Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Phytochemistry ; 223: 114119, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705266

RESUMEN

Six previously undescribed prenylated indole diketopiperazine alkaloids, talaromyines A-F (1-6), were isolated from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517. Their structures including absolute configurations were elucidated on the basis of comprehensive spectroscopic data including NMR, HR-ESI-MS, and electronic circular dichroism calculations, together with chemical analysis of hydrolysates. Compounds 1-5 represent the first example of spirocyclic indole diketopiperazines biosynthesized from the condensation of L-tryptophan and L-alanine. Compounds 2 and 4-5 showed selective inhibitory activities against phosphatases TCPTP and MEG2 with IC50 value of 17.9-29.7 µM, respectively. Compounds 4-5 exhibited mild cytotoxic activities against two human cancer cell lines H1975 and HepG-2.


Asunto(s)
Dicetopiperazinas , Talaromyces , Talaromyces/química , Dicetopiperazinas/química , Dicetopiperazinas/farmacología , Dicetopiperazinas/aislamiento & purificación , Humanos , Estructura Molecular , Prenilación , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Alcaloides Indólicos/aislamiento & purificación , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacología , Alcaloides/química , Alcaloides/farmacología , Alcaloides/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Células Hep G2 , Proliferación Celular/efectos de los fármacos , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/metabolismo , Línea Celular Tumoral
2.
Fitoterapia ; 175: 105946, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38575087

RESUMEN

Four compounds (1-4) featuring with an L-rhodinose and spiroketal, possess uncommon continuous hydroxy groups in the macrolide skeleton, and a dichloro-diketopiperazine (5) were isolated from a marine derived Micromonospora sp. FIMYZ51. The determination of the relative and absolute configurations of all isolates was achieved by extensive spectroscopic analyses, single-crystal X-ray diffraction analysis, and ECD calculations. According to structural characteristic and genomic sequences, a plausible biosynthetic pathway for compound 1-4 was proposed and a spirocyclase was inferred to be responsible for the formation of the rare spirocyclic moiety. Compounds 1-4 exhibited potent antifungal activities which is equal to itraconazole against Aspergillus niger. Compounds 1-5 exhibited different degree of inhibitory activities against opportunistic pathogenic bacteria of endocarditis (Micrococcus luteus) with MIC values ranging from 0.0625 µg/mL to 32 µg/mL. Compounds 2 and 3 showed moderate cytotoxicity against drug-resistant tumor cell lines (Namalwa and U266). The result not only provides active lead-compounds, but also reveal the potential of the spirocyclase gene resources from Micromonospora sp., which highlights the promising potential of the strain for biomedical applications.


Asunto(s)
Dicetopiperazinas , Macrólidos , Micromonospora , Compuestos de Espiro , Estructura Molecular , Dicetopiperazinas/farmacología , Dicetopiperazinas/aislamiento & purificación , Dicetopiperazinas/química , Compuestos de Espiro/farmacología , Compuestos de Espiro/aislamiento & purificación , Compuestos de Espiro/química , Línea Celular Tumoral , Humanos , Macrólidos/farmacología , Macrólidos/aislamiento & purificación , Macrólidos/química , Antibacterianos/farmacología , Antibacterianos/aislamiento & purificación , Antibacterianos/química , Antifúngicos/farmacología , Antifúngicos/aislamiento & purificación , Antifúngicos/química , Pruebas de Sensibilidad Microbiana , China , Antineoplásicos/farmacología , Antineoplásicos/aislamiento & purificación , Antineoplásicos/química , Furanos
3.
J Biochem Mol Toxicol ; 38(4): e23708, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38597299

RESUMEN

Halomonas pacifica CARE-V15 was isolated from the southeastern coast of India to determine its genome sequence. Secondary metabolite gene clusters were identified using an anti-SMASH server. The concentrated crude ethyl acetate extract was evaluated by GC-MS. The bioactive compound from the crude ethyl acetate extract was fractionated by gel column chromatography. HPLC was used to purify the 3,6-diisobutyl-2,5-piperazinedione (DIP), and the structure was determined using FTIR and NMR spectroscopy. Purified DIP was used in an in silico molecular docking analysis. Purified DIP exhibits a stronger affinity for antioxidant genes like glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GSR). Using in silco molecular docking analysis, the protein-ligand binding affinities of GSR (-4.70 kcal/mol), GST (-5.27 kcal/mol), and GPx (-5.37 kcal/mol) were measured. The expression of antioxidant genes were investigated by qRT-PCR. The in vivo reactive oxygen species production, lipid peroxidation, and cell death levels were significantly (p ≤ 0.05) increased in OA-induced group, but all these levels were significantly (p ≤ 0.05) decreased in the purified DIP pretreated group. Purified DIP from halophilic bacteria could thus be a useful treatment for neurological disorders associated with oxidative stress.


