Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros












Intervalo de año de publicación
1.
Am J Vet Res ; 85(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604223

RESUMEN

OBJECTIVE: The goal of this study was to characterize changes induced by a high-fat diet in body composition, insulin levels and sensitivity, blood lipids, and other key biomarkers also associated with the metabolic dysfunction that occurs with natural aging. ANIMALS: 24 male Beagle dogs, 3 to 7 years of age, of mixed castration status. METHODS: Dogs were randomly assigned to continue twice daily feeding of the commercial adult maintenance diet (n = 12, including 2 intact) that they were previously fed or to a high-fat diet (12, including 2 intact) for 17 weeks between December 1, 2021, and April 28, 2022. Assessments included body composition (weight, body condition score, and adipose mass determined by deuterium enrichment), clinical chemistries, plasma fatty acid quantification, oral glucose tolerance test, and histology of subcutaneous and visceral adipose biopsy samples. RESULTS: The high-fat diet led to increased body weight, body condition score, fat mass and adipocyte size, hyperinsulinemia and peripheral insulin resistance, and elevations in serum lipids, including cholesterol, triglycerides, and several species of free fatty acids. Leptin levels increased in dogs fed a high-fat diet but not in control dogs. There were no significant changes in routine clinical chemistry values in either group. CLINICAL RELEVANCE: Feeding a high-fat diet for 17 weeks led to potentially deleterious changes in metabolism similar to those seen in natural aging in dogs, including hyperinsulinemia, insulin resistance, and dyslipidemia. A high-fat diet model may provide insights into the similar metabolic dysfunction that occurs during natural aging.


Asunto(s)
Envejecimiento , Dieta Alta en Grasa , Enfermedades de los Perros , Dislipidemias , Hiperinsulinismo , Resistencia a la Insulina , Animales , Perros , Masculino , Dieta Alta en Grasa/veterinaria , Dieta Alta en Grasa/efectos adversos , Hiperinsulinismo/veterinaria , Enfermedades de los Perros/metabolismo , Enfermedades de los Perros/etiología , Enfermedades de los Perros/sangre , Dislipidemias/etiología , Dislipidemias/veterinaria , Dislipidemias/metabolismo , Composición Corporal , Alimentación Animal/análisis , Distribución Aleatoria
2.
Poult Sci ; 103(2): 103270, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056054

RESUMEN

This experiment aims to evaluate the effect of bile acids (BAs) in alleviating fatty liver disease induced by a high-fat diet (HFD) in broilers, and the modulation of the gut microbiota involved in this process. A total of 192 one-day-old Arbor Acres (AA) commercial male broilers were randomly divided into 4 groups and treated with the following diet: a basal-fat diet (BFD), a basal-fat diet plus bile acids (BFD + BAs), an HFD, and a high-fat diet plus bile acids (HFD + BAs). Bile acids were supplemented at the early growth stage (3-7 d), middle stage (17-21 d), and late stage (31-35 d). Results showed that BAs treatment had a significant effect on body weight on 14 d and 35 d, and increased the breast muscle weight and its index, but decreased the liver weight and abdominal fat weight on 35 d (P < 0.05). The supplementation of BAs significantly improved the serum lipid profile and decreased the level of triglycerides (TG), total cholesterol (TCHO), and nonesterified fatty acids (NEFA) on 35 d (P < 0.05). Dietary BAs supplementation significantly alleviated the hepatic TG deposition induced by HFD (P < 0.05), which was accompanied by upregulation of peroxisome proliferator-activated receptor gamma (PPARγ) and lipoprotein lipase (LPL) gene expression (P < 0.05). Moreover, the expression levels of hepatic gene adipose triglyceride lipase (ATGL), peroxisome proliferator-activated receptor α (PPARα), and apolipoprotein B (APOB) were greatly increased by BAs treatment. The analysis of 16S rRNA sequencing showed that the microbial diversity of the cecal digesta was increased by BAs in broilers with elevated abundances of Firmicutes, Lactobacillus, Anaerostipes, Sellimonas, and CHKCI002 and decreased abundances of Barnesiella and Akkermansia genus (P < 0.05). Hepatic TG content was positively correlated with the abundance of Oscillospiraceae, but it was negatively correlated with the abundance of Lactobacillus in cecal digesta (P < 0.05). These results indicate that dietary BAs can improve growth performance and alleviate fatty liver disease induced by an HFD via modulating gut microbiota in broilers.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Masculino , Animales , Dieta Alta en Grasa/efectos adversos , Dieta Alta en Grasa/veterinaria , Pollos/fisiología , Ácidos y Sales Biliares/metabolismo , ARN Ribosómico 16S , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/veterinaria , Suplementos Dietéticos/análisis , Triglicéridos/metabolismo
3.
Fish Shellfish Immunol ; 143: 109212, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37926203

RESUMEN

The present study aimed to reveal the role of inositol-requiring enzyme 1α (Ire1α) in mediating high-fat-diet (HFD) induced inflammation and apoptosis in fish and elucidate underling mechanisms of action. In experiment 1, black seabream juveniles were fed a control diet (Control, 12 % dietary lipid) or a high fat diet (HFD, 19 % dietary lipid) for eight weeks. In experiment 2, primary hepatocytes were isolated from black seabream juveniles and treated with oleic acid (OA, 200 µmol/L), OA + transfection with non-silencing control siRNA (negative control) (OA + NC), and OA + transfection with ire1α-small interfering RNA (OA + siire1α) for 48 h versus untreated (Control). Results indicated that fish fed HFD increased lipid deposition in the liver and caused hepatic steatosis. HFD group had significantly higher ire1α/Ire1α mRNA and phosphorylated protein expression and endoplasmic reticulum stress (ERS) related genes expression compared to the Control group, indicating that ERS was triggered. Meanwhile, feeding HFD induced inflammation and apoptosis by evaluated nuclear factor kappa B (nf-κb) mRNA and phosphorylated Nf-κb p65 protein expression, and c-Jun N-terminal kinase (jnk) mRNA and protein expression. However, knock down of ire1α (OA + siire1α) in primary hepatocytes alleviated OA-induced increased expression of ire1α/Ire1α mRNA and protein expression, nf-κb/Nf-κb p65 mRNA and phosphorylated protein expression, and jnk/Jnk mRNA and phosphorylated protein expression. These findings revealed the underling mechanism of action of HFD in fish, confirming that HFD increased ESR stress and Ire1α that, in turn, activated Nf-κb and Jnk pathways in hepatocytes and liver mediating HFD-induced inflammation and apoptosis.


Asunto(s)
Dorada , Animales , Dorada/metabolismo , FN-kappa B/metabolismo , Dieta Alta en Grasa/efectos adversos , Dieta Alta en Grasa/veterinaria , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Inositol , Proteínas Serina-Treonina Quinasas/genética , Hígado/metabolismo , Hepatocitos/metabolismo , Apoptosis , Inflamación/veterinaria , Inflamación/metabolismo , Grasas de la Dieta/metabolismo , ARN Mensajero/metabolismo , Estrés del Retículo Endoplásmico
4.
Poult Sci ; 102(9): 102856, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37390560

RESUMEN

The gut microbiota is known to have significant involvement in the regulation of lipogenesis and adipogenesis, yet the mechanisms responsible for this relationship remain poorly understood. The current study aims to provide insight into the potential mechanisms by which the gut microbiota modulates lipogenesis in chickens. Using chickens fed with a normal-fat diet (NFD, n = 5) and high-fat diet (HFD, n = 5), we analyzed the correlation between gut microbiota, cecal metabolomics, and lipogenesis by 16s rRNA sequencing, miRNA and mRNA sequencing as well as targeted metabolomics analysis. The potential metabolite/miRNA/mRNA axis regulated by gut microbiota was identified using chickens treated with antibiotics (ABX, n = 5). The possible mechanism of gut microbiota regulating chicken lipogenesis was confirmed by fecal microbiota transplantation (FMT) from chickens fed with NFD to chickens fed with HFD (n = 5). The results showed that HFD significantly altered gut microbiota composition and enhanced chicken lipogenesis, with a significant correlation between 3. Furthermore, HFD significantly altered the hepatic miRNA expression profiles and reduced the abundance of hepatic butyric acid. Procrustes analysis indicated that the HFD-induced dysbiosis of the gut microbiota might affect the expression profiles of hepatic miRNA. Specifically, HFD-induced gut microbiota dysbiosis may reduce the abundance of butyric acid and downregulate the expression of miR-204 in the liver. Multiomics analysis identified ACSS2 as a target gene of miR-204. Gut microbiota depletion by an antibiotic cocktail (ABX) showed a gut microbiota-dependent manner in the abundance of butyric acid and the expression of miR-204/ACSS2, which have been observed to be significantly correlated. Fecal microbiota transplantation from NFD chickens into HFD chickens effectively attenuated the HFD-induced excessive lipogenesis, elevated the abundance of butyric acid and the relative expression of miR-204, and reduced the expression of ACSS2 in the liver. Mechanistically, our results showed that the gut microbiota plays an antiobesity role by regulating the butyric acid/miR-204/ACSS2 axis in chickens. This work contributed to a better understanding of the functions of gut microbiota in regulating chicken lipogenesis.


Asunto(s)
Microbioma Gastrointestinal , MicroARNs , Animales , Ratones , Ácido Butírico/farmacología , Dieta Alta en Grasa/efectos adversos , Dieta Alta en Grasa/veterinaria , Pollos/genética , Obesidad/veterinaria , Lipogénesis , Disbiosis/veterinaria , ARN Ribosómico 16S , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Ratones Endogámicos C57BL
5.
Poult Sci ; 102(3): 102429, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36587452

RESUMEN

This study aimed to investigate the effect of a high-fat diet on the growth performance, serum, liver, and skin lipid metabolism as well as the fatty acids composition of liver and skin fat in Pekin ducks from 10 to 40 d of age based on a pair-fed group. Two hundred forty healthy male ducks (10 d old, 470.53 ± 0.57 g) were randomly divided into 3 groups (8 replicates per cage of 10 ducks): a normal diet (ND, 3% fat), a high-fat diet (HFD, 9% fat), and a pair-fed diet (PFD, given the ND in an amount equal to that consumed of the HFD to eliminate the effects of feed intake). The results were as follows: compared to ND feeding, HFD feeding significantly decreased (P < 0.05) the feed intake and feed:gain ratio (F:G), along with serum triglyceride and nonesterified fatty acid contents. When compared with the ND and PFD, the HFD significantly decreased (P < 0.05) the liver weight and inhibited hepatic de novo lipogenesis (glucose-6-phosphate dehydrogenase and malate dehydrogenase activities), ß-oxidation (carnitine palmitoyltransferase-1 content), and decreased saturated fatty acids and monounsaturated fatty acids deposition. Moreover, the HFD significantly increased (P < 0.05) the total fat content, lipid droplet area, and polyunsaturated fatty acids (PUFAs) content in the liver, as well as the abdominal fat weight, subcutaneous fat weight, the total fat and PUFAs content in skin fat. These results suggested that the HFD improved feed efficiency, which was related to HFD feeding inhibiting hepatic de novo lipogenesis and ß-oxidation and promoting the deposition of fat in skin as well as altering the fatty acids composition of the liver and skin fat in Pekin ducks.


