Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 901
Filtrar
1.
Mol Ther ; 32(5): 1219-1237, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38449313

RESUMEN

Bone cancer is common and severe. Both primary (e.g., osteosarcoma, Ewing sarcoma) and secondary (e.g., metastatic) bone cancers lead to significant health problems and death. Currently, treatments such as chemotherapy, hormone therapy, and radiation therapy are used to treat bone cancer, but they often only shrink or slow tumor growth and do not eliminate cancer completely. The bone microenvironment contributes unique signals that influence cancer growth, immunogenicity, and metastasis. Traditional cancer therapies have limited effectiveness due to off-target effects and poor distribution on bones. As a result, therapies with improved specificity and efficacy for treating bone tumors are highly needed. One of the most promising strategies involves the targeted delivery of pharmaceutical agents to the site of bone cancer by introduction of bone-targeting moieties, such as bisphosphonates or oligopeptides. These moieties have high affinities to the bone hydroxyapatite matrix, a structure found exclusively in skeletal tissue, and can enhance the targeting ability and efficacy of anticancer drugs when combating bone tumors. This review focuses on the engineering of small molecules and proteins with bone-targeting moieties for the treatment of bone tumors.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Humanos , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/terapia , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Animales , Difosfonatos/uso terapéutico , Difosfonatos/farmacología , Difosfonatos/química , Sistemas de Liberación de Medicamentos/métodos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Sarcoma de Ewing/tratamiento farmacológico , Sarcoma de Ewing/terapia , Terapia Molecular Dirigida/métodos , Microambiente Tumoral/efectos de los fármacos
2.
Acta Biomater ; 179: 354-370, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490481

RESUMEN

Fracture fixation in an ageing population is challenging and fixation failure increases mortality and societal costs. We report a novel fracture fixation treatment by applying a hydroxyapatite (HA) based biomaterial at the bone-implant interface and biologically activating the biomaterial by systemic administration of a bisphosphonate (zoledronic acid, ZA). We first used an animal model of implant integration and applied a calcium sulphate (CaS)/HA biomaterial around a metallic screw in the tibia of osteoporotic rats. Using systemic ZA administration at 2-weeks post-surgery, we demonstrated that the implant surrounded by HA particles showed significantly higher peri­implant bone formation compared to the unaugmented implants at 6-weeks. We then evaluated the optimal timing (day 1, 3, 7 and 14) of ZA administration to achieve a robust effect on peri­implant bone formation. Using fluorescent ZA, we demonstrated that the uptake of ZA in the CaS/HA material was the highest at 3- and 7-days post-implantation and the uptake kinetics had a profound effect on the eventual peri­implant bone formation. We furthered our concept in a feasibility study on trochanteric fracture patients randomized to either CaS/HA augmentation or no augmentation followed by systemic ZA treatment. Radiographically, the CaS/HA group showed signs of increased peri­implant bone formation compared with the controls. Finally, apart from HA, we demonstrated that the concept of biologically activating a ceramic material by ZA could also be applied to ß-tricalcium phosphate. This novel approach for fracture treatment that enhances immediate and long-term fracture fixation in osteoporotic bone could potentially reduce reoperations, morbidity and mortality. STATEMENT OF SIGNIFICANCE: • Fracture fixation in an ageing population is challenging. Biomaterial-based augmentation of fracture fixation devices has been attempted but lack of satisfactory biological response limits their widespread use. • We report the biological activation of locally implanted microparticulate hydroxyapatite (HA) particles placed around an implant by systemic administration of the bisphosphonate zoledronic acid (ZA). The biological activation of HA by ZA enhances peri­implant bone formation. •Timing of ZA administration after HA implantation is critical for optimal ZA uptake and consequently determines the extent of peri­implant bone formation. • We translate the developed concept from small animal models of implant integration to a proof-of-concept clinical study on osteoporotic trochanteric fracture patients. • ZA based biological activation can also be applied to other calcium phosphate biomaterials.