Asunto(s)
Acetatos , Antioxidantes , Halomonas , Fármacos Neuroprotectores , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Pez Cebra/metabolismo , Fármacos Neuroprotectores/farmacología , Ácido Ocadaico/metabolismo , Ácido Ocadaico/farmacología , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Dicetopiperazinas/metabolismo , Dicetopiperazinas/farmacología , Glutatión Transferasa/metabolismo
4.
Curr Pharm Des ; 30(8): 597-623, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343054

RESUMEN

2,5-Diketopiperazine (2,5-DKP) derivatives represent a family of secondary metabolites widely produced by bacteria, fungi, plants, animals, and marine organisms. Many natural products with DKP scaffolds exhibited various pharmacological activities such as antiviral, antifungal, antibacterial, and antitumor. 2,5-DKPs are recognized as privileged structures in medicinal chemistry, and compounds that incorporate the 2,5-DKP scaffold have been extensively investigated for their anticancer properties. This review is a thorough update on the anti-cancer activity of natural and synthesized 2,5-DKPs from 1997 to 2022. We have explored various aspects of 2,5-DKPs modifications and summarized their structure-activity relationships (SARs) to gain insight into their anticancer activities. We have also highlighted the novel approaches to enhance the specificity and pharmacokinetics of 2,5-DKP-based anticancer agents.


Asunto(s)
Antineoplásicos , Dicetopiperazinas , Antineoplásicos/farmacología , Antineoplásicos/química , Dicetopiperazinas/química , Dicetopiperazinas/farmacología , Humanos , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Relación Estructura-Actividad , Estructura Molecular , Productos Biológicos/química , Productos Biológicos/farmacología , Proliferación Celular/efectos de los fármacos
5.
Appl Microbiol Biotechnol ; 108(1): 194, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315417

RESUMEN

Diketopiperazine alkaloids have proven the most abundant heterocyclic alkaloids up to now, which usually process diverse scaffolds and rich biological activities. In our search for bioactive diketopiperazine alkaloids from marine-derived fungi, two novel diketopiperazine alkaloids, penipiperazine A (1) and its biogenetically related new metabolite (2), together with a known analogue neofipiperzine C (3), were obtained from the strain Penicillium brasilianum. Their planar structures and absolute configurations were elucidated by extensive spectroscopic analyses, 13C NMR calculation, Marfey's, ECD, and ORD methods. Compound 1 featured a unique 6/5/6/6/5 indole-pyrazino-pyrazino-pyrrolo system, and its plausible biogenetic pathway was also proposed. Additionally, compounds 1-3 have been tested for their inflammatory activities. 1 and 2 significantly inhibited the release of NO and the expression of related pro-inflammatory cytokines on LPS-stimulated RAW264.7 cells, suggesting they could be attracting candidate for further development as anti-inflammatory agent. KEY POINTS: • A novel diketopiperazine alkaloid featuring a unique 6/5/6/6/5 indole-pyrazino-pyrazino-pyrrolo system was isolated from the marine fungus Penicillium brasilianum. • The structure of 1 was elucidated by detailed analysis of 2D NMR data, 13C NMR calculation, Marfey's, ECD, and ORD methods. • Compounds 1 and 2 significantly inhibited the release of NO and the expression of related pro-inflammatory cytokines on LPS-stimulated RAW264.7 cells.


