RESUMEN
BACKGROUND: Diapause, a pivotal phase in the insect life cycle, enables survival during harsh environmental conditions. Unraveling the gene expression profiles of the diapause process helps uncover the molecular mechanisms that underlying diapause, which is crucial for understanding physiological adaptations. In this study, we utilize RNA-seq and Ribo-seq data to examine differentially expressed genes (DEGs) and translational efficiency during diapause of Asian corn borer (Ostrinia furnacalis, ACB). RESULTS: Our results unveil genes classified as "forwarded", "exclusive", "intensified", or "buffered" during diapause, shedding light on their transcription and translation regulation patterns. Furthermore, we explore the landscape of lncRNAs (long non-coding RNAs) during diapause and identify differentially expressed lncRNAs, suggesting their roles in diapause regulation. Comparative analysis of different types of diapause in insects uncovers shared and unique KEGG pathways. While shared pathways highlight energy balance, exclusive pathways in the ACB larvae indicate insect-specific adaptations related to nutrient utilization and stress response. Interestingly, our study also reveals dynamic changes in the HSP70 gene family and proteasome pathway during diapause. Manipulating HSP protein levels and proteasome pathway by HSP activator or inhibitor and proteasome inhibitor affects diapause, indicating their vital role in the process. CONCLUSIONS: In summary, these findings enhance our knowledge of how insects navigate challenging conditions through intricate molecular mechanisms.
Asunto(s)
Diapausa de Insecto , Mariposas Nocturnas , Animales , Mariposas Nocturnas/fisiología , Mariposas Nocturnas/genética , Diapausa de Insecto/fisiología , Diapausa de Insecto/genética , Transcriptoma , Biosíntesis de Proteínas , Larva/crecimiento & desarrollo , Larva/fisiología , Larva/genética , Diapausa/genética , Diapausa/fisiología , Genoma de los Insectos , Transcripción GenéticaRESUMEN
Embryonic diapause is a common evolutionary adaptation observed across a wide range of organisms. Artemia is one of the classic animal models for diapause research. The current studies of Artemia diapause mainly focus on the induction and maintenance of the embryonic diapause, with little research on the molecular regulatory mechanism of Artemia embryonic reactivation. The first 5 h after embryonic diapause breaking has been proved to be most important for embryonic reactivation in Artemia. In this work, two high-throughput sequencing methods, ATAC-seq and RNA-seq, were integrated to study the signal regulation process in embryonic reactivation of Artemia at 5 h after diapause breaking. Through the GO and KEGG enrichment analysis of the high-throughput datasets, it was showed that after 5 h of diapause breaking, the metabolism and regulation of Artemia cyst were quite active. Several signal transduction pathways were identified in the embryonic reactivation process, such as G-protein-coupled receptor (GPCR) signaling pathway, cell surface receptor signaling pathway, hormone-mediated signaling pathway, Wnt, Notch, mTOR signaling pathways, etc. It indicates that embryonic reactivation is a complex process regulated by multiple signaling pathways. With the further protein structure analysis and RT-qPCR verification, 11 GPCR genes were identified, in which 5 genes function in the embryonic reactivation stage and the other 6 genes contribute to the diapause stage. The results of this work reveal the signal transduction pathways and GPCRs involved in the embryonic reactivation process of Artemia cysts. These findings offer significant clues for in-depth research on the signal regulatory mechanisms of the embryonic reactivation process and valuable insights into the mechanism of animal embryonic diapause.
Asunto(s)
Artemia , Diapausa , Transducción de Señal , Animales , Artemia/genética , Artemia/embriología , Transducción de Señal/genética , Diapausa/genética , Regulación del Desarrollo de la Expresión Génica , RNA-Seq/métodos , Embrión no Mamífero/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Desarrollo Embrionario/genéticaRESUMEN
Life on Earth has been through numerous challenges over eons and, one way or another, has always triumphed. From mass extinctions to more daily plights to find food, unpredictability is everywhere. The adaptability of life-forms to ever-changing environments is the key that confers life's robustness. Adaptability has become synonymous with Darwinian evolution mediated by heritable genetic changes. The extreme gene-centric view, while being of central significance, at times has clouded our appreciation of the cell as a self-regulating entity informed of, and informing, the genetic data. An essential element that powers adaptability is the ability to regulate cell growth. In this review, we provide an extensive overview of growth regulation spanning species, tissues, and regulatory mechanisms. We aim to highlight the commonalities, as well as differences, of these phenomena and their molecular regulators. Finally, we curate open questions and areas for further exploration.
Asunto(s)
Diapausa , Animales , Humanos , Diapausa/genéticaRESUMEN
Temperature is a critical environmental cue that controls the development and lifespan of many animal species; however, mechanisms underlying low-temperature adaptation are poorly understood. Here, we describe cold-inducible diapause (CID), another type of diapause induced by low temperatures in Caenorhabditis elegans. A premature stop codon in heat shock factor 1 (hsf-1) triggers entry into CID at 9 °C, whereas wild-type animals enter CID at 4 °C. Furthermore, both wild-type and hsf-1(sy441) mutant animals undergoing CID can survive for weeks, and resume growth at 20 °C. Using epistasis analysis, we demonstrate that neural signalling pathways, namely tyraminergic and neuromedin U signalling, regulate entry into CID of the hsf-1 mutant. Overexpression of anti-ageing genes, such as hsf-1, XBP1/xbp-1, FOXO/daf-16, Nrf2/skn-1, and TFEB/hlh-30, also inhibits CID entry of the hsf-1 mutant. Based on these findings, we hypothesise that regulators of the hsf-1 mutant CID may impact longevity, and successfully isolate 16 long-lived mutants among 49 non-CID mutants via genetic screening. Furthermore, we demonstrate that the nonsense mutation of MED23/sur-2 prevents CID entry of the hsf-1(sy441) mutant and extends lifespan. Thus, CID is a powerful model to investigate neural networks involving cold acclimation and to explore new ageing mechanisms.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Frío , Proteínas de Unión al ADN , Diapausa , Longevidad , Factores de Transcripción , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Diapausa/genética , Diapausa/fisiología , Longevidad/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación , Transducción de Señal , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Codón sin Sentido/genética , Neuropéptidos/metabolismo , Neuropéptidos/genética , Proteínas Portadoras , Factores de Transcripción con Motivo Hélice-Asa-Hélice BásicoRESUMEN
Jellyfish exhibit innovative swimming patterns that contribute to exploring the origins of animal locomotion. However, the genetic and cellular basis of these patterns remains unclear. Herein, we generated chromosome-level genome assemblies of two jellyfish species, Turritopsis rubra and Aurelia coerulea, which exhibit straight and free-swimming patterns, respectively. We observe positive selection of numerous genes involved in statolith formation, hair cell ciliogenesis, ciliary motility, and motor neuron function. The lineage-specific absence of otolith morphogenesis- and ciliary movement-related genes in T. rubra may be associated with homeostatic structural statocyst loss and straight swimming pattern. Notably, single-cell transcriptomic analyses covering key developmental stages reveal the enrichment of diapause-related genes in the cyst during reverse development, suggesting that the sustained diapause state favours the development of new polyps under favourable conditions. This study highlights the complex relationship between genetics, locomotion patterns and survival strategies in jellyfish, thereby providing valuable insights into the evolutionary lineages of movement and adaptation in the animal kingdom.
Asunto(s)
Escifozoos , Análisis de la Célula Individual , Natación , Animales , Escifozoos/genética , Escifozoos/fisiología , Diapausa/genética , Genómica/métodos , Genoma/genética , Transcriptoma , Perfilación de la Expresión GénicaRESUMEN
Most insects enter diapause, a state of physiological dormancy crucial for enduring harsh seasons, with photoperiod serving as the primary cue for its induction, ensuring proper seasonal timing of the process. Although the involvement of the circadian clock in the photoperiodic time measurement has been demonstrated through knockdown or knockout of clock genes, the involvement of clock gene cryptochrome 1 (cry1), which functions as a photoreceptor implicated in photoentrainment of the circadian clock across various insect species, remains unclear. In bivoltine strains of the silkworm, Bombyx mori, embryonic diapause is maternally controlled and affected by environmental conditions experienced by mother moths during embryonic and larval stages. Previous research highlighted the role of core clock genes, including period (per), timeless (tim), Clock (Clk) and cycle (cyc), in photoperiodic diapause induction in B. mori. In this study, we focused on the involvement of cry1 gene in B. mori photoperiodism. Phylogenetic analysis and conserved domain identification confirmed the presence of both Drosophila-type cry (cry1) and mammalian-type cry (cry2) genes in the B. mori genome, akin to other lepidopterans. Temporal expression analysis revealed higher cry1 gene expression during the photophase and lower expression during the scotophase, with knockouts of core clock genes (per, tim, Clk and cyc) disrupting this temporal expression pattern. Using CRISPR/Cas9-mediated genome editing, we established a cry1 knockout strain in p50T, a bivoltine strain exhibiting clear photoperiodism during both embryonic and larval stages. Although the wild-type strain displayed circadian rhythm in eclosion under continuous darkness, the cry1 knockout strain exhibited arrhythmic eclosion, implicating B. mori cry1 in the circadian clock feedback loop governing behavior rhythms. Females of the cry1 knockout strain failed to control photoperiodic diapause induction during both embryonic and larval stages, mirroring the diapause phenotype of the wild-type individuals reared under constant darkness, indicating that B. mori CRY1 contributes to photoperiodic time measurement as a photoreceptor. Furthermore, photoperiodic diapause induction during the larval stage was abolished in a cry1/tim double-knockout strain, suggesting that photic information received by CRY1 is relayed to the circadian clock. Overall, this study represents the first evidence of cry1 involvement in insect photoperiodism, specifically in diapause induction.
Asunto(s)
Bombyx , Ritmo Circadiano , Criptocromos , Diapausa de Insecto , Fotoperiodo , Animales , Criptocromos/genética , Criptocromos/metabolismo , Bombyx/genética , Bombyx/fisiología , Bombyx/metabolismo , Bombyx/crecimiento & desarrollo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Larva/genética , Larva/metabolismo , Filogenia , Diapausa/genética , Técnicas de Inactivación de Genes , Relojes Circadianos/genéticaRESUMEN
Annual rhythms are observed in living organisms with numerous ecological implications. In the zooplanktonic copepod Calanus finmarchicus, such rhythms are crucial regarding its phenology, body lipid accumulation, and global carbon storage. Climate change drives annual biological rhythms out of phase with the prevailing environmental conditions with yet unknown but potentially catastrophic consequences. However, the molecular dynamics underlying phenology are still poorly described. In a rhythmic analysis of C. finmarchicus annual gene expression, results reveal that more than 90% of the transcriptome shows significant annual rhythms, with abrupt and dramatic upheaval between the active and diapause life cycle states. This work explores the implication of the circadian clock in the annual timing, which may control epigenetic mechanisms to profoundly modulate gene expression in response to calendar time. Results also suggest an increased light sensitivity during diapause that would ensure the photoperiodic entrainment of the endogenous annual clock.
Asunto(s)
Relojes Circadianos , Copépodos , Diapausa , Transcriptoma , Animales , Copépodos/genética , Copépodos/fisiología , Diapausa/genética , Relojes Circadianos/genética , Fotoperiodo , Estaciones del Año , Cambio Climático , Zooplancton/genética , Ritmo Circadiano/genéticaRESUMEN
Diapause represents a crucial adaptive strategy used by insects to cope with changing environmental conditions. In North China, the Asian corn borer (Ostrinia furnacalis) enters a winter larval diapause stage. Although there is growing evidence implicating epigenetic mechanisms in diapause regulation, it remains unclear whether dynamic genome-wide profiles of epigenetic modifications exist during this process. By investigating multiple histone modifications, we have discovered the essential roles of H3K9me3 and H3K27me3 during diapause of the Asian corn borer. Building upon previous findings in vertebrates highlighting the connection between DNA methylation and repressive histone methylations, we have examined changes in the genome-wide profile of H3K9me3, H3K27me3, and DNA methylation at the nondiapause, prediapause, and diapause stages. Data analysis reveals significant alterations in these three modifications during diapause. Moreover, we observe a correlation between the H3K9me3 and H3K27me3 modification sites during diapause, whereas DNA modifications show little association with either H3K9me3 or H3K27me3. Integrative analysis of epigenome and expression data unveils the relationship between these epigenetic modifications and gene expression levels at corresponding diapause stages. Furthermore, by studying the function of histone modifications on genes known to be important in diapause, especially those involved in the juvenile pathway, we discover that the juvenile hormone pathway lies downstream from H3K9me3 and H3K27me3 histone modifications. Finally, the analysis of gene loci with modified modifications unreported in diapause uncovers novel pathways potentially crucial in diapause regulation. This study provides a valuable resource for future investigations aiming to elucidate the underlying mechanisms of diapause.
Asunto(s)
Metilación de ADN , Epigénesis Genética , Histonas , Mariposas Nocturnas , Animales , Histonas/metabolismo , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Larva/genética , Larva/metabolismo , Diapausa de Insecto/genética , Genoma de los Insectos , Diapausa/genética , Código de Histonas , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismoRESUMEN
Suspended animation states allow organisms to survive extreme environments. The African turquoise killifish has evolved diapause as a form of suspended development to survive a complete drought. However, the mechanisms underlying the evolution of extreme survival states are unknown. To understand diapause evolution, we performed integrative multi-omics (gene expression, chromatin accessibility, and lipidomics) in the embryos of multiple killifish species. We find that diapause evolved by a recent remodeling of regulatory elements at very ancient gene duplicates (paralogs) present in all vertebrates. CRISPR-Cas9-based perturbations identify the transcription factors REST/NRSF and FOXOs as critical for the diapause gene expression program, including genes involved in lipid metabolism. Indeed, diapause shows a distinct lipid profile, with an increase in triglycerides with very-long-chain fatty acids. Our work suggests a mechanism for the evolution of complex adaptations and offers strategies to promote long-term survival by activating suspended animation programs in other species.
Asunto(s)
Diapausa , Animales , Evolución Biológica , Diapausa/genética , Embrión no Mamífero/metabolismo , Fundulidae/genética , Fundulidae/metabolismo , Regulación del Desarrollo de la Expresión Génica , Peces Killi/genética , Peces Killi/metabolismo , Metabolismo de los Lípidos/genética , Proteínas de Peces/genética , Masculino , FemeninoRESUMEN
Winter diapause consists of cessation of development that allows individuals to survive unfavourable conditions. Winter diapause may bear various costs and questions have been raised about the evolutionary mechanisms maintaining facultative diapause. Here, we explored to what extent a facultative winter diapause affects life-history traits and the transcriptome in the damselfly Ischnura elegans, and whether these effects were latitude-specific. We collected adult females at central and high latitudes and raised their larvae in growth chambers. Larvae were split into a non-diapausing and post-winter (diapausing) cohort, were phenotyped and collected for a gene expression analysis. At the phenotypic level, we found no difference in survival between the two cohorts, and the post-winter cohort was larger and heavier than the non-winter cohort. These effects were mostly independent of the latitude of origin. At the transcriptomic level, wintering affected gene expression with a small fraction of genes significantly overlapping across latitudes, especially those related to morphogenesis. In conclusion, we found clear effects of diapause on the phenotype but little evidence for latitudinal-specific effects of diapause. Our results showed a shared transcriptomic basis underpinning diapause demonstrated, here, at the intraspecific level and supported the idea of evolutionary convergence of the response to diapause across organisms.
Asunto(s)
Odonata , Estaciones del Año , Transcriptoma , Animales , Odonata/genética , Femenino , Larva/genética , Fenotipo , Diapausa de Insecto/genética , Diapausa/genética , Aptitud GenéticaRESUMEN
The mechanisms that underlie senescence are not well understood in insects. Telomeres are conserved repetitive sequences at chromosome ends that protect DNA during replication. In many vertebrates, telomeres shorten during cell division and in response to stress and are often used as a cellular marker of senescence. However, little is known about telomere dynamics across the lifespan in invertebrates. We measured telomere length in larvae, prepupae, pupae, and adults of two species of solitary bees, Osmia lignaria and Megachile rotundata. Contrary to our predictions, telomere length was longer in later developmental stages in both O. lignaria and M. rotundata. Longer telomeres occurred after emergence from diapause, which is a physiological state with increased tolerance to stress. In O. lignaria, telomeres were longer in adults when they emerged following diapause. In M. rotundata, telomeres were longer in the pupal stage and subsequent adult stage, which occurs after prepupal diapause. In both species, telomere length did not change during the 8 months of diapause. Telomere length did not differ by mass similarly across species or sex. We also did not see a difference in telomere length after adult O. lignaria were exposed to a nutritional stress, nor did length change during their adult lifespan. Taken together, these results suggest that telomere dynamics in solitary bees differ from what is commonly reported in vertebrates and suggest that insect diapause may influence telomere dynamics.
Asunto(s)
Telómero , Animales , Abejas/genética , Abejas/fisiología , Telómero/genética , Telómero/metabolismo , Pupa/crecimiento & desarrollo , Pupa/genética , Femenino , Masculino , Homeostasis del Telómero , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología , Diapausa/genéticaRESUMEN
Embryonic diapause in mammals is a period of developmental pause of the embryo at the blastocyst stage. During diapause, the blastocyst has minimal cell proliferation, metabolic activity and gene expression. At reactivation, blastocyst development resumes, characterised by increases in cell number, biosynthesis and metabolism. Until recently, it has been unknown how diapause is maintained without any loss of blastocyst viability. This review focuses on recent progress in the identification of molecular pathways occurring in the blastocyst that can both cause and maintain the diapause state. A switch to lipid metabolism now appears essential to maintaining the diapause state and is induced by forkhead box protein O1. The forkhead box protein O transcription family is important for diapause in insects, nematodes and fish, but this is the first time a conclusive role has been established in mammals. Multiple epigenetic modifications are also essential to inducing and maintaining the diapause state, including both DNA and RNA methylation mechanisms. Finally, it now appears that diapause embryos, dormant stem cells and chemotherapeutic-resistant cancer cells may all share a universal system of quiescence.
Asunto(s)
Blastocisto , Diapausa , Desarrollo Embrionario , Animales , Blastocisto/metabolismo , Blastocisto/citología , Diapausa/genética , Desarrollo Embrionario/genética , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Metabolismo de los Lípidos/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismoRESUMEN
During diapause, a state of temporarily arrested development, insects require low winter temperatures to suppress their metabolism, conserve energy stores and acquire cold hardiness. A warmer winter could, thus, reduce diapause incidence and duration in many species, prematurely deplete their energy reserves and compromise post-diapause fitness. In this study, we investigated the combined effects of thermal stress and the diapause program on the expression of selected genes involved in antioxidant defense and heat shock response in the European corn borer Ostrinia nubilalis. By using qRT-PCR, it has been shown that response to chronic heat stress is characterized by raised mRNA levels of grx and trx, two important genes of the antioxidant defense system, as well as of hsp70 and, somewhat, of hsp90, two major heat shock response proteins. On the other hand, the expression of hsc70, hsp20.4 and hsp20.1 was discontinuous in the latter part of diapause, or was strongly controlled by the diapause program and refractory to heat stress, as was the case for mtn and fer, genes encoding two metal storage proteins crucial for metal ion homeostasis. This is the first time that the effects of high winter temperatures have been assessed on cold-hardy diapausing larvae and pupae of this important corn pest.
Asunto(s)
Diapausa , Mariposas Nocturnas , Animales , Antioxidantes/metabolismo , Mariposas Nocturnas/metabolismo , Larva/metabolismo , Diapausa/genética , Respuesta al Choque Térmico/genéticaRESUMEN
Embryonic diapause in mammals is a temporary developmental delay occurring at the blastocyst stage. In contrast to other diapausing species displaying a full arrest, the blastocyst of the European roe deer (Capreolus capreolus) proliferates continuously and displays considerable morphological changes in the inner cell mass. We hypothesised that developmental progression also continues during this period. Here we evaluate the mRNA abundance of developmental marker genes in embryos during diapause and elongation. Our results show that morphological rearrangements of the epiblast during diapause correlate with gene expression patterns and changes in cell polarity. Immunohistochemical staining further supports these findings. Primitive endoderm formation occurs during diapause in embryos composed of around 3,000 cells. Gastrulation coincides with elongation and thus takes place after embryo reactivation. The slow developmental progression makes the roe deer an interesting model for unravelling the link between proliferation and differentiation and requirements for embryo survival.
Asunto(s)
Ciervos , Diapausa , Animales , Blastocisto , Diferenciación Celular , Polaridad Celular , Diapausa/genéticaRESUMEN
Many insects living in seasonal environments sense seasonal changes from photoperiod and appropriately regulate their development and physiological activities. Genetic researches have indicated the importance of a circadian clock system in photoperiodic time-measurement for photoperiodic regulations. However, most previous studies have focused on the effects on a single photoperiodic phenotype, without elucidating whether the circadian clock is involved in the core photoperiodic mechanism or only in the production of one target phenotype, such as diapause. Here, we focused on two different phenotypes in a bivoltine Kosetsu strain of the silkworm Bombyx mori, namely, embryonic diapause and larval development, and examined their photoperiodic responses and relationship to the circadian clock gene period. Photoperiod during the larval stage clearly influenced the induction of embryonic diapause and duration of larval development in the Kosetsu strain; short-day exposure leaded to the production of diapause eggs and shortened the larval duration. Genetic knockout of period inhibited the short-day-induced embryonic diapause. Conversely, in the period-knockout silkworms, the larval duration was shortened, but the photoperiodic difference was maintained. In conclusion, our results indicate that the period gene is not causally involved in the photoperiodic response of larval development, while that is essential for the short-day-induced embryonic diapause.
Asunto(s)
Bombyx , Diapausa de Insecto , Diapausa , Animales , Bombyx/genética , Diapausa de Insecto/fisiología , Óvulo , Ritmo Circadiano/fisiología , Fotoperiodo , Diapausa/genética , Larva/genéticaRESUMEN
Understanding the mechanisms underlying diapause formation is crucial for gaining insight into adaptive survival strategies across various species. In this study, we aimed to uncover the pivotal role of temperature and food availability in regulating diapausing podocyst formation in the jellyfish Aurelia coerulea. Furthermore, we explored the cellular and molecular basis of diapause formation using single-cell RNA sequencing. Our results showed cell-type-specific transcriptional landscapes during podocyst formation, which were underscored by the activation of specific transcription factors and signalling pathways. In addition, we found that the heat shock protein-coding genes HSC70 and HSP90a potentially act as hub genes that regulate podocyst formation. Finally, we mapped the single-cell atlas of diapausing podocysts and identified cell types involved in metabolism, environmental sensing, defence and development that may collectively contribute to the long-term survival and regulated excystment of diapausing podocysts. Taken together, the findings of this study provide novel insights into the molecular mechanisms that regulate diapause formation and contributes to a better understanding of adaptive survival strategies in a variety of ecological contexts.
Asunto(s)
Diapausa , Escifozoos , Animales , Escifozoos/genética , Temperatura , Diapausa/genéticaRESUMEN
To survive under harsh environments, embryonic development of Artemia was arrested at the gastrula stage and released as the diapause embryo. Cell cycle and metabolism were highly suppressed in this state of quiescence. However, cellular mechanisms underlying diapause remain largely unclear. In this study, we found that the expression level of a CT10 regulator of kinase-encoding gene (Ar-Crk) in diapause embryos was significantly lower than non-diapause embryos at the early embryogenetic stage of Artemia. Knockdown of Ar-Crk by RNA interference induced formation of diapause embryos, while the control group produced nauplii. Western blot analysis and metabolic assays revealed that the diapause embryos produced by Ar-Crk-knocked-down Artemia had similar characteristics of diapause markers, arrested cell cycle, and suppressed metabolism with those diapause embryos produced by natural oviparous Artemia. Transcriptomic analysis of Artemia embryos revealed knockdown of Ar-Crk induced downregulation of the aurora kinase A (AURKA) signaling pathway, as well as energetic and biomolecular metabolisms. Taken together, we proposed that Ar-Crk is a crucial factor in determining the process of diapause in Artemia. Our results provide insight into the functions of Crk in fundamental regulations such as cellular quiescence.
Asunto(s)
Artemia , Diapausa , Animales , Artemia/genética , Regulación hacia Abajo , Diapausa/genética , División Celular , Ciclo Celular , Embrión no Mamífero/metabolismoRESUMEN
Reproductive diapause serves as biological mechanism for many insects, including the mosquito Culex pipiens, to overwinter in temperate climates. While Cx. pipiens diapause has been well-studied in the laboratory, the timing and environmental signals that promote diapause under natural conditions are less understood. In this study, we examine laboratory, semi-field, and mosquito surveillance data to define the approximate timeline and seasonal conditions that contribute to Cx. pipiens diapause across the United States. While confirming integral roles of temperature and photoperiod in diapause induction, we also demonstrate the influence of latitude, elevation, and mosquito population genetics in shaping Cx. pipiens diapause incidence across the country. Coinciding with the cessation of WNV activity, these data can have important implications for mosquito control, where targeted efforts prior to diapause induction can decrease mosquito populations and WNV overwintering to reduce mosquito-borne disease incidence the following season.
Asunto(s)
Culex , Diapausa , Animales , Estados Unidos/epidemiología , Culex/genética , Diapausa/genética , Estaciones del Año , Reproducción , TemperaturaRESUMEN
Survival and adaptation to seasonal changes are challenging for insects. Many temperate insects such as the rice stem borer (Chilo suppressalis) overcome the adverse situation by entering diapause, wherein development changes dynamically occur and metabolic activity is suppressed. The photoperiod and temperature act as major environmental stimuli of diapause. However, the physiological and molecular mechanisms that interpret the ecologically relevant environmental cues in ontogenetic development during diapause termination are poorly understood. Here, we used genome-wide high-throughput RNA-sequencing to examine the patterns of gene expression during diapause termination in C. suppressalis. Major shifts in biological processes and pathways including metabolism, environmental information transmission, and endocrine signalling were observed across diapause termination based on over-representation analysis, short time-series expression miner, and gene set enrichment analysis. Many new pathways were identified in diapause termination including circadian rhythm, MAPK signalling, Wnt signalling, and Ras signalling, together with previously reported pathways including ecdysteroid, juvenile hormone, and insulin/insulin-like signalling. Our results show that convergent biological processes and molecular pathways of diapause termination were shared across different insect species and provided a comprehensive roadmap to better understand diapause termination in C. suppressalis.
Asunto(s)
Diapausa , Insulinas , Mariposas Nocturnas , Animales , Fotoperiodo , Transcriptoma , Ecdisteroides , Temperatura , Mariposas Nocturnas/genética , Diapausa/genética , Insectos/genética , Hormonas Juveniles , ARN , Insulinas/genéticaRESUMEN
Genetic and environmental manipulations, such as dietary restriction, can improve both health span and lifespan in a wide range of organisms, including humans. Changes in nutrient intake trigger often overlapping metabolic pathways that can generate distinct or even opposite outputs depending on several factors, such as when dietary restriction occurs in the lifecycle of the organism or the nature of the changes in nutrients. Due to the complexity of metabolic pathways and the diversity in outputs, the underlying mechanisms regulating diet-associated pro-longevity are not yet well understood. Adult reproductive diapause (ARD) in the model organism Caenorhabditis elegans is a dietary restriction model that is associated with lengthened lifespan and reproductive potential. To explore the metabolic pathways regulating ARD in greater depth, we performed a candidate-based genetic screen analyzing select nutrient-sensing pathways to determine their contribution to the regulation of ARD. Focusing on the three phases of ARD (initiation, maintenance, and recovery), we found that ARD initiation is regulated by fatty acid metabolism, sirtuins, AMPK, and the O-linked N-acetyl glucosamine (O-GlcNAc) pathway. Although ARD maintenance was not significantly influenced by the nutrient sensors in our screen, we found that ARD recovery was modulated by energy sensing, stress response, insulin-like signaling, and the TOR pathway. Further investigation of downstream targets of NHR-49 suggest the transcription factor influences ARD initiation through the fatty acid ß-oxidation pathway. Consistent with these findings, our analysis revealed a change in levels of neutral lipids associated with ARD entry defects. Our findings identify conserved genetic pathways required for ARD entry and recovery and uncover genetic interactions that provide insight into the role of OGT and OGA.