Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 410(8): 2161-2171, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29423596

RESUMEN

Protein-protein interactions in monoclonal antibody solutions are important for the stability of a therapeutic drug and directly influence viscosity in concentrated protein solutions. This study describes the use of small-angle scattering to estimate protein-protein interactions at high concentrations of the IgG1 NISTmAb reference material and validate colloidal models for interacting molecules. In particular, we studied the colloidal stability of the NISTmAb at high protein concentrations and analyzed protein-protein interactions upon adding sodium chloride and its effect on viscosity. Isotropic colloidal models for interacting molecules were combined with an ensemble of atomistic structures from molecular simulation to account for the flexibility of the NISTmAb in solution. In histidine formulation buffer, net repulsive electrostatic interactions are important for the colloidal stability of the NISTmAb at high concentrations. Addition of sodium chloride increased the viscosity of the NISTmAb and decreased the colloidal stability due to charge screening of the repulsive interactions. The interactions at high concentrations (up to ~ 250 mg/mL) were consistent with those from light scattering at low concentrations (below ~ 20 mg/mL). However, in the presence of sodium chloride, the screening of charges was less pronounced with increasing protein concentration and the interactions approached those of the repulsive hard-sphere models. Additionally, we studied the NISTmAb under frozen conditions using in situ neutron scattering to analyze the crowded state as proteins are excluded from the water-rich phase. In the frozen samples, where protein concentration can reach hundreds of mg/mL in the protein-rich phase, sodium chloride did not affect the molecular spacing and crowding of the NISTmAb. Graphical Abstract Net repulsive interactions in concentrated NISTmAb solutions assessed by small-angle neutronscattering.


Asunto(s)
Anticuerpos Monoclonales/química , Inmunoglobulina G/química , Tampones (Química) , Congelación , Histidina , Humanos , Difracción de Neutrones/métodos , Difracción de Neutrones/normas , Estándares de Referencia , Dispersión del Ángulo Pequeño , Soluciones , Viscosidad
2.
Anal Bioanal Chem ; 410(8): 2141-2159, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29423600

RESUMEN

Both conformational and colloidal stability of therapeutic proteins must be closely monitored and thoroughly characterized to assess the long-term viability of drug products. We characterized the IgG1 NISTmAb reference material in its histidine formulation buffer and report our findings on the higher order structure and interactions of NISTmAb under a range of conditions. In this paper we present the analysis of experimental small-angle scattering data with atomistic molecular simulations to characterize the monodisperse dilute solution of NISTmAb. In part II we describe the characterization of the NISTmAb at high protein concentration (Castellanos et al. 2018). The NISTmAb was found to be a flexible protein with a radius of gyration of 49.0 ± 1.2 Å in histidine formulation buffer using a variety of neutron and X-ray scattering measurements. Scattering data were then modeled using molecular simulation. After building and validating a starting NISTmAb structure from the Fc and Fab crystallographic coordinates, molecular dynamics and torsion-angle Monte Carlo simulations were performed to explore the configuration space sampled in the NISTmAb and obtain ensembles of structures with atomistic detail that are consistent with the experimental data. Our results indicate that the small-angle scattering profiles of the NISTmAb can be modeled using ensembles of flexible structures that explore a wide configuration space. The NISTmAb is flexible in solution with no single preferred orientation of Fc and Fab domains, but with some regions of configuration space that are more consistent with measured scattering profiles. Analysis of inter-domain atomistic contacts indicated that all ensembles contained configurations where residues between domains are ≤ 4 Å, although few contacts were observed for variable and C H 3 regions. Graphical Abstract Heavy atom self contact maps of the NISTmAb indicate a highly-flexible structure.


Asunto(s)
Anticuerpos Monoclonales/química , Inmunoglobulina G/química , Tampones (Química) , Histidina , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/química , Simulación de Dinámica Molecular , Difracción de Neutrones/métodos , Difracción de Neutrones/normas , Conformación Proteica , Estabilidad Proteica , Estándares de Referencia , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos , Difracción de Rayos X/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...