Asunto(s)
Alcaloides , Penicillium , Dicetopiperazinas/farmacología , Lipopolisacáridos , Hongos , Alcaloides/química , Indoles , Antiinflamatorios/farmacología , Citocinas , Estructura Molecular , Alcaloides Indólicos/farmacología , Alcaloides Indólicos/química
6.
Appl Microbiol Biotechnol ; 107(21): 6459-6467, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37658880

RESUMEN

Two pairs of new dimeric diketopiperazine alkaloids, ( ±)-dibrevianamides Q1 and Q2 (( ±)-1 and ( ±)-2), together with seven previously reported analogues (( ±)-3, 4-6, and ( ±)-7) were obtained from a marine-derived fungus Aspergillus sp. The structures of ( ±)-1 and ( ±)-2 were clarified using comprehensive spectroscopic analyses, the calculated ECD, and DP4 + probability methods. Speculated from the biogenesis, ( ±)-dibrevianamides Q1 and Q2 (( ±)-1 and ( ±)-2) might be the key precursor of [2 + 2] diketopiperazine dimers (( ±)-3). Compounds ( +)-1 and ( -)-2 displayed anti-H1N1 virus activity with IC50 values of 12.6 and 19.5 µM. Compound ( +)-1 showed significant activity against Mycobacterium tuberculosis (MIC, 10.2 µg/mL). KEY POINTS: • Two pairs of new dimeric diketopiperazine alkaloids were obtained from the marine-derived fungus Aspergillus sp. • The structures of the new compounds were clarified using comprehensive spectroscopic analyses, the calculated ECD, and DP4 + probability methods. • ( ±)-Dibrevianamides Q1 and Q2 were speculated to be the key precursor of [2 + 2] diketopiperazine dimers ( ±)-asperginulin A.


Asunto(s)
Alcaloides , Hongos , Estructura Molecular , Hongos/química , Aspergillus/química , Dicetopiperazinas/farmacología , Alcaloides/farmacología , Alcaloides/química
7.
Alkaloids Chem Biol ; 90: 159-206, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37716796

RESUMEN

The 2,5-diketopiperazine (DKP) motif is present in many biologically relevant, complex natural products. The cyclodipeptide substructure offers structural rigidity and stability to proteolysis that makes these compounds promising candidates for medical applications. Due to their fascinating molecular architecture, synthetic organic chemists have focused significant effort on the total synthesis of these compounds. This review covers many such efforts on the total synthesis of DKP containing complex alkaloid natural products.


Asunto(s)
Alcaloides , Productos Biológicos , Proteolisis , Dicetopiperazinas/farmacología
8.
Chem Biodivers ; 20(6): e202300301, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37097072

RESUMEN

Two new indole diketopiperazine alkaloids (IDAs), (+)19-epi-sclerotiamide (1) and (-)19-epi-sclerotiamide (2), along with 13 known analogs (3-15), were isolated from a soft coral-associated epiphytic fungus Aspergillus versicolor CGF 9-1-2. The structures of two new compounds were established based on the combination of HR-ESI-MS, 1D and 2D NMR spectroscopy, optical rotation measurements and quantum chemical 13 C-NMR, the absolute configurations were determined by experimental and electronic circular dichroism (ECD) calculations. The results of molecular docking showed that all the compounds had a good binding with TDP1, TDP2, TOP1, TOP2, Ache, NLRP3, EGFR, EGFR L858R, EGFR T790M and EGFR T790/L858. Biological evaluation of compounds 3, 6, 8, 11 showed that 3 exerted a strong inhibitory effect on TDP2 with a rate of 81.72 %.


Asunto(s)
Agaricales , Antozoos , Neoplasias Pulmonares , Animales , Dicetopiperazinas/farmacología , Dicetopiperazinas/química , Simulación del Acoplamiento Molecular , Receptores ErbB/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/metabolismo , Aspergillus/química , Alcaloides Indólicos/química , Antozoos/metabolismo , Estructura Molecular
9.
Org Biomol Chem ; 21(10): 2236-2242, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36815264

RESUMEN

Fumitryprostatin A (1), the first example of an indole diketopiperazine alkaloid with a tricyclic 5/6/5 skeleton characterized by a dipyrrolo[1,2-a:1',2'-d]pyrazine-5,10-dione ring system decorated with a prenylated indole moiety, and fuminoid A (2), a sesquiterpenoid with a bicyclo[3.2.1]octane ring featuring a novel carbon skeleton via the transformation of the methyl, were isolated from the fungus Aspergillus fumigatus along with six known diketopiperazine alkaloids. The structure with the absolute configuration of 1 was determined based on spectroscopic analyses and X-ray crystallographic analysis, while the configuration of 2 was assigned tentatively by 13C NMR data with DP4+ probability analyses and ECD calculations. A plausible biosynthetic pathway for 1 was proposed starting from L-Trp and L-Pro via normal indole diketopiperazine. Compound 1 exhibited moderate cytotoxic activity with an IC50 value of 14.6 µM, while compound 8 exhibited moderate immunosuppressive activity in vitro.


Asunto(s)
Alcaloides , Sesquiterpenos , Aspergillus fumigatus , Sesquiterpenos Monocíclicos , Dicetopiperazinas/farmacología , Dicetopiperazinas/química , Alcaloides Indólicos/farmacología , Alcaloides Indólicos/química , Alcaloides/farmacología , Alcaloides/química , Espectroscopía de Resonancia Magnética , Sesquiterpenos/farmacología
10.
Curr Med Chem ; 30(9): 1060-1085, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35927899

RESUMEN

BACKGROUND: 2,5-Diketopiperazines (DKPs), also called cyclic dipeptides, are the simplest peptide derivatives in nature that are formed by the condensation of two amino acids. They are an important category of bioactive substances with various structures. OBJECTIVE: This review focuses on the natural sources, synthetic processes, biological properties and MS fragmentation regularity of simple DKPs, in order to provide a reference for exploring future scientific and therapeutic potentials of these compounds. METHODS: Pertinent information was collected and organized from several electronic scientific databases (e.g., Web of Science, China Knowledge Resource Integrated, ScienceDirect, PubMed, Wanfang Data and Google Scholar), PhD and MS dissertations. There are 107 articles published from the early 20th century to 2021 that were reviewed in this work. RESULTS: DKPs have been obtained from a broad range of natural resources, including fungi, bacteria, plants, and animals, and have been synthesized by chemical and biological methods. DKPs have various pharmacological activities, including anticancer, antibacterial, antithrombotic, neuron protective, analgesic, and other activities. Mass spectrometry is the most common method for the structural analysis of DKPs. DKPs can be quickly screened and identified by MS according to the mass spectrum fragmentation pattern. CONCLUSION: As a category of relatively unexplored compounds, DKPs have been demonstrated to have various bioactivities, especially with antitumor and antibacterial activities. However, the existing research on DKPs is still in the early stage, and their application in drug development needs to be further studied.


Asunto(s)
Antibacterianos , Dicetopiperazinas , Animales , Dicetopiperazinas/química , Dicetopiperazinas/metabolismo , Dicetopiperazinas/farmacología , Antibacterianos/farmacología , Hongos/metabolismo , Bacterias/metabolismo
11.
Org Biomol Chem ; 20(47): 9431-9446, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36408605

RESUMEN

Marine biofouling is a problem that plagues all maritime industries at vast economic and environmental cost. Previous and current methods to prevent biofouling have employed the use of heavy metals and other toxic or highly persistent chemicals, and these methods are now coming under immense regulatory pressure. Recent studies have illustrated the potential of nature-inspired tetrasubstituted 2,5-diketopiperazines (2,5-DKPs) as eco-friendly marine biocides for biofouling control. These highly active symmetrically substituted 2,5-DKPs can be generated by combining structural motifs from cationic innate defence peptides and natural marine antifoulants. A balance between a threshold hydrophobic contribution and sufficient cationic charge has been established as key for bioactivity, and our current study further increases understanding of the antifouling mechanism by investigating the effect of both regio- and stereochemistry. Novel synthetic routes for the generation of unsymmetrical 2,5-DKPs were developed and a library of nine compounds was prepared. The compounds were screened against a series of four model macrofouling organisms (Ciona savignyi, Mytilus galloprovincialis, Spirobranchus cariniferus, and Undaria pinnatifida). Several of the evaluated compounds displayed inhibitory activity at sub-micromolar concentrations. The structural contributions to antifouling bioactivity were studied using NMR spectroscopy and molecular modelling, revealing a strong dependence on a stable amphiphilic solution structure regardless of substitution pattern.