Asunto(s)
Durapatita , Osteogénesis , Ácido Zoledrónico , Animales , Ácido Zoledrónico/farmacología , Durapatita/química , Durapatita/farmacología , Femenino , Humanos , Osteogénesis/efectos de los fármacos , Medicina Regenerativa/métodos , Ratas , Ratas Sprague-Dawley , Fijación de Fractura , Anciano , Difosfonatos/farmacología , Difosfonatos/química , Anciano de 80 o más Años , Masculino
3.
Eur J Med Chem ; 269: 116307, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38460269

RESUMEN

The antitumoral activity of hydroxymethylene bisphosphonates (HMBP) such as alendronate or zoledronate is hampered by their exceptional bone-binding properties and their short plasmatic half-life which preclude their accumulation in non-skeletal tumors. In this context, the use of lipophilic prodrugs represents a simple and straightforward strategy to enhance the biodistribution of bisphosphonates in these tissues. We describe in this article the synthesis of light-responsive prodrugs of HMBP alendronate. These prodrugs include lipophilic photo-removable nitroveratryl groups which partially mask the highly polar alendronate HMBP scaffold. Photo-responsive prodrugs of alendronate are stable in physiological conditions and display reduced toxicity compared to alendronate against MDA-MB-231 cancer cells. However, the antiproliferative effect of these prodrugs is efficiently restored after cleavage of their nitroveratryl groups upon exposure to UV light. In addition, substitution of alendronate with such photo-responsive substituents drastically reduces its bone-binding properties, thereby potentially improving its biodistribution in soft tissues after i.v. administration. The development of such lipophilic photo-responsive prodrugs is a promising approach to fully exploit the anticancer effect of HMBPs on non-skeletal tumors.


Asunto(s)
Neoplasias , Profármacos , Humanos , Alendronato/farmacología , Alendronato/química , Profármacos/farmacología , Distribución Tisular , Difosfonatos/farmacología , Difosfonatos/química
4.
Bioorg Med Chem Lett ; 102: 129659, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373465

RESUMEN

Depletion of cellular levels of geranylgeranyl diphosphate by inhibition of the enzyme geranylgeranyl diphosphate synthase (GGDPS) is a potential strategy for disruption of protein transport by limiting the geranylgeranylation of the Rab proteins that regulate intracellular trafficking. As such, there is interest in the development of GGDPS inhibitors for the treatment of malignancies characterized by abnormal protein production, including multiple myeloma. Our previous work has explored the structure-function relationship of a series of isoprenoid triazole bisphosphonate-based GGDPS inhibitors, with modifications having impact on enzymatic, cellular and in vivo activities. We have synthesized a new series of α-amino bisphosphonates to understand the impact of modifying the alpha position with a moiety that is potentially linkable to other agents. Bioassays evaluating the enzymatic and cellular activities of these compounds demonstrate that incorporation of the α-amino group affords compounds with GGDPS inhibitory activity which is modulated by isoprenoid tail chain length and olefin stereochemistry. These studies provide further insight into the complexity of the structure-function relationship and will enable future efforts focused on tumor-specific drug delivery.


Asunto(s)
Difosfonatos , Inhibidores Enzimáticos , Difosfonatos/farmacología , Difosfonatos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Farnesiltransferasa , Triazoles/química , Terpenos/química
5.
ACS Appl Bio Mater ; 6(12): 5563-5581, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37982716

RESUMEN

Bisphosphonate (BP)-based treatments have been extensively prescribed for bone-related conditions, particularly for osteoporosis. Their low bioavailability creates the need for prescribed dosage increase to reach therapeutic levels but generates a plethora of undesirable side effects. A viable approach to alleviating these issues is to design and exploit controlled release strategies. Herein, the controlled release profiles of 15 structurally characterized BPs (actual drugs and structural analogs) were thoroughly studied from tablets containing three (cellulose, lactose, and silica) or two (cellulose, and silica) excipients in human stomach-simulated pH conditions. The BPs were of two types, alkyl-BPs and amino-BPs. Alkyl-BPs included four derivatives of etidronate (acid, disodium, tetra-sodium, and monopotassium forms), medronic acid, and three analogs of etidronate, in which the -CH3 group was replaced by the moieties -H, -CH2CH2CH3, and -CH2CH2CH2CH2CH3. Amino-BPs included the commercial drugs pamidronate, alendronate, neridronate, and ibandronate, as well as three analog compounds. Release curves were constructed based on data taken from 1H NMR peak integration and were expressed as "% BP release" vs time. The controlled release profiles (initial release rate, plateau value, etc.) were correlated with certain structural features (number of hydrogen and metal-oxygen bonds), showing that the molecular and crystal lattice features of each BP profoundly influence its release characteristics. It was concluded that for all BPs, in general, the initial rate became lower as the total number of lattice interactions increased. For the alkyl-BPs elongation of the alkyl side chain seems to decelerate the release. Amino-BPs, in general, show slower release than the alkyl-BPs. No adverse effects of alkyl- and amino-BP drugs on NIH3T3 cell viability were noted.


Asunto(s)
Difosfonatos , Ácido Etidrónico , Ratones , Animales , Humanos , Preparaciones de Acción Retardada/farmacología , Ácido Etidrónico/farmacología , Células 3T3 NIH , Difosfonatos/farmacología , Difosfonatos/química , Celulosa , Dióxido de Silicio
6.
ACS Appl Mater Interfaces ; 15(28): 33397-33412, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37404172

RESUMEN

Extended bisphosphonate-based coordination polymers (BPCPs) were produced when 1,1'-biphenyl-4,4'-bisphosphonic acid (BPBPA), the analogue of 1,1'-biphenyl-4,4'-dicarboxylic acid (BPDC), reacted with bioactive metals (Ca2+, Zn2+, and Mg2+). BPBPA-Ca (11 Å × 12 Å), BPBPA-Zn (10 Å × 13 Å), and BPBPA-Mg (8 Å × 11 Å) possess channels that allow the encapsulation of letrozole (LET), an antineoplastic drug that combined with BPs treats breast-cancer-induced osteolytic metastases (OM). Dissolution curves obtained in phosphate-buffered saline (PBS) and fasted-state simulated gastric fluid (FaSSGF) demonstrate the pH-dependent degradation of BPCPs. Specifically, the results show that the structure of BPBPA-Ca is preserved in PBS (∼10% release of BPBPA) and collapses in FaSSGF. Moreover, the phase inversion temperature nanoemulsion method yielded nano-Ca@BPBPA (∼160 d. nm), a material with measurably higher (>1.5x) binding to hydroxyapatite than commercial BPs. Furthermore, it was found that the amounts of LET encapsulated and released (∼20 wt %) from BPBPA-Ca and nano-Ca@BPBPA are comparable to those of BPDC-based CPs [i.e., UiO-67-(NH2)2, BPDC-Zr, and bio-MOF-1], where other antineoplastic drugs have been loaded and released under similar conditions. Cell viability assays show that, at 12.5 µM, the drug-loaded nano-Ca@BPBPA exhibits higher cytotoxicity against breast cancer cells MCF-7 and MDA-MB-231 [relative cell viability (%RCV) = 20 ± 1 and 45 ± 4%] compared with LET (%RCV = 70 ± 1 and 99 ± 1%). At this concentration, no significant cytotoxicity was found for the hFOB 1.19 cells treated with drug-loaded nano-Ca@BPBPA and LET (%RCV = 100 ± 1%). Collectively, these results demonstrate the potential of nano-Ca@BPCPs as promising drug-delivery systems to treat OM or other bone-related diseases because these present measurably higher affinity, allowing bone-targeted drug delivery under acidic environments and effecting cytotoxicity on estrogen receptor-positive and triple-negative breast cancer cell lines known to induce bone metastases, without significantly affecting normal osteoblasts at the metastatic site.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Neoplasias de la Mama , Humanos , Femenino , Difosfonatos/farmacología , Difosfonatos/química , Polímeros/química , Sistemas de Liberación de Medicamentos/métodos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/patología , Neoplasias Óseas/tratamiento farmacológico , Letrozol/uso terapéutico
7.
Adv Healthc Mater ; 12(22): e2203004, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37199479

RESUMEN

Insoluble metal bisphosphonates (BPs) are considered an ideal alternative to the soluble counterparts in regenerative medicine due to their increased BP release profile, but still present undesired properties (e.g., low stability, uncontrolled degradation, and poor biocompatibility). Through a simple crystallization on a solid calcium hydroxyapatite (HA)-based substrate from a BP precursor solution in 30 days, a series of insoluble calcium BP (CaBP) crystals are developed. These crystals, including calcium alendronate (CaAln), calcium pamidronate (CaPam), calcium incadronate (CaInc), calcium risedronate (CaRis), calcium zoledronate (CaZol), and calcium di-minodronate (Ca(Min)2 ), present high purity, regular morphologies and excellent biodegradability. It is demonstrated that these CaBPs can induce osteogenic differentiation of adipose-derived mesenchymal stem cells in vitro in the absence of other osteogenic inducers. It is further found that CaBP induces bone formation more effectively in a femur defect rabbit model in three months but with a lower in vivo hematotoxicity than the clinically used HA during osteogenesis. It is believed that these desired biological properties arise from the capability of the insoluble CaBPs in releasing BPs in a sustained manner for stimulating osteogenesis. This work provides a significant strategy for turning CaBPs into novel biomaterials for tissue regeneration and demonstrates their great potential in the clinic.


Asunto(s)
Materiales Biocompatibles , Osteogénesis , Animales , Conejos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Calcio , Cristalización , Difosfonatos/farmacología , Difosfonatos/química , Durapatita/química , Regeneración Ósea , Diferenciación Celular
8.
J Equine Vet Sci ; 127: 104503, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37120118

RESUMEN

Bisphosphonates are a group of drugs that can reduce bone resorption by incorporating into the crystal structure of exposed hydroxyapatite where they are taken up by osteoclasts. Bisphosphonates have several other mechanisms of action including reducing pain and inflammation and altering macrophage function. There are two types of bisphosphonates-nitrogenous and non-nitrogenous, the latter of which is used in horses. This article provides a literature-based review of the proposed mechanisms of action and therapeutic uses of bisphosphonates including a brief review of bone response to disease. A review of the literature available in horses including safety data and current rules and regulations is also provided.


Asunto(s)
Resorción Ósea , Enfermedades de los Caballos , Caballos , Animales , Difosfonatos/farmacología , Difosfonatos/uso terapéutico , Difosfonatos/química , Osteoclastos , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/veterinaria , Enfermedades de los Caballos/tratamiento farmacológico
9.
Colloids Surf B Biointerfaces ; 222: 113064, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36481508

RESUMEN

It is of great challenges to repair bone defect and prevent tumor recurrence in bone tumors postoperative treatment. Bone scaffolds loaded with zoledronate (ZOL) are expected to solve these issues due to its osteogenesis and anti-tumor ability. Furthermore, ZOL needs to be sustained release to meet the requirement of long-term therapy. In this study, ZOL was loaded into amination functionalized mesoporous silicon (SBA15NH2), and then incorporated into poly (L-lactic acid) to prepare PLLA/SBA15NH2-ZOL scaffold via selective laser sintering technology. On one hand, ZOL of local release not only can inhibit growth and proliferation of bone tumor cells but also inhibit osteoclast differentiation through competitive binding of receptor activator of nuclear factor (NF)-kB (RANK) in osteoclast precursors. On the other hand, amination function could change the surface charge of mesoporous silica to positive charge to enhance the absorption of ZOL, mesoporous structure and abundant amino groups of SBA15NH2 play a barrier role and form hydrogen bond with phosphate groups of ZOL, respectively, thereby achieving its sustained release. The results showed that the loading amount of ZOL was 236.53 mg/g, and the scaffold could sustainedly release ZOL for more than 6 weeks. The scaffold inhibited proliferation of osteosarcoma cells through inducing apoptosis and cell cycle arrest. TRAP staining and F-actin ring formation experiment showed the scaffold inhibited differentiation and mature of osteoclast. Pit formation assay indicated that bone resorption activity was inhibited strongly.


Asunto(s)
Conservadores de la Densidad Ósea , Neoplasias Óseas , Humanos , Ácido Zoledrónico/farmacología , Preparaciones de Acción Retardada/farmacología , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Osteoclastos , Difosfonatos/farmacología , Difosfonatos/química
10.
Molecules ; 27(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36234745

RESUMEN

Bisphosphonates (BPs) are common pharmaceutical treatments used for calcium- and bone-related disorders, the principal one being osteoporosis. Their antiresorptive action is related to their high affinity for hydroxyapatite, the main inorganic substituent of bone. On the other hand, the phosphonate groups on their backbone make them excellent ligands for metal ions. The combination of these properties finds potential application in the utilization of such systems as controlled drug release systems (CRSs). In this work, the third generation BP drug zoledronate (ZOL) was combined with alkaline earth metal ions (e.g., Sr2+ and Ba2+) in an effort to synthesize new materials. These metal-ZOL compounds can operate as CRSs when exposed to appropriate experimental conditions, such as the low pH of the human stomach, thus releasing the active drug ZOL. CRS networks containing Sr2+ or Ba2 and ZOL were physicochemically and structurally characterized and were evaluated for their ability to release the free ZOL drug during an acid-driven hydrolysis process. Various release and kinetic parameters were determined, such as initial rates and release plateau values. Based on the drug release results of this study, there was an attempt to correlate the ZOL release efficiency with the structural features of these CRSs.


Asunto(s)
Conservadores de la Densidad Ósea , Osteoporosis , Conservadores de la Densidad Ósea/uso terapéutico , Calcio , Preparaciones de Acción Retardada/química , Difosfonatos/química , Durapatita/uso terapéutico , Humanos , Imidazoles/química , Osteoporosis/tratamiento farmacológico , Ácido Zoledrónico
11.
Bioorg Med Chem Lett ; 73: 128918, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35926798

RESUMEN

In order to develop 99mTc-labeled complexes with bisphosphonate isocyanide as novel bone imaging agents, two bisphosphonate isocyanide derivatives (CNALN and CNPAM) were synthesized and radiolabeling was performed for preparing the corresponding [99mTc]Tc(I) complexes. [99mTc]Tc-CNALN and [99mTc]Tc-CNPAM were obtained with high radiochemical purity and showed good in vitro stability. Both of them were hydrophilic and had high affinity to hydroxyapatite. The biodistribution studies in mice revealed [99mTc]Tc-CNALN showed higher bone/background ratios at 60 min post-injection. In single photon emission computed tomography (SPECT) imaging study, [99mTc]Tc-CNALN had an obvious accumulation in bone, suggesting it would be a promising bone-seeking agent.


Asunto(s)
Difosfonatos , Compuestos de Organotecnecio , Animales , Cianuros , Difosfonatos/química , Ratones , Compuestos de Organotecnecio/química , Radiofármacos/farmacología , Tecnecio/química , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único/métodos
12.
Bioorg Med Chem ; 58: 116652, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35180594

RESUMEN

The toxicity of existing anticancer agents on healthy cells and the emergence of multidrug-resistance cancer cells have led to the search for less toxic anticancer agents with different mechanisms of action. In this study, a novel class of ferrocenylbisphosphonate hybrid compounds (H1-H8) were designed and characterized using NMR, IR and HRMS. The in vitro anticancer activity of the hybrid compounds on HeLa (cervix adenocarcinoma) and A549 (non-small cell lung cancer cell lines) was evaluated. The structure-activity relationship of the hybrid molecules was also studied. The lead compound, tetraethyl (3-(4-oxo-4-ferrocenylbutanamido) propane-1-1-diylbis(phosphonate) (H6) exhibited higher cytotoxicity on A549 (IC50 = 28.15 µM) than cisplatin (IC50 = 58.28 µM), while its activity on HeLa cells (IC50 = 14.69 µM) was equivalent to that of cisplatin 15.10 µM (HeLa cells). H6 (IC50 = 95.58 µM) was also five times less toxic than cisplatin (IC50 = 20.86 µM) on fibroblast NIH3T3 suggesting that H6 can be a future replacement for cisplatin due to its non-toxicity to healthy cells. Interestingly, some ferrocene and bisphosphonate parent compounds exhibited promising anticancer activity with 4-ferrocenyl-4-oxobutanoic acid (FI) exhibiting higher cytotoxic activity (IC50 = 1.73 µM) than paclitaxel (IC50 = 3.5 µM) on A549 cell lines. F1 also exhibited lower cytotoxicity than paclitaxel and cisplatin on the normal murine fibroblast cell line (NIH3T3). The molecular docking studies showed H6 strong binding affinity for the STAT3 signaling pathway in A549 cell line, and the MAdCAM-1 and cellular tumor antigen p53 proteins in HeLa cell lines.


Asunto(s)
Antineoplásicos/farmacología , Difosfonatos/farmacología , Compuestos Ferrosos/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Difosfonatos/síntesis química , Difosfonatos/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Ferrosos/síntesis química , Compuestos Ferrosos/química , Ratones , Estructura Molecular , Relación Estructura-Actividad
13.
Sovrem Tekhnologii Med ; 14(2): 68-78, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37065429

RESUMEN

As early as 50 years ago, bisphosphonates turned from a water treatment agent into one of the most widely used groups of drugs for the treatment of various diseases of calcium metabolism (bone tissue resorption, oncological complications of neurodegenerative diseases and others). Years of research on bisphosphonates have contributed to the understanding of their molecular and cellular pathways of their action. All bisphosphonates have a similar structure and common properties, however, there are obvious chemical, biochemical, and pharmacological differences between them. Each bisphosphonate has its own unique profile. This review summarizes data on the mechanisms of action of bisphosphonates, demonstrates the experience and prospects for their use for the modification of cardiovascular bioprostheses, since the issue of preventing bisphosphonate calcification has not been settled yet.


Asunto(s)
Resorción Ósea , Calcinosis , Humanos , Difosfonatos/farmacología , Difosfonatos/uso terapéutico , Difosfonatos/química , Calcinosis/tratamiento farmacológico , Calcinosis/prevención & control , Calcificación Fisiológica , Válvulas Cardíacas , Huesos , Resorción Ósea/tratamiento farmacológico
14.
Biomolecules ; 11(8)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34439771

RESUMEN

Tissue-nonspecific alkaline phosphatase (TNAP) is known to be involved in the degradation of extracellular ATP via the hydrolysis of pyrophosphate (PPi). We investigated, using three different computational methods, namely molecular docking, thermodynamic integration (TI) and conventional molecular dynamics (MD), whether TNAP may also be involved in the utilization of ß,γ-modified ATP analogues. For that, we analyzed the interaction of bisphosphonates with this enzyme and evaluated the obtained structures using in silico studies. Complexes formed between pyrophosphate, hypophosphate, imidodiphosphate, methylenediphosphonic acid monothiopyrophosphate, alendronate, pamidronate and zoledronate with TNAP were generated and analyzed based on ligand docking, molecular dynamics and thermodynamic integration. The obtained results indicate that all selected ligands show high affinity toward this enzyme. The forming complexes are stabilized through hydrogen bonds, electrostatic interactions and van der Waals forces. Short- and middle-term molecular dynamics simulations yielded very similar affinity results and confirmed the stability of the protein and its complexes. The results suggest that certain effectors may have a significant impact on the enzyme, changing its properties.


Asunto(s)
Fosfatasa Alcalina/química , Biología Computacional/métodos , Difosfatos/química , Adenosina Trifosfato/química , Alendronato/química , Difosfonatos/química , Enzimas/química , Humanos , Enlace de Hidrógeno , Ligandos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pamidronato/química , Fosfatos/química , Conformación Proteica , Termodinámica , Ácido Zoledrónico/química
15.
J Med Chem ; 64(16): 12245-12260, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34369757

RESUMEN

Bisphosphonates (BPs) are bone-binding molecules that provide targeting capabilities to bone cancer cells when conjugated with drug-carrying polymers. This work reports the design, synthesis, and biological evaluation of polyethyleneimine-BP-cyclodextrin (PEI-BP-CD) ternary conjugates with supramolecular capabilities for the loading of antineoplastic drugs. A straightforward, modular, and versatile strategy based on the click aza-Michael addition reaction of vinyl sulfones (VSs) allows the grafting of BPs targeting ligands and ßCD carrier appendages to the PEI polymeric scaffold. The in vitro evaluation (cytotoxicity, cellular uptake, internalization routes, and subcellular distribution) for the ternary conjugates and their doxorubicin inclusion complexes in different bone-related cancer cell lines (MC3T3-E1 osteoblasts, MG-63 sarcoma cells, and MDA-MB-231 breast cancer cells) confirmed specificity, mitochondrial targeting, and overall capability to mediate a targeted drug transport to those cells. The in vivo evaluation using xenografts of MG-63 and MDA-MB-231 cells on mice also confirmed the targeting of the conjugates.


Asunto(s)
Antineoplásicos/uso terapéutico , Ciclodextrinas/química , Difosfonatos/química , Portadores de Fármacos/química , Neoplasias/tratamiento farmacológico , Polietileneimina/análogos & derivados , Animales , Línea Celular Tumoral , Ciclodextrinas/síntesis química , Ciclodextrinas/toxicidad , Difosfonatos/síntesis química , Difosfonatos/toxicidad , Doxorrubicina/uso terapéutico , Portadores de Fármacos/síntesis química , Portadores de Fármacos/toxicidad , Diseño de Fármacos , Femenino , Humanos , Ratones , Polietileneimina/síntesis química , Polietileneimina/toxicidad , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206757

RESUMEN

Metastatic bone cancer occurs in every type of cancer but is prevalent in lung, breast, and prostate cancers. These metastases can cause extensive morbidity, including a range of skeletal-related events, often painful and linked with substantial hospital resource usage. The treatment used is a combination of chemotherapy and surgery. However, anticancer drugs are still limited due to severe side effects, drug resistance, poor blood supply, and non-specific drug uptake, necessitating high toxic doses. Bisphosphonates are the main class of drugs utilized to inhibit metastatic bone cancer. It is also used for the treatment of osteoporosis and other bone diseases. However, bisphosphonate also suffers from serious side effects. Thus, there is a serious need to develop bisphosphonate conjugates with promising therapeutic outcomes for treating metastatic bone cancer and osteoporosis. This review article focuses on the biological outcomes of designed bisphosphonate-based conjugates for the treatment of metastatic bone cancer and osteoporosis.


Asunto(s)
Conservadores de la Densidad Ósea/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico , Difosfonatos/uso terapéutico , Osteoporosis/tratamiento farmacológico , Animales , Conservadores de la Densidad Ósea/química , Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Difosfonatos/química , Humanos
17.
Bioorg Med Chem ; 44: 116307, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34298413

RESUMEN

Agents that inhibit the enzyme geranylgeranyl diphosphate synthase (GGDPS) have anti-cancer activity and our prior studies have investigated the structure-function relationship for a family of isoprenoid triazole bisphosphonates as GGDPS inhibitors. To further explore this structure-function relationship, a series of novel α-modified triazole phosphonates was prepared and evaluated for activity as GGDPS inhibitors in enzyme and cell-based assays. These studies revealed flexibility at the α position of the bisphosphonate derivatives with respect to being able to accommodate a variety of substituents without significantly affecting potency compared to the parent unsubstituted inhibitor. However, the monophosphonate derivatives lacked activity. These studies further our understanding of the structure-function relationship of the triazole-based GGDPS inhibitors and lay the foundation for future studies evaluating the impact of α-modifications on in vivo activity.


Asunto(s)
Difosfonatos/farmacología , Inhibidores Enzimáticos/farmacología , Farnesiltransferasa/antagonistas & inhibidores , Triazoles/farmacología , Difosfonatos/síntesis química , Difosfonatos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Farnesiltransferasa/metabolismo , Humanos , Estructura Molecular , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química
18.
J Chromatogr A ; 1651: 462337, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34157476

RESUMEN

Here, a m-xylene bisphosphonate immobilized tentacle-type cellulose monolith (BP-PCM) is prepared by atom transfer radical polymerization for lysozyme purification. In the preparation, the m-xylene bisphosphonate was anchored glycidyl methacrylate and then polymerized to enhance the flexibility of the ligands to improve lysozyme adsorption capacity, and glycerol monomethacrylate serves as spacer to further optimize the layers structure and ligands density of the grafted tentacles for satisfactory adsorption capacity. The maximum static and dynamic adsorption capacity (10% breakthrough) of BP-PCM reach to 169.6 and 102.6 mg mL-1, respectively. Moreover, BP-PCM displays weak nonspecific adsorption and is able to successfully enrich lysozyme from diluted chicken egg white, indicating the excellent selectivity. The results demonstrated that BP-PCM is promising for use as high-capacity protein chromatography.


Asunto(s)
Celulosa/química , Técnicas de Química Analítica/métodos , Cromatografía , Difosfonatos/química , Muramidasa/aislamiento & purificación , Adsorción , Técnicas de Química Analítica/instrumentación , Compuestos Epoxi/química , Ligandos , Metacrilatos/química , Muramidasa/química , Polimerizacion , Porosidad
19.
J Nanobiotechnology ; 19(1): 127, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947409

RESUMEN

Glioblastoma multiforme (GBM) is an incurable aggressive brain cancer in which current treatment strategies have demonstrated limited survival benefit. In recent years, nitrogen-containing bisphosphonates (N-BPs) have demonstrated direct anticancer effects in a number of tumour types including GBM. In this study, a nano-formulation with the RALA peptide was used to complex the N-BP, alendronate (ALN) into nanoparticles (NPs) < 200 nm for optimal endocytic uptake. Fluorescently labelled AlexaFluor®647 Risedronate was used as a fluorescent analogue to visualise the intracellular delivery of N-BPs in both LN229 and T98G GBM cells. RALA NPs were effectively taken up by GBM where a dose-dependent response was evidenced with potentiation factors of 14.96 and 13.4 relative to ALN alone after 72 h in LN229 and T98G cells, respectively. Furthermore, RALA/ALN NPs at the IC50, significantly decreased colony formation, induced apoptosis and slowed spheroid growth in vitro. In addition, H-Ras membrane localisation was significantly reduced in the RALA/ALN groups compared to ALN or controls, indicative of prenylation inhibition. The RALA/ALN NPs were lyophilised to enhance stability without compromising the physiochemical properties necessary for functionality, highlighting the suitability of the NPs for scale-up and in vivo application. Collectively, these data show the significant potential of RALA/ALN NPs as novel therapeutics in the treatment of GBM.


Asunto(s)
Antineoplásicos/farmacología , Difosfonatos/farmacología , Glioblastoma/tratamiento farmacológico , Nanomedicina/métodos , Nitrógeno/farmacología , Alendronato/química , Alendronato/farmacología , Alendronato/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Difosfonatos/química , Difosfonatos/uso terapéutico , Humanos , Nanopartículas/química , Tamaño de la Partícula , Péptidos
20.
Bioorg Med Chem Lett ; 45: 128137, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34048882

RESUMEN

The Gq-coupled P2Y6 receptor (P2Y6R) is a component of the purinergic signaling system and functions in inflammatory, cardiovascular and metabolic processes. UDP, the native P2Y6R agonist and P2Y14R partial agonist, is subject to hydrolysis by ectonucleotidases. Therefore, we have synthesized UDP/CDP analogues containing a stabilizing α,ß-methylene bridge as P2Y6R agonists and identified compatible affinity-enhancing pyrimidine modifications. A distal binding region on the receptor was explored with 4-benzyloxyimino cytidine 5'-diphosphate analogues and their potency determined in a calcium mobilization assay. A 4-trifluoromethyl-benzyloxyimino substituent in 25 provided the highest human P2Y6R potency (MRS4554, 0.57 µM), and a 5-fluoro substitution of the cytosine ring in 28 similarly enhanced potency, with >175- and 39-fold selectivity over human P2Y14R, respectively. However, 3-alkyl (31-33, 37, 38), ß-d-arabinofuranose (39) and 6-aza (40) substitution prevented P2Y6R activation. Thus, we have identified new α,ß-methylene bridged N4-extended CDP analogues as P2Y6R agonists that are highly selective over the P2Y14R.


Asunto(s)
Difosfonatos/farmacología , Nucleótidos de Pirimidina/farmacología , Receptores Purinérgicos P2/metabolismo , Difosfonatos/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Nucleótidos de Pirimidina/síntesis química , Nucleótidos de Pirimidina/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA