in LPL are brought about by physiological and pathological states such as fasting and diabetes, respectively.
Asunto(s)
Cardiomiopatías Diabéticas/metabolismo , Ácidos Grasos/metabolismo , Lipoproteína Lipasa/metabolismo , Miocardio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Diabetes Mellitus/enzimología , Cardiomiopatías Diabéticas/patología , Humanos , Insulina/metabolismo , Metabolismo de los Lípidos , Lipoproteína Lipasa/genética , Miocardio/enzimología , Procesamiento Proteico-PostraduccionalRESUMEN
In type 2 diabetes, metabolic stress has a negative impact on pancreatic ß-cell function and survival (T2D). Although the pathogenesis of metabolic stress is complex, an imbalance in redox homeostasis causes abnormal tissue damage and ß-cell death due to low endogenous antioxidant expression levels in ß-cells. Under diabetogenic conditions, the susceptibility of ß-cells to oxidative damage by NADPH oxidase has been related to contributing to ß-cell dysfunction. Here, we consider recent insights into how the redox response becomes deregulated under diabetic conditions by NADPH oxidase, as well as the therapeutic benefits of NOX inhibitors, which may provide clues for understanding the pathomechanisms and developing strategies aimed at the treatment or prevention of metabolic stress associated with ß-cell failure.
Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/enzimología , Células Secretoras de Insulina/patología , Terapia Molecular Dirigida , NADPH Oxidasas/metabolismo , Animales , Humanos , Secreción de Insulina , Lípidos/toxicidadRESUMEN
Toll-like receptor 4 (TLR4) contributes to the pathophysiology of diabetes. This happens, at least in part, because TLR4 modulates the enzyme NADPH oxidase, a primary source of ROS in vascular structures. Increased oxidative stress disrupts key vascular signaling mechanisms and drives the progression of diabetes, elevating the likelihood of cardiovascular diseases. Recently, it has been shown that patients with diabetes are also at a higher risk of developing severe coronavirus disease 2019 (COVID-19). Given the importance of the interaction between TLR4 and NADPH oxidase to the disrupted diabetic vascular system, we put forward the hypothesis that TLR4-mediated NADPH oxidase-derived ROS might be a critical mechanism to help explain why this disparity appears in diabetic patients, but unfortunately, conclusive experimental evidence still lacks in the literature. Herein, we focus on discussing the pathological implications of this signaling communication in the diabetic vasculature and exploring this crosstalk in the context of diabetes-associated severe COVID-19.
Asunto(s)
Vasos Sanguíneos/enzimología , COVID-19/virología , Diabetes Mellitus/enzimología , Angiopatías Diabéticas/enzimología , NADPH Oxidasas/metabolismo , SARS-CoV-2/patogenicidad , Receptor Toll-Like 4/metabolismo , Animales , Vasos Sanguíneos/fisiopatología , Vasos Sanguíneos/virología , COVID-19/enzimología , COVID-19/fisiopatología , Diabetes Mellitus/fisiopatología , Angiopatías Diabéticas/fisiopatología , Activación Enzimática , Interacciones Huésped-Patógeno , Humanos , Estrés Oxidativo , Pronóstico , Especies Reactivas de Oxígeno/metabolismo , Transducción de SeñalRESUMEN
Patients with pre-existing chronic diseases are more susceptible to coronavirus disease 2019 (COVID-19), yet the underlying causes of increased risk are of infection remain unclear. Angiotensin-converting- enzyme 2 (ACE2), the cell surface receptor that recognizes the coronavirus spike protein has protective effects against inflammation and chronic hyperglycemia in animal models. The roles of ACE2 in severe SARS-CoV-2 infections remains ambiguous due to contradictory findings. In this study, we aimed to investigate the relationship between human plasma ACE2 levels in diabetics and the high risk of severe SARS-CoV-2 infection. First, the medical records of 245 patients with SARS-CoV-2-positive who have chronic diseases were analyzed. We also recruited 404 elderly subjects with comorbid chronic diseases such as diabetes mellitus, coronary heart disease, cerebrovascular disease, hypertension and obesity, and investigated the ACE2 plasma levels. Plasma concentrations of ACE2 were much lower (2973.83±2196.79 pg/mL) in diabetics with chronic disease than in healthy controls (4308.21±2352.42 pg/ml), and the use of hypoglycemia drugs was associated with lower circulating concentrations of ACE2 (P=1.49E-08). Diabetics with lower plasma levels of ACE2 may be susceptible to severe COVID-19. Our findings suggest that the poor prognosis in patients with diabetes infected with SARS-CoV-2 may be due to low circulating ACE2 levels.