Asunto(s)
Dicetopiperazinas , Dicetopiperazinas/farmacología
12.
Eur J Med Chem ; 243: 114746, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36099749

RESUMEN

In our overall goal to develop anti-Parkinson drugs, we designed novel diketopiperazines (DKP1-6) aiming to both reach the blood-brain barrier and counteract the oxidative stress related to Parkinson's Disease (PD). The anti-Parkinson properties of DKP 1-6 were evaluated using neurotoxin-treated PC12 cells, as in vitro model of PD, while their cytotoxicity and genotoxicity potentials were investigated in newborn rat cerebral cortex (RCC) and primary human whole blood (PHWB) cell cultures. The response against free radicals was evaluated by the total antioxidant capacity (TAC) assay. Comet assay was used to detect DNA damage while the content of 8-hydroxyl-2'-deoxyguanosine (8-OH-dG) was determined as a marker of oxidative DNA damage. PAMPA-BBB and Caco-2 assays were employed to evaluate the capability of DKP1-6 to cross the membranes. Stability studies were conducted in simulated gastric and intestinal fluids and human plasma. Results showed that DKP5-6 attenuate the MPP + -induced cell death on a nanomolar scale, but a remarkable effect was observed for DKP6 on Nrf2 activation that leads to the expression of genes involved in oxidative stress response thus increasing glutathione biosynthesis and ROS buffering. DKP5-6 resulted in no toxicity for RCC neurons and PHWB cells exposed to 10-500 nM concentrations during 24 h as determined by MTT and LDH assays and TAC levels were not altered in both cultured cell types. No significant difference in the induction of DNA damage was observed for DKP5-6. Both DKPs resulted stable in simulated gastric fluids (t1/2 > 22h). In simulated intestinal fluids, DKP5 underwent immediate hydrolysis while DKP6 showed a half-life higher than 3 h. In human plasma, DKP6 resulted quite stable. DKP6 displayed both high BBB and Caco-2 permeability confirming that the DKP scaffold represents a useful tool to improve the crossing of drugs through the biological membranes.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Enfermedad de Parkinson , Animales , Ratas , Humanos , Levodopa/farmacología , Levodopa/metabolismo , Levodopa/uso terapéutico , Barrera Hematoencefálica/metabolismo , Dicetopiperazinas/farmacología , Dicetopiperazinas/metabolismo , Células CACO-2 , Carcinoma de Células Renales/tratamiento farmacológico , Estrés Oxidativo , Antioxidantes/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico
13.
Molecules ; 27(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35807445

RESUMEN

2,5-Diketopiperazine derivatives, consisting of benzylidene and alkylidene substituents at 3 and 6 positions, have been considered as a core structure for their antiviral activities. Herein, the novel N-substituted 2,5-Diketopiperazine derivatives were successfully prepared and their antiviral activities against influenza virus were evaluated by monitoring viral propagation in embryonated chicken eggs. It was found that (3Z,6Z)-3-benzylidene-6-(2-methyl propylidene)-4-substituted-2,5-Diketopiperazines (13b-d), (3Z,6E)-3-benzylidene-6-(2-methylpropyli dene)-1-(1-ethyl pyrrolidine)-2,5-Diketopiperazine (14c), and Lansai-C exhibited negative results in influenza virus propagation at a concentration of 25 µg/mL. Additionally, molecular docking study revealed that 13b-d and 14c bound in 430-cavity of neuraminidase from H5N2 avian influenza virus and the synthesized derivatives also strongly interacted with the key amino acid residues, including Arg371, Pro326, Ile427, and Thr439.


Asunto(s)
Subtipo H5N2 del Virus de la Influenza A , Gripe Humana , Animales , Antivirales/química , Dicetopiperazinas/farmacología , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Neuraminidasa/química
15.
Mar Drugs ; 20(1)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35049922

RESUMEN

Colorectal cancer is one of the most common cancers diagnosed in the world. Chemotheraphy is one of the most common methods used for the pharmacological treatment of this cancer patients. Nevertheless, the adverse effect of chemotherapy is not optimized for improving the quality of life of people who are older, who are the most vulnerable subpopulation. This review presents recent updates regarding secondary metabolites derived from marine fungi and actinobacteria as novel alternatives for cytotoxic agents against colorectal cancer cell lines HCT116, HT29, HCT15, RKO, Caco-2, and SW480. The observed marine-derived fungi were from the species Aspergillus sp., Penicillium sp., Neosartorya sp., Dichotomomyces sp., Paradendryphiella sp., and Westerdykella sp. Additionally, Streptomyces sp. and Nocardiopsis sp. are actinobacteria discussed in this study. Seventy one compounds reviewed in this study were grouped on the basis of their chemical structures. Indole alkaloids and diketopiperazines made up most compounds with higher potencies when compared with other groups. The potency of indole alkaloids and diketopiperazines was most probably due to halogen-based functional groups and sulfide groups, respectively.