Asunto(s)
Ácidos Grasos , Metabolismo de los Lípidos , Masculino , Animales , Ácidos Grasos/metabolismo , Dieta Alta en Grasa/efectos adversos , Dieta Alta en Grasa/veterinaria , Patos , Pollos/metabolismo , Hígado/metabolismo , Ácidos Grasos Insaturados/metabolismo
6.
J Anim Physiol Anim Nutr (Berl) ; 107(3): 948-969, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35934925

RESUMEN

In the era of intensification of fish farms, the high-fat diet (HFD) has been applied to promote growth and productivity, provide additional energy and substitute partial protein in fish feeds. Certainly, HFD within specific concentrations was found to be beneficial in boosting fish performance throughout a short-term feeding. However, excessive dietary fat levels displayed vast undesirable impacts on growth, feed efficiency, liver function, antioxidant capacity and immune function and finally reduced the economic revenue of cultured fish. Moreover, studies have shown that fish diets containing a high level of fats resulted in increasing lipid accumulation, stimulated endoplasmic reticulum stress and suppressed autophagy in fish liver. Investigations showed that HFD could impair the intestinal barrier of fish via triggering inflammation, metabolic disorders, oxidative stress and microbiota imbalance. Several approaches have been widely used for reducing the undesirable influences of HFD in fish. Dietary manipulation could mitigate the adverse impacts triggered by HFD, and boost growth and productivity via reducing blood lipids profile, attenuating oxidative stress and hepatic lipid deposition and improving mitochondrial activity, immune function and antioxidant activity in fish. As well, dietary feed additives have been shown to decrease hepatic lipogenesis and modulate the inflammatory response in fish. Based on the literature, previous studies indicated that phytochemicals could reduce apoptosis and enhance the immunity of fish fed with HFD. Thus, the present review will explore the potential hazards of HFD on fish species. It will also provide light on the possibility of employing some safe feed additives to mitigate HFD risks in farmed fish.


Asunto(s)
Dieta Alta en Grasa , Grasas de la Dieta , Animales , Dieta Alta en Grasa/efectos adversos , Dieta Alta en Grasa/veterinaria , Grasas de la Dieta/metabolismo , Hígado/metabolismo , Antioxidantes/metabolismo , Lípidos , Medición de Riesgo
7.
Poult Sci ; 101(4): 101708, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35150940

RESUMEN

Adiponectin can participate in the regulation of glucose and lipid metabolism, energy regulation, immune response, resistance to inflammation, oxidative stress, and apoptosis. Studies in rodents demonstrated that the small molecule compound adiponectin receptor agonist AdipoRon could activate the adiponectin receptor and played the same biological role as adiponectin. To explore the influence and regulation of AdipoRon on lipid metabolism disorder in Huoyan goose liver, in this study, goslings were fed a high-fat diet and then administered different dosages of AdipoRon. Subsequently, goose body weight, liver index, liver histopathological changes, blood glucose, blood and liver lipid, biochemical indexes related to liver function and oxidative stress, and the expression levels of genes related to lipid metabolism, inflammation, apoptosis, and autophagy, adiponectin and its receptors, key molecules of adiponectin involved signal pathway, and transcription factors in the liver, were detected using H&E and Oil red O staining, ELISA, and qRT-PCR methods. The results indicated that AdipoRon could alter the expression of lipid metabolism-related genes, inflammatory factors, apoptosis and autophagy genes, and adiponectin and its receptor genes in liver tissues through signaling pathways such as AMPK and p38 MAPK, as well as the involvement of transcription factors such as PPARα, PPARγ, SIRT1, and FOXO1, reduce the lipid content in blood and liver tissues of geese fed high-fat diets, improve liver antioxidant capacity, regulate apoptosis and autophagy of hepatocytes, and reduce liver inflammatory injury. Our study suggests that AdipoRon has a protective effect on fatty liver injury in goslings fed a high-fat diet.


Asunto(s)
Dieta Alta en Grasa , Receptores de Adiponectina , Adiponectina/genética , Adiponectina/metabolismo , Animales , Pollos/metabolismo , Dieta Alta en Grasa/efectos adversos , Dieta Alta en Grasa/veterinaria , Gansos/metabolismo , Inflamación/veterinaria , Lípidos , Hígado/metabolismo , Piperidinas , Receptores de Adiponectina/genética , Factores de Transcripción
8.
Braz. j. biol ; 82: 1-8, 2022. tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468423

RESUMEN

Exposure to the hight-fat diet may alter the control of food intake promoting hyperphagia and obesity. The objective of this study was to investigate the effects of this diet on dopamine receptors (drd1 and drd2), proopiomelanocortin (pomc), neuropeptideY (npy) genes expression, and preference food in adult rats. Wistar female rats were fed a hight-fat or control diet during pregnancy and lactation. The offspring were allocated into groups: Lactation – Control (C) and High-fat (H). Post- weaning – Control Control (CC), offspring of mothers C, fed a control diet after weaning; Control Hight-fat (CH), offspring of mothers C, fed a hight-fat diet after weaning; Hight-fat Control (HC), offspring of mothers H, fed with control diet after weaning; and Hight-fat Hight-fat (HH), offspring of mothers H, fed a H diet after weaning. The groups CH and HH presented greater expression of drd1 in comparison to the CC. The drd2 of CH and HC presented higher gene expression than did CC. HH presented higher pomc expression in comparison to the other groups. HC also presented greater expression in comparison to CH. The npy of HH presented greater expression in relation to CH and HC. HH and HC have had a higher preference for a high-fat diet at 102º life’s day. The high-fat diet altered the gene expression of the drd1, drd2, pomc and npy, and influencing the food preference for high-fat diet.


A exposição à dieta hiperlipídica pode alterar o controle da ingestão de alimentos, promovendo hiperfagia e obesidade. O objetivo deste estudo foi investigar os efeitos dessa dieta sobre a expressão gênica dos receptores de dopamina (drd1 e drd2), da proopiomelanocortina (pomc) e neuropeptídeo Y (npy), e preferência alimentar em ratos adultos. Ratas Wistar foram alimentadas com uma dieta hiperlipídica ou controle durante a gestação e lactação. Os descendentes foram alocados em grupos: Lactação – Controle (C) e Hiperlipídica (H). Pós-desmame – Controle Controle (CC), descendentes das genitoras do grupo controle e alimentados com dieta controle após o desmame; Controle Hiperlipídica (CH), descendentes das genitoras do grupo controle e alimentados com dieta hiperlipídica após o desmame; Hiperlipídica Controle (HC), descendentes das genitoras do grupo hiperlipídica e alimentados com dieta controle após o desmame; Hiperlipídica Hiperlipídica (HH), descendentes das genitoras do grupo hiperlipídica e alimentados com dieta hiperlipídica após o desmame. Os grupos CH e HH apresentaram maior expressão de drd1 em comparação ao CC. O drd2 de CH e HC apresentou maior expressão gênica que o CC. HH apresentou maior expressão de pomc em comparação com os outros grupos. O HC também apresentou maior expressão de pomc em comparação ao CH. O npy do HH apresentou maior expressão em relação ao CH e HC. HH e HC tiveram uma preferência maior por uma dieta rica em gordura no 102º dia de vida. A dieta hiperlipídica alterou a expressão gênica dos drd1, drd2, pomc e npy e influenciou na preferência alimentar pela dieta hiperlipídica.


Asunto(s)
Femenino , Animales , Ratas , Dieta Alta en Grasa/efectos adversos , Dieta Alta en Grasa/veterinaria , Dopamina/análisis , Neuropéptido Y/análisis , Proopiomelanocortina/análisis , Ratas Wistar
9.
Oxid Med Cell Longev ; 2021: 1427787, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34876963

RESUMEN

Maternal exposure to cadmium causes obesity and metabolic changes in the offspring, including nonalcoholic fatty liver disease-like pathology. However, whether maternal cadmium exposure accelerates liver cancer in the offspring is unknown. This study investigated the impact of early-life exposure to cadmium on the incidence and potential mechanisms of hepatocellular carcinoma (HCC) in offspring subjected to postweaning HCC induction. HCC in C57BL/6J mice was induced by diethylnitrosamine (DEN) injection at weaning, followed by a long-term high-fat choline-deficient (HFCD) diet. Before weaning, liver cadmium levels were significantly higher in mice with early-life cadmium exposure than in those without cadmium exposure. However, by 26 and 29 weeks of age, hepatic cadmium fell to control levels, while a significant decrease was observed in copper and iron in the liver. Both male and female cadmium-exposed mice showed increased body weight compared to non-cadmium-treated mice. For females, early-life cadmium exposure also worsened insulin intolerance but did not significantly promote DEN/HFCD diet-induced liver tumors. In contrast, in male mice, early-life cadmium exposure enhanced liver cancer induction by DEN/HFCD with high incidence and larger liver tumors. The liver peritumor tissue of early-life cadmium-exposed mice exhibited greater inflammation and disruption of fatty acid metabolism, accompanied by higher malondialdehyde and lower esterified triglyceride levels compared to mice without cadmium exposure. These findings suggest that early-life exposure to low-dose cadmium accelerates liver cancer development induced by a DEN/HFCD in male mice, probably due to chronic lipotoxicity and inflammation caused by increased uptake but decreased consumption of fatty acids.


Asunto(s)
Cadmio/toxicidad , Dieta Alta en Grasa , Dietilnitrosamina/farmacología , Neoplasias Hepáticas/patología , Animales , Animales Recién Nacidos , Colina/metabolismo , Dieta Alta en Grasa/veterinaria , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Femenino , Hígado/patología , Neoplasias Hepáticas/inducido químicamente , Masculino , Malondialdehído/metabolismo , Ratones , Ratones Endogámicos C57BL , Triglicéridos/metabolismo
10.
Sci Rep ; 11(1): 19752, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34611227

RESUMEN

Although metabolic syndrome (MetS) is linked to an elevated risk of cardiovascular disease (CVD), the cardiac-specific risk mechanism is unknown. Obesity, hypertension, and diabetes (all MetS components) are the most common form of CVD and represent risk factors for worse COVID-19 outcomes compared to their non MetS peers. Here, we use obese Yorkshire pigs as a highly relevant animal model of human MetS, where pigs develop the hallmarks of human MetS and reproducibly mimics the myocardial pathophysiology in patients. Myocardium-specific mass spectroscopy-derived metabolomics, proteomics, and transcriptomics enabled the identity and quality of proteins and metabolites to be investigated in the myocardium to greater depth. Myocardium-specific deregulation of pro-inflammatory markers, propensity for arterial thrombosis, and platelet aggregation was revealed by computational analysis of differentially enriched pathways between MetS and control animals. While key components of the complement pathway and the immune response to viruses are under expressed, key N6-methyladenosin RNA methylation enzymes are largely overexpressed in MetS. Blood tests do not capture the entirety of metabolic changes that the myocardium undergoes, making this analysis of greater value than blood component analysis alone. Our findings create data associations to further characterize the MetS myocardium and disease vulnerability, emphasize the need for a multimodal therapeutic approach, and suggests a mechanism for observed worse outcomes in MetS patients with COVID-19 comorbidity.


Asunto(s)
COVID-19/patología , Susceptibilidad a Enfermedades , Síndrome Metabólico/patología , Animales , Factores de Coagulación Sanguínea/genética , Factores de Coagulación Sanguínea/metabolismo , COVID-19/complicaciones , COVID-19/virología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Dieta Alta en Grasa/veterinaria , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata/genética , Síndrome Metabólico/complicaciones , Síndrome Metabólico/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Miocardio/metabolismo , Estrés Oxidativo/genética , Agregación Plaquetaria , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Sistema Renina-Angiotensina , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Porcinos , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
11.
PLoS One ; 16(3): e0249239, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33788878

RESUMEN

Combinatorial gut hormone therapy is one of the more promising strategies for identifying improved treatments for metabolic disease. Many approaches combine the established benefits of glucagon-like peptide-1 (GLP-1) agonism with one or more additional molecules with the aim of improving metabolic outcomes. Recent attention has been drawn to the glucose-dependent insulinotropic polypeptide (GIP) system due to compelling pre-clinical evidence describing the metabolic benefits of antagonising the GIP receptor (GIPR). We rationalised that benefit might be accrued from combining GIPR antagonism with GLP-1 agonism. Two GIPR peptide antagonists, GIPA-1 (mouse GIP(3-30)NH2) and GIPA-2 (NαAc-K10[γEγE-C16]-Arg18-hGIP(5-42)), were pharmacologically characterised and both exhibited potent antagonist properties. Acute in vivo administration of GIPA-1 during an oral glucose tolerance test (OGTT) had negligible effects on glucose tolerance and insulin in lean mice. In contrast, GIPA-2 impaired glucose tolerance and attenuated circulating insulin levels. A mouse model of diet-induced obesity (DIO) was used to investigate the potential metabolic benefits of chronic dosing of each antagonist, alone or in combination with liraglutide. Chronic administration studies showed expected effects of liraglutide, lowering food intake, body weight, fasting blood glucose and plasma insulin concentrations while improving glucose sensitivity, whereas delivery of either GIPR antagonist alone had negligible effects on these parameters. Interestingly, chronic dual therapy augmented insulin sensitizing effects and lowered plasma triglycerides and free-fatty acids, with more notable effects observed with GIPA-1 compared to GIPA-2. Thus, the co-administration of both a GIPR antagonist with a GLP1 agonist uncovers interesting beneficial effects on measures of insulin sensitivity, circulating lipids and certain adipose stores that seem influenced by the degree or nature of GIP receptor antagonism.


Asunto(s)
Polipéptido Inhibidor Gástrico/farmacología , Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/antagonistas & inhibidores , Glucosa/metabolismo , Secuencia de Aminoácidos , Animales , Glucemia/análisis , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa/veterinaria , Ácidos Grasos/sangre , Polipéptido Inhibidor Gástrico/química , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Prueba de Tolerancia a la Glucosa , Secreción de Insulina , Liraglutida/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Curva ROC , Triglicéridos/sangre
12.
Meat Sci ; 177: 108484, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33756246

RESUMEN

A total of 160 pigs, in groups of 8 pigs of mixed genders, were fed four finishing feeding strategies with the aim to reduce muscle glycolytic potential and improve meat quality. Pigs were fed a control diet (C; fat = 5.0%, ADF = 3.0%, NDF = 8.8%), a high-fat and high-fiber diet (HFF; fat = 11.2%, ADF = 9.1%, NDF = 19.5%), a blend of 50-50% C and HFF diets (fat = 8.2%, ADF = 6.7%, NDF = 14.2%) or the C diet and transferred to the HFF diet after a diet transition. Dietary treatments alone or in interaction with gender had no effect on pig growth performance, carcass quality traits, Longissimus and Semimembranosus muscle glycolytic potential and meat quality (P > 0.10). The inefficiency of the dietary treatments applied in this study may be due to the low ratio between fat and digestible carbohydrate in the diets combined with the mild pre-slaughter stress conditions pigs were exposed to.


Asunto(s)
Alimentación Animal/análisis , Dieta Alta en Grasa/veterinaria , Fibras de la Dieta , Sus scrofa/crecimiento & desarrollo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Composición Corporal , Dieta/veterinaria , Femenino , Glucólisis , Masculino , Músculo Esquelético/química
13.
Br J Nutr ; 125(1): 38-49, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-32600501

RESUMEN

To investigate the effects of dietary fibre on follicular atresia in pigs fed a high-fat diet, we fed thirty-two prepubescent gilts a basal diet (CON) or a CON diet supplemented with 300 g/d dietary fibre (fibre), 240 g/d soya oil (SO) or both (fibre + SO). At the 19th day of the 4th oestrus cycle, gilts fed the SO diet showed 112 % more atretic follicles and greater expression of the apoptotic markers, Bax and caspase-3, and these effects were reversed by the fibre diet. The abundance of SCFA-producing microbes was decreased by the SO diet, but this effect was reversed by fibre treatment. Concentrations of serotonin and melatonin in the serum and follicular fluid were increased by the fibre diet. Overall, dietary fibre protected against high fat feeding-induced follicular atresia at least partly via gut microbiota-related serotonin-melatonin synthesis. These results provide insight into preventing negative effects on fertility in humans consuming a high-energy diet.


Asunto(s)
Fibras de la Dieta/farmacología , Suplementos Dietéticos , Atresia Folicular/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Alimentación Animal/análisis , Animales , Dieta Alta en Grasa/veterinaria , Femenino , Líquido Folicular/metabolismo , Melatonina/metabolismo , Modelos Animales , Ovario/metabolismo , Serotonina/metabolismo , Sus scrofa , Porcinos
14.
Br J Nutr ; 126(3): 345-354, 2021 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-33076999

RESUMEN

A 10-week feeding trial was conducted to investigate the effect of dietary curcumin (CC) on growth antioxidant responses, fatty acid composition, and expression of lipid metabolism-related genes of large yellow croaker fed a high-fat diet (HFD). Four diets (lipid level at 18 %) were formulated with different levels of curcumin (0, 0·02, 0·04 and 0·06 %). The best growth performance was found in the 0·04 % curcumin group, with the body and hepatic lipid levels lower than the control group (0 % CC). The content of TAG, total cholesterol and LDL-cholesterol was the least in the 0·06 % curcumin group. The lowest malondialdehyde and the highest superoxide dismutase, catalase and total antioxidant capacity were observed in the 0·04 % curcumin group. The 0·04 % curcumin group had higher expression of Δ6fad, elovl5 and elovl4 and showed higher hepatic n-6 and n-3 PUFA. Expression of ppara, cpt1, and aco was significantly increased, while expression of srebp1 and fas was dramatically decreased in curcumin groups compared with the control group. Overall, 0·04 % curcumin supplementation could mitigate the negative effects caused by HFD and promote growth via reducing hepatic lipid deposition, improving antioxidant activity and increasing PUFA of large yellow croaker. To conclude, abnormal hepatic lipid deposition was probably due to increased fatty acid oxidation and reduced de novo synthesis of fatty acids.


Asunto(s)
Antioxidantes , Curcumina , Dieta Alta en Grasa/veterinaria , Ácidos Grasos/química , Metabolismo de los Lípidos , Perciformes , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Antioxidantes/metabolismo , Colesterol/metabolismo , Curcumina/farmacología , Hígado/metabolismo , Perciformes/genética , Perciformes/crecimiento & desarrollo
15.
Braz. j. biol ; 81(2): 246-250, 2021. tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1153363

RESUMEN

Aim: This study aimed to verify the correlation between murine measurements and retroperitoneal adipose tissue in rats exposed to the high-fat diet. Material and methods: Wistar male adult rats, descendants of mothers who consumed a high-fat diet during pregnancy and lactation and fed the same diet after weaning were used. At 60 days of life, body weight, longitudinal axis and waist circumference (WC) were measured. The Body Mass Index (BMI) and the Lee Index were calculated for a posterior analysis of the correlation with the amount of retroperitoneal adipose tissue dissected on the same day. For analysis of the data, the Pearson correlation test was used, considering statistical significance for p<0.05. Results: Body weight had a weak correlation (r= 0.31; p= 0.38) with retroperitoneal adipose tissue. While the longitudinal correlated moderately and negative (r= -0.40; p= 0.25). Abdominal circumference (r= 0.62; p= 0.05), body mass index (r= 0.61; p= 0.03) and Lee (r= 0.69; p= 0.03) correlated moderately and positively with adipose tissue. Conclusion: Among the measured murine measurements, weight and longitudinal axis were not good indicators to represent accumulation of retroperitoneal adipose tissue in rats. However, Lee's index seems to be the best murine marker to diagnose the accumulation of retroperitoneal fat. BMI, CA and Lee index were murine parameters with higher correlation.


Objetivo: Este estudo teve como objetivo verificar a correlação entre medidas murinométricas e tecido adiposo retroperitoneal em ratos expostos à dieta hiperlipídica. Material e métodos: Foram utilizados ratos Wistar machos adultos, descendentes de mães que consumiram dieta hiperlipídica durante a gestação e lactação e alimentados com a mesma dieta após o desmame. Aos 60 dias de vida, foram medidos o peso corporal, o eixo longitudinal e a circunferência da cintura (CC). O Índice de Massa Corporal (IMC) e o Índice de Lee foram calculados para posterior análise da correlação com a quantidade de tecido adiposo retroperitoneal dissecado no mesmo dia. Para análise dos dados, utilizou se o teste de correlação de Pearson, considerando significância estatística para p<0.05. Resultados: O peso corporal apresentou uma correlação fraca (r= 0,31; p= 0,38) com o tecido adiposo retroperitoneal. Enquanto o longitudinal correlacionou moderadamente e negativo (r= -0,40; p= 0,25). A circunferência abdominal (r = 0,62; p = 0,05), índice de massa corporal (r= 0,61; p= 0,03) e Lee (r= 0,69; p= 0,03) correlacionaram-se moderada e positivamente com o tecido adiposo. Conclusão: Entre as medidas murinométricas, o peso e o eixo longitudinal não foram bons indicadores para representar o acúmulo de tecido adiposo retroperitoneal em ratos. No entanto, o índice de Lee parece ser o melhor indicador murinométrico para diagnosticar o acúmulo de gordura retroperitoneal. O IMC, índice de Lee e CA foram parâmetros murinométricos com maior correlação.


Asunto(s)
Animales , Masculino , Ratas , Grasa Intraabdominal/anatomía & histología , Dieta Alta en Grasa/veterinaria , Índice de Masa Corporal , Ratas Wistar/anatomía & histología , Circunferencia de la Cintura
16.
Vet Pathol ; 57(5): 723-735, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32638637

RESUMEN

Mice with an inactivating mutation in the gene encoding asparagine synthetase domain containing 1 (ASNSD1) develop a progressive degenerative myopathy that results in severe sarcopenia and myosteatosis. ASNSD1 is conserved across many species, and whole body gene expression surveys show maximal expression levels of ASNSD1 in skeletal muscle. However, potential functions of this protein have not been previously reported. Asnsd1-/- mice demonstrated severe muscle weakness, and their normalized body fat percentage on both normal chow and high fat diets was greater than 2 SD above the mean for 3651 chow-fed and 2463 high-fat-diet-fed knockout (KO) lines tested. Histologic lesions were essentially limited to the muscle and were characterized by a progressive degenerative myopathy with extensive transdifferentiation and replacement of muscle by well-differentiated adipose tissue. There was minimal inflammation, fibrosis, and muscle regeneration associated with this myopathy. In addition, the absence of any signs of lipotoxicity in Asnsd1-/- mice despite their extremely elevated body fat percentage and low muscle mass suggests a role for metabolic dysfunctions in the development of this phenotype. Asnsd1-/- mice provide the first insight into the function of this protein, and this mouse model could prove useful in elucidating fundamental metabolic interactions between skeletal muscle and adipose tissue.


Asunto(s)
Aspartatoamoníaco Ligasa/genética , Modelos Animales de Enfermedad , Enfermedades Musculares/veterinaria , Sarcopenia/veterinaria , Tejido Adiposo/patología , Animales , Dieta Alta en Grasa/veterinaria , Femenino , Humanos , Inmunohistoquímica/veterinaria , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/patología , Enfermedades Musculares/patología , Fenotipo , Sarcopenia/patología
17.
Fish Shellfish Immunol ; 104: 391-401, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32553566

RESUMEN

Fatty liver injury (or disease) is a common disease in farmed fish, but its pathogenic mechanism is not fully understood. Therefore the present study aims to investigate high-fat diet (HFD)-induced liver injury and explore the underlying mechanism in fish. The tilapia were fed on control diet and HFD for 90 days, and then the blood and liver tissues were collected to determine biochemical parameter, gene expression and protein level. The results showed that HFD feeding signally increased the levels of plasma aminotransferases and pro-inflammatory factors after 60 days. In liver and plasma, HFD feeding significantly suppressed antioxidant ability, but enhanced lipid peroxidation formation, protein oxidation and DNA damage after 60 or 90 days. Further, the Nrf2 pathway and antioxidative function-related genes were adversely changed in liver of HFD-fed tilapia after 60 and/or 90 days. Meanwhile, HFD treatment induced apoptosis via initiating mitochondrial pathway in liver after 90 days. Furthermore, after 90 days of feeding, the expression of genes or proteins related to JNK pathway and TLRs-Myd88-NF-κB pathway was clearly upregulated in HFD treatment. Similarly, the mRNA levels of inflammatory factors including tumor necrosis factor (TNF-α), interleukin-1ß (IL-1ß), IL-6, IL-8 and IL-10 were also upregulated in liver of HFD-fed tilapia after 60 and/or 90 days. In conclusion, the current study suggested that HFD feeding impaired antioxidant defense system, induced apoptosis, enhanced inflammation and led to liver injury. The adverse influences of HFD in the liver might be due to the variation of Nrf2, JNK and TLRs-Myd88-NF-κB signaling pathways.


Asunto(s)
Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Cíclidos/fisiología , Dieta Alta en Grasa/veterinaria , Inflamación/veterinaria , Transducción de Señal/inmunología , Animales , Cíclidos/inmunología , Cíclidos/metabolismo , Dieta Alta en Grasa/efectos adversos , Enfermedades de los Peces/fisiopatología , Proteínas de Peces/inmunología , Inflamación/fisiopatología , Hepatopatías/fisiopatología , Hepatopatías/veterinaria , Sistema de Señalización de MAP Quinasas/inmunología , Factor 2 Relacionado con NF-E2/inmunología , Receptores Toll-Like/inmunología
18.
J Dairy Sci ; 103(5): 4378-4389, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32197845

RESUMEN

The objective of this study was to determine the effects of high-starch or high-fat diets formulated to be isoenergetic on energy and N partitioning and utilization of energy. Twelve multiparous Jersey cows (mean ± standard deviation; 192 ± 11 d in milk; 467 ± 47 kg) in a crossover design with 28-d periods (24-d adaptation and 4-d collection) were used to compare 2 treatment diets. Treatments were high starch (HS; 30.8% starch, 31.8% neutral detergent fiber, and 1.9% fatty acids) or high fat (HF; 16.8% starch, 41.7% neutral detergent fiber, and 4.1% fatty acids). Diets were formulated to have net energy for lactation (NEL) content of 1.55 Mcal/kg of dry matter according to the National Research Council (2001) dairy model. Nutrient composition was varied primarily by replacing corn grain in HS with a rumen-inert fat source and cottonseed hulls in HF. Gross energy content was lower for HS (4.43 vs. 4.54 ± 0.01 Mcal/kg of dry matter), whereas digestible (2.93 vs. 2.74 ± 0.035 Mcal/kg of dry matter) and metabolizable energy (2.60 vs. 2.41 ± 0.030 Mcal/kg of dry matter), and NEL (1.83 vs. 1.67 ± 0.036 Mcal/kg of dry matter) content were all greater than for HF. Tissue energy deposited as body fat tended to be greater for HS (4.70 vs. 2.14 ± 1.01 Mcal/d). For N partitioning, HS increased milk N secretion (141 vs. 131 ± 10.5 g/d) and decreased urinary N excretion (123 vs. 150 ± 6.4 g/d). Compared with HF, HS increased apparent total-tract digestibility of dry matter (66.7 vs. 61.7 ± 1.06%), organic matter (68.5 vs. 63.2 ± 0.98%), energy (66.0 vs. 60.4 ± 0.92%), and 18-carbon fatty acids (67.9 vs. 61.2 ± 1.60%). However, apparent total-tract digestibility of starch decreased for HS from 97.0 to 94.5 ± 0.48%. Compared with HF, HS tended to increase milk yield (19.7 vs. 18.9 ± 1.38 kg/d), milk protein content (4.03 vs. 3.93 ± 0.10%), milk protein yield (0.791 vs. 0.740 ± 0.050 kg/d), and milk lactose yield (0.897 vs. 0.864 ± 0.067 kg/d). In addition, HS decreased milk fat content (5.93 vs. 6.37 ± 0.15%) but did not affect milk fat yield (average of 1.19 ± 0.09 kg/d) or energy-corrected milk yield (average of 27.2 ± 1.99 kg/d). Results of the current study suggest that the HS diet had a greater metabolizable energy and NEL content, increased partitioning of N toward milk secretion and away from urinary excretion, and may have increased partitioning of energy toward tissue energy deposited as fat.


Asunto(s)
Bovinos/fisiología , Dieta de Carga de Carbohidratos/veterinaria , Dieta Alta en Grasa/veterinaria , Metabolismo Energético , Nitrógeno/metabolismo , Almidón/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Femenino , Lactancia , Distribución Aleatoria , Almidón/administración & dosificación
19.
J Anim Sci ; 98(3)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32047902

RESUMEN

Pet foods may be formulated with decreased starch to meet consumer demands for less processed diets. Fats and oils may be added to low-starch diets to meet energy requirements, but little is known about its effects on canine health. The study objective was to evaluate the effects of feeding healthy adult dogs low carbohydrate, high-fat diets on apparent total tract digestibility, fecal characteristics, and overall health status. Eight adult Beagles were enrolled in a replicated 4 × 4 Latin Square design feeding trial. Dogs were randomly assigned to one of four dietary fat level treatments (T) within each period: 32% (T1), 37% (T2), 42% (T3), and 47% (T4) fat on a dry matter basis. Fat levels were adjusted with the inclusion of canola oil added to a commercial diet. Each dog was fed to exceed its energy requirement based on NRC (2006). Blood samples were analyzed for complete blood counts, chemistry profiles, and canine pancreatic lipase immunoreactivity levels. Apparent total tract digestibility improved (P < 0.05) as the fat level increased for dry matter, organic matter, fat, and gross energy. Fecal output decreased as levels of fat increased in the diet (P = 0.002). There was no effect of fat level on stool quality or short-chain fatty acid and ammonia concentrations in fecal samples (P ≥ 0.20). Blood urea nitrogen levels decreased with increased fat level (P = 0.035). No significant differences were seen in canine pancreatic lipase immunoreactivity (P = 0.110). All blood parameters remained within normal reference intervals. In summary, increased dietary fat improved apparent total tract digestibility, did not alter fecal characteristics, and maintained the health status of all dogs.


Asunto(s)
Alimentación Animal/análisis , Dieta Alta en Grasa/veterinaria , Grasas de la Dieta/farmacología , Perros/fisiología , Amoníaco/análisis , Animales , Nitrógeno de la Urea Sanguínea , Dieta/veterinaria , Digestión/efectos de los fármacos , Perros/sangre , Ácidos Grasos Volátiles/análisis , Heces/química , Femenino , Tracto Gastrointestinal/efectos de los fármacos , Estado de Salud
20.
Anim Sci J ; 90(9): 1200-1211, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31317623

RESUMEN

The study aimed to evaluate nutrient digestibility and intestine gene expression in the progeny from cows supplemented during gestation and fed diets with or without rumen-protected fat (RPF) in the feedlot. Forty-eight Nellore steers, averaging 340 kg, were housed in individual pens and allotted in a completely randomized design using a 2 × 2 factorial arrangement (dams nutrition × RPF). Cows' supplementation started after 124 ± 21 days of gestation. The feedlot lasted 135 days and diets had the inclusion of zero or 6% of RPF. Digestibility was evaluated by total feces collection. Steers were slaughtered using the concussion technique and samples of pancreas and small intestine were collected immediately after the slaughter to analyze α-amylase activity, and the expression of SLC5A1, CD36, and CCK and villi morphometry. Feeding RPF increased nutrients digestibility (p < 0.01). There was no effect of maternal nutrition on digestibility and α-amylase activity in steers (p > 0.05). Duodenal expression of SLC5A1, CD36, and CCK increased in the progeny from restricted cows. In conclusion, protein restriction during mid to late gestation of dams has long-term effects on small-intestine length and on expression of membrane transporters genes in the duodenum of the progeny. However, maternal nutrition does not affect digestibility in the feedlot.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Dieta Alta en Grasa/veterinaria , Dieta con Restricción de Proteínas/veterinaria , Dieta/veterinaria , Fenómenos Fisiologicos Nutricionales Maternos , Preñez , Animales , Bovinos , Digestión/fisiología , Proteínas de Transporte de Ácidos Grasos/genética , Proteínas de Transporte de Ácidos Grasos/metabolismo , Femenino , Expresión Génica , Intestino Delgado/anatomía & histología , Intestino Delgado/metabolismo , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Embarazo , Proteínas de Transporte de Sodio-Glucosa/genética , Proteínas de Transporte de Sodio-Glucosa/metabolismo , alfa-Amilasas/genética , alfa-Amilasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...