Asunto(s)
Enzima Convertidora de Angiotensina 2/sangre , COVID-19/sangre , Diabetes Mellitus/sangre , Anciano , COVID-19/enzimología , Diabetes Mellitus/enzimología , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2RESUMEN
Forkhead transcription factor forkhead box O1 (FoxO1) plays an important role in glucose and lipid metabolism, contributing to the pathogenesis of metabolic disorders. This study aimed to discover a novel FoxO1 inhibitor as a potential new anti-diabetic drug candidate, and describes the biological effects of JY-2, 5-(2,4-dichlorophenyl)-3-(pyridin-2-yl)-1,2,4-oxadiazole in vitro and in vivo. JY-2 inhibited FoxO1 transcriptional activity in a concentration-dependent manner, with an IC50 value of 22 µM. The inhibitory effects of JY-2 on FoxO3a and FoxO4 appeared to be weaker than that on FoxO1. Consistent with its inhibitory effect on FoxO1, JY-2 reduced the palmitic acid (PA)-stimulated mRNA expression of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), two key enzymes involved in gluconeogenesis in HepG2 cells. In association with the reduced expression of lipid metabolism genes, triglyceride accumulation was also reduced by JY-2, as determined by Oil Red O staining. In addition, JY-2 restored PA-impaired glucose-stimulated insulin secretion (GSIS), in conjunction with an increased mRNA expression of PDX1, MafA, and insulin in INS-1 cells. The in vivo efficacy of JY-2 was examined using C57BL/6J, db/db, and high fat-diet induced obese and diabetic (DIO) mice models, and showed that JY-2 improved glucose tolerance, in parallel with a reduced mRNA expression of gluconeogenic genes. Pharmacokinetic analysis revealed that JY-2 exhibited excellent oral bioavailability (98%), with little adverse effects. These results demonstrated that the novel FoxO1 inhibitor, JY-2, may exert beneficial anti-diabetic effects and that it warrants further investigation as a novel anti-diabetic drug candidate.
Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Gluconeogénesis/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hipoglucemiantes/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Oxadiazoles/farmacología , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Diabetes Mellitus/enzimología , Diabetes Mellitus/patología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica , Células Hep G2 , Hepatocitos/enzimología , Hepatocitos/patología , Humanos , Hipoglucemiantes/farmacocinética , Masculino , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Obesidad/complicaciones , Oxadiazoles/farmacocinética , Ácido Palmítico/toxicidad , Ratas , Transducción de SeñalRESUMEN
[Figure: see text].
Asunto(s)
Anticolesterolemiantes , Glucemia , Colesterol , Diabetes Mellitus , Hiperlipidemias , Hipoglucemiantes , Hígado , Metformina , Proproteína Convertasa 9 , Adolescente , Adulto , Animales , Humanos , Masculino , Adulto Joven , Anticolesterolemiantes/uso terapéutico , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Biomarcadores/sangre , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Colesterol/sangre , Diabetes Mellitus/sangre , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/enzimología , Diabetes Mellitus/genética , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica , Células Hep G2 , Hiperlipidemias/sangre , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/enzimología , Hiperlipidemias/genética , Hipoglucemiantes/uso terapéutico , Hígado/efectos de los fármacos , Hígado/enzimología , Metformina/uso terapéutico , Ratones Endogámicos C57BL , Ratones Noqueados , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Receptores de Leptina/deficiencia , Receptores de Leptina/genética , Resultado del TratamientoRESUMEN
Diabetes mellitus (DM) is a complex disease which currently affects more than 460 million people and is one of the leading cause of death worldwide. Its development implies numerous metabolic dysfunctions and the onset of hyperglycaemia-induced chronic complications. Multiple ligands can be rationally designed for the treatment of multifactorial diseases, such as DM, with the precise aim of simultaneously controlling multiple pathogenic mechanisms related to the disease and providing a more effective and safer therapeutic treatment compared to combinations of selective drugs. Starting from our previous findings that highlighted the possibility to target both aldose reductase (AR) and protein tyrosine phosphatase 1B (PTP1B), two enzymes strictly implicated in the development of DM and its complications, we synthesised 3-(5-arylidene-4-oxothiazolidin-3-yl)propanoic acids and analogous 2-butenoic acid derivatives, with the aim of balancing the effectiveness of dual AR/PTP1B inhibitors which we had identified as designed multiple ligands (DMLs). Out of the tested compounds, 4f exhibited well-balanced AR/PTP1B inhibitory effects at low micromolar concentrations, along with interesting insulin-sensitizing activity in murine C2C12 cell cultures. The SARs here highlighted along with their rationalization by in silico docking experiments into both target enzymes provide further insights into this class of inhibitors for their development as potential DML antidiabetic candidates.
Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Diabetes Mellitus/tratamiento farmacológico , Inhibidores Enzimáticos , Hipoglucemiantes , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Aldehído Reductasa/metabolismo , Animales , Diabetes Mellitus/enzimología , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Células Hep G2 , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Ligandos , Ratones , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Relación Estructura-ActividadRESUMEN
As a master regulator of metabolism, AMP-activated protein kinase (AMPK) is activated upon energy and glucose shortage but suppressed upon overnutrition. Exaggerated negative regulation of AMPK signaling by nutrient overload plays a crucial role in metabolic diseases. However, the mechanism underlying the negative regulation is poorly understood. Here, we demonstrate that high glucose represses AMPK signaling via MG53 (also called TRIM72) E3-ubiquitin-ligase-mediated AMPKα degradation and deactivation. Specifically, high-glucose-stimulated reactive oxygen species (ROS) signals AKT to phosphorylate AMPKα at S485/491, which facilitates the recruitment of MG53 and the subsequent ubiquitination and degradation of AMPKα. In addition, high glucose deactivates AMPK by ROS-dependent suppression of phosphorylation of AMPKα at T172. These findings not only delineate the mechanism underlying the impairment of AMPK signaling in overnutrition-related diseases but also highlight the significance of keeping the yin-yang balance of AMPK signaling in the maintenance of metabolic homeostasis.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus/enzimología , Glucosa/farmacología , Proteínas de la Membrana/metabolismo , Músculo Esquelético/efectos de los fármacos , Obesidad/enzimología , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/genética , Animales , Glucemia/metabolismo , Diabetes Mellitus/sangre , Diabetes Mellitus/genética , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Macaca mulatta , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Músculo Esquelético/enzimología , Obesidad/sangre , Obesidad/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , UbiquitinaciónRESUMEN
Different portions (stem GIS and leaf GIL) of Garcinia linii were extracted by ethanol/water and crude extracts were employed to investigate the contents of total phenol and flavonoids, antioxidation activities, and inhibitory activities of α-amylase and α-glucosidase via enzymatic assay and OGTT and OSTT for lowering glucose levels. The data revealed that GlS and GlL contained different levels of flavonoids and total phenol. Furthermore, the results showed the extracts exhibited remarkable antioxidation activities and inhibitory activities of α-amylase and α-glucosidase. In silico docking studies were done using Gold software and the probable molecules retrieved from PubChem were docked with several anti-diabetic relate targets, the results showed several components of G. linii could potentially inhibit diabetic molecules when compared with clinic drugs. The cell glucose uptake data also confirmed that GlL and GlS could retain the active component in the regulation of insulin, AMPK, PPARγ, and DPP4. In vivo, the evidence showed G. linii extracts including syringaldehyde suppressed effect of hyperglycemia on OSTT and OGTT assays. These results suggest that G. linii extract has a potential therapeutic value for the treatment of diabetes in humans.