Asunto(s)
Actinobacteria , Antineoplásicos/farmacología , Dicetopiperazinas/farmacología , Hongos , Alcaloides Indólicos/farmacología , Animales , Antineoplásicos/química , Organismos Acuáticos , Células CACO-2/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Dicetopiperazinas/química , Células HCT116/efectos de los fármacos , Humanos , Alcaloides Indólicos/química
16.
Anticancer Res ; 42(2): 723-730, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35093870

RESUMEN

BACKGROUND/AIM: Over-expression of both P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) has been associated with multidrug-resistance in glioblastoma (GBM). Though previously studied broad-spectrum inhibitors of drug efflux pumps have failed to progress in clinical studies due to in vivo toxicity, research into clinically viable targeted inhibitors is needed. This study evaluated the effects of Ko143, a non-toxic analog of fumitremorgin C, on temozolomide (TMZ) efficacy in resistant glioblastoma stem cells. MATERIALS AND METHODS: We used ATP-Glo assay to determine cell viabilities and flow cytometry to perform cell cycle analysis. Comparative gene expression was analysed through RT-qPCR. RESULTS: TMZ IC50 decreased 41.07% (p<0.01) in the resistant phenotype when delivered in combination with Ko143. Additionally, the TMZ-resistant phenotype (GBM146) displayed 44-fold greater P-gp expression than the TMZ-sensitive phenotype (GBM9) (p<0.01), yet a 0.6-fold lower BCRP expression. Ko143 potentiates TMZ efficacy and likely inhibits P-glycoprotein more potently than previously indicated. CONCLUSION: Further development of non-toxic, targeted inhibitors of drug efflux pumps for use in combinatorial chemotherapy may improve glioblastoma patient prognosis.


Asunto(s)
Dicetopiperazinas/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Temozolomida/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Glioblastoma/genética , Glioblastoma/patología , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética
17.
Biochem Biophys Res Commun ; 594: 57-62, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35074586

RESUMEN

DNA-damaging agents, such as radiation and chemotherapy, are common in cancer treatment, but the dosing has proven to be challenging, leading to severe side effects in some patients. Hence, to be able to personalize DNA-damaging chemotherapy, it is important to develop fast and reliable methods to measure the resulting DNA damage in patient cells. Here, we demonstrate how single DNA molecule imaging using fluorescence microscopy can quantify DNA-damage caused by the topoisomerase II (TopoII) poison etoposide. The assay uses an enzyme cocktail consisting of base excision repair (BER) enzymes to repair the DNA damage caused by etoposide and label the sites using a DNA polymerase and fluorescently labeled nucleotides. Using this DNA-damage detection assay we find a large variation in etoposide induced DNA-damage after in vitro treatment of blood cells from healthy individuals. We furthermore used the TopoII inhibitor ICRF-193 to show that the etoposide-induced damage in DNA was TopoII dependent. We discuss how our results support a potential future use of the assay for personalized dosing of chemotherapy.


Asunto(s)
Daño del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/efectos de los fármacos , ADN de Cadena Simple/efectos de los fármacos , ADN de Cadena Simple/genética , Dicetopiperazinas/farmacología , Etopósido/farmacología , Imagen Individual de Molécula , Antineoplásicos Fitogénicos/farmacología , ADN/efectos de los fármacos , Reparación del ADN , Relación Dosis-Respuesta a Droga , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Microscopía Fluorescente , Inhibidores de Topoisomerasa II/farmacología
18.
ACS Appl Mater Interfaces ; 14(2): 2488-2500, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34995059

RESUMEN

Monosialodihexosylganglioside (GM3)-presenting lipid-coated polymer nanoparticles (NPs) that recapitulate the sequestration of human immunodeficiency virus-1 (HIV-1) particles in CD169+ virus-containing compartments (VCCs) of macrophages were developed as carriers for delivery and sustained release of a combination of two antiretrovirals (ARVs), rilpivirine (RPV) and cabotegravir (CAB). RPV and CAB were co-loaded into GM3-presenting lipid-coated polylactic acid (PLA) and poly(lactic-co-glycolic acid) (PLGA) NPs without loss in potency of the drugs. GM3-presenting PLA NPs demonstrated the most favorable release properties and achieved inhibition of HIV-1 infection of primary human macrophages for up to 35 days. Intracellular localization of GM3-presenting PLA NPs in VCCs correlated with retention of intracellular ARV concentrations and sustained inhibition of HIV-1 infection. This work elucidates the design criteria of lipid-coated polymer NPs to utilize CD169+ macrophages as cellular drug depots for eradicating the viral reservoir sites or to achieve long-acting prophylaxis against HIV-1 infection.


Asunto(s)
Fármacos Anti-VIH/farmacología , Materiales Biocompatibles/química , Dicetopiperazinas/farmacología , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Piridonas/farmacología , Rilpivirina/farmacología , Fármacos Anti-VIH/química , Dicetopiperazinas/química , Portadores de Fármacos/química , Humanos , Liposomas/química , Macrófagos/efectos de los fármacos , Macrófagos/virología , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Nanopartículas/química , Poliésteres/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Piridonas/química , Rilpivirina/química , Lectina 1 Similar a Ig de Unión al Ácido Siálico/antagonistas & inhibidores
19.
Fitoterapia ; 156: 105095, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34896204

RESUMEN

Marine-derived fungi can usually produce structurally novel and biologically potent metabolites. In this study, a new diketopiperazine alkaloid (1) and two new polyketides (10 and 11), along with 8 known diketopiperazine alkaloids (2-9) were isolated from marine-derived fungus Penicillium sp. TW58-16. Their structures were fully elucidated by analyzing UV, IR, HR-ESI-MS, 1D, and 2D NMR spectroscopic data. The absolute configurations of the new compounds 1, 10 and 11 were ascertained by X-ray diffraction (Cu Kα radiation) and comparing their CD data with those reported. In addition, the antibacterial activities of these compounds against Helicobacter pylori in vitro were assessed. Results showed that compounds 3, 6, 8 and 9 displayed moderate antibacterial activity against standard strains and drug-resistant clinical isolates of H. pylori in vitro. This result demonstrates that diketopiperazine alkaloids could be lead compounds to be explored for the treatment of H. pylori infection.


Asunto(s)
Alcaloides/farmacología , Antibacterianos/farmacología , Dicetopiperazinas/farmacología , Helicobacter pylori/efectos de los fármacos , Penicillium/química , Policétidos/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Cromatografía en Gel , Cromatografía Liquida , Cristalografía por Rayos X , Dicetopiperazinas/química , Dicetopiperazinas/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Rotación Óptica , Policétidos/química , Policétidos/aislamiento & purificación , Agua de Mar , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Taiwán
20.
J Nat Prod ; 85(1): 284-291, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34967639

RESUMEN

We have previously reported that neoechinulin B (1a), a prenylated indole diketopiperazine alkaloid, shows antiviral activities against hepatitis C virus (HCV) via the inactivation of the liver X receptors (LXRs) and the resultant disruption of double-membrane vesicles. In this study, a two-step synthesis of the diketopiperazine scaffold of 1a was achieved by the base-induced coupling of 1,4-diacetyl-3-{[(tert-butyldimethylsilyl)oxy]methyl}piperazine-2,5-dione with aldehydes, followed by the treatment of the resultant coupling products with tetra-n-butylammonium fluoride. Compound 1a and its 16 derivatives 1b-q were prepared using this method. Furthermore, variecolorin H, a related alkaloid, was obtained by the acid treatment of 1a in MeOH. The antiviral evaluation of 1a and its derivatives revealed that 1a, 1c, 1d, 1h, 1j, 1l, and 1o exhibited both anti-HCV and anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activities. The results of this study indicate that the exomethylene moiety on the diketopiperazine ring is important for the antiviral activities. The antiviral compounds can inhibit the production of HCV and SARS-CoV-2 by inactivating LXRs.


Asunto(s)
Alcaloides/farmacología , Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Piperazinas/farmacología , SARS-CoV-2/efectos de los fármacos , Alcaloides/síntesis química , Alcaloides/química , Antivirales/síntesis química , Antivirales/química , Línea Celular Tumoral , Dicetopiperazinas/química , Dicetopiperazinas/farmacología , Humanos , Receptores X del Hígado/antagonistas & inhibidores , Estructura Molecular , Piperazinas/síntesis química , Piperazinas/química , Relación Estructura-Actividad , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA