Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 868
Filtrar
1.
Environ Geochem Health ; 46(9): 305, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001968

RESUMEN

Dimethoate (DMT) is one of the most harmful and commonly used organophosphate pesticides in agricultural lands to control different groups of parasitic insects. However, this pesticide is considered a dangerous pollutant for aquatic organisms following its infiltration in coastal ecosystems through leaching. Yet, our investigation aimed to gain new insights into the toxicity mechanism of DMT in the muscles of the green crab Carcinus aestuarii, regarding oxidative stress, neurotransmission impairment, histological aspects, and changes in lipid composition, assessed for the first time on the green crab's muscle. Specimens of C. aestuarii were exposed to 50, 100, and 200 µg DMT L-1 for 24 h. Compared to the negative control group, the higher the DMT concentration, the lower the saturated fatty acids (SFA), and the higher the monounsaturated fatty acids (MUFA). The significant increase in polyunsaturated fatty acid n-6 (PUFA n-6) was related to the high release, mainly, of linoleic acid (LA, C18: 2n6) and arachidonic acid (ARA, C20: 4n6) levels. Biochemical biomarkers showed that DMT exposure promoted oxidative stress, highlighted by increased levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), advanced oxidation protein product levels (AOPP), and protein carbonyl (PCO). Furthermore, the antioxidant defense system was activated, as demonstrated by the significant changes in the enzymatic activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and reduced glutathione (GSH) levels associated with an adaptation process of C. aestuarii to cope with the DMT exposure. This pesticide significantly impairs the neurotransmission process, as evidenced by the inhibition of acetylcholinesterase (AChE) activity. Finally, several histopathological changes were revealed in DMT-treated crabs, including vacuolation, and muscle bundle loss.This research offered new insights into the toxic mechanism of DMT, pointing to the usefulness of fatty acid (FA) composition as a sensitive biomarker in littoral crabs.


Asunto(s)
Braquiuros , Dimetoato , Músculos , Estrés Oxidativo , Contaminantes Químicos del Agua , Animales , Dimetoato/toxicidad , Estrés Oxidativo/efectos de los fármacos , Braquiuros/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Músculos/efectos de los fármacos , Músculos/metabolismo , Ácidos Grasos/metabolismo , Insecticidas/toxicidad , Biomarcadores/metabolismo , Malondialdehído/metabolismo
2.
J Photochem Photobiol B ; 257: 112965, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955078

RESUMEN

This research aimed to develop natural plant systems to serve as biological sentinels for the detection of organophosphate pesticides in the environment. The working hypothesis was that the presence of the pesticide in the environment caused changes in the content of pigments and in the photosynthetic functioning of the plant, which could be evaluated non-destructively through the analysis of reflected light and emitted fluorescence. The objective of the research was to furnish in vivo indicators derived from spectroscopic parameters, serving as early alert signals for the presence of organophosphates in the environment. In this context, the effects of two pesticides, Chlorpyrifos and Dimethoate, on the spectroscopic properties of aquatic plants (Vallisneria nana and Spathyfillum wallisii) were studied. Chlorophyll-a variable fluorescence allowed monitoring both pesticides' presence before any damage was observed at the naked eye, with the analysis of the fast transient (OJIP curve) proving more responsive than Kautsky kinetics, steady-state fluorescence, or reflectance measurements. Pesticides produced a decrease in the maximum quantum yield of PSII photochemistry, in the proportion of PSII photochemical deexcitation relative to PSII non photochemical decay and in the probability that trapped excitons moved electrons into the photosynthetic transport chain beyond QA-. Additionally, an increase in the proportion of absorbed energy being dissipated as heat rather than being utilized in the photosynthetic process, was notorious. The pesticides induced a higher deactivation of chlorophyll excited states by photophysical pathways (including fluorescence) with a decrease in the quantum yields of photosystem II and heat dissipation by non-photochemical quenching. The investigated aquatic plants served as sentinels for the presence of pesticides in the environment, with the alert signal starting within the first milliseconds of electronic transport in the photosynthetic chain. Organophosphates damage animals' central nervous systems similarly to certain compounds found in chemical weapons, thus raising the possibility that sentinel plants could potentially signal the presence of such weapons.


Asunto(s)
Clorofila , Cloropirifos , Clorofila/metabolismo , Clorofila/química , Cloropirifos/metabolismo , Cloropirifos/toxicidad , Fluorescencia , Plaguicidas/toxicidad , Plaguicidas/metabolismo , Fotosíntesis/efectos de los fármacos , Dimetoato/toxicidad , Dimetoato/metabolismo , Espectrometría de Fluorescencia , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/química , Monitoreo del Ambiente/métodos , Clorofila A/metabolismo , Clorofila A/química , Cinética , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
3.
Pestic Biochem Physiol ; 202: 105957, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879339

RESUMEN

Sitobion miscanthi is a destructive wheat pest responsible for significant wheat yield losses. Pirimicarb, one of the most important representatives of N, N-dimethylcarbamate insecticides, is widely used to control wheat aphids. In present work, heterozygous S431F mutation of acetylcholinesterase 1 (AChE1) was identified and verified in three pirimicarb-resistant S. miscanthi populations (two field populations (HA and HS, >955.8-fold) and one lab-selected population (PirR, 486.1-fold)), which has not been reported in S. miscanthi yet. The molecular docking results revealed that AChE1 containing the S431F mutation of S. miscanthi (SmAChE1S431F) showed higher free binding energy to three insecticides (pirimicarb, omethoate, and methomyl) than wild-type AChE1 of S. miscanthi (SmAChE1). Enzyme kinetic and inhibition experiments showed that the recombinant SmAChE1S431F was more insensitive to pirimicarb and omethoate than the recombinant SmAChE1. Furthermore, two overexpression P450 genes (CYP6K1 and CYP6A14) associated with pirimicarb resistance of S. miscanthi were verified by RNAi. These results suggested both target alteration and enhanced metabolism contributed to high pirimicarb resistance of S. miscanthi in the field and laboratory. These findings lay a foundation for further elucidating the mechanism of pirimicarb resistance in S. miscanthi, and have important implications for the resistance management of S. miscanthi control.


Asunto(s)
Acetilcolinesterasa , Áfidos , Carbamatos , Sistema Enzimático del Citocromo P-450 , Resistencia a los Insecticidas , Insecticidas , Mutación , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Animales , Resistencia a los Insecticidas/genética , Áfidos/genética , Áfidos/efectos de los fármacos , Insecticidas/farmacología , Carbamatos/farmacología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Pirimidinas/farmacología , Simulación del Acoplamiento Molecular , Triticum/genética , Dimetoato/análogos & derivados
4.
Environ Sci Pollut Res Int ; 31(27): 39714-39734, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831144

RESUMEN

Bacillus genera, especially among rhizobacteria, are known for their ability to promote plant growth and their effectiveness in alleviating several stress conditions. This study aimed to utilize indigenous Bacillus cereus PM38 to degrade four organophosphate pesticides (OPs) such as chlorpyrifos (CP), profenofos (PF), monocrotophos (MCP), and dimethoate (DMT) to mitigate the adverse effects of these pesticides on cotton crop growth. Strain PM38 exhibited distinct characteristics that set it apart from other Bacillus species. These include the production of extracellular enzymes, hydrogen cyanide, exopolysaccharides, Indol-3-acetic acid (166.8 µg/mL), siderophores (47.3 µg/mL), 1-aminocyclopropane-1-carboxylate deaminase activity (32.4 µg/mL), and phosphorus solubilization (162.9 µg/mL), all observed at higher concentrations. This strain has also shown tolerance to salinity (1200 mM), drought (20% PEG-6000), and copper and cadmium (1200 mg/L). The amplification of multi-stress-responsive genes, such as acdS, ituC, czcD, nifH, sfp, and pqqE, further confirmed the plant growth regulation and abiotic stress tolerance capability in strain PM38. Following the high-performance liquid chromatography (HPLC) analysis, the results showed striking compatibility with the first kinetic model. Strain PM38 efficiently degraded CP (98.4%), PF (99.7%), MCP (100%), and DMT (95.5%) at a concentration of 300 ppm over 48 h at 35 °C under optimum pH conditions, showing high coefficients of determination (R2) of 0.974, 0.967, 0.992, and 0.972, respectively. The Fourier transform infrared spectroscopy (FTIR) analysis and the presence of opd, mpd, and opdA genes in the strain PM38 further supported the potential to degrade OPs. In addition, inoculating cotton seedlings with PM38 improved root length under stressful conditions. Inoculation of strain PM38 reduces stress by minimizing proline, thiobarbituric acid-reactive compounds, and electrolyte leakage. The strain PM38 has the potential to be a good multi-stress-tolerant option for a biological pest control agent capable of improving global food security and managing contaminated sites.


Asunto(s)
Bacillus cereus , Cloropirifos , Monocrotofos , Cloropirifos/metabolismo , Cloropirifos/toxicidad , Bacillus cereus/metabolismo , Monocrotofos/toxicidad , Dimetoato/toxicidad , Gossypium , Biodegradación Ambiental , Organotiofosfatos , Rizosfera , Fosforamidas
5.
Food Chem ; 453: 139666, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38759443

RESUMEN

Pesticide residues in agricultural products pose a significant threat to human health. Herein, a sensitive fluorescence method employing upconversion nanoparticles was developed for detecting organophosphorus pesticides (OPs) based on the principle of enzyme inhibition and copper-triggered o-phenylenediamine (OPD) oxidation. Copper ions (Cu2+) oxidized the colorless OPD to a yellow 2,3-diaminophenazine (oxOPD). The yellow solution oxOPD quenched the fluorescence of upconversion nanoparticles due to the fluorescence resonance energy transfer. The high affinity of Cu2+ for thiocholine reduced the level of oxOPD, resulting in almost no fluorescence quenching. The addition of dimethoate led to the inhibition of acetylcholinesterase activity and thus prevented the formation of thiocholine. Subsequently, Cu2+ oxidized OPD to form oxOPD, which attenuated the fluorescence signal of the system. The detection system has a good linear range of 0.01 ng/mL to 50 ng/mL with a detection limit of 0.008 ng/mL, providing promising applications for rapid detection of dimethoate.


Asunto(s)
Acetilcolinesterasa , Cobre , Dimetoato , Oxidación-Reducción , Plaguicidas , Fenilendiaminas , Cobre/química , Fenilendiaminas/química , Dimetoato/química , Dimetoato/análisis , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Plaguicidas/química , Plaguicidas/análisis , Nanopartículas/química , Límite de Detección , Técnicas Biosensibles/instrumentación , Fluorescencia , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/análisis
6.
Mikrochim Acta ; 191(6): 319, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727763

RESUMEN

The high-residual and bioaccumulation property of organophosphorus pesticides (OPs) creates enormous risks towards the ecological environment and human health, promoting the research for smart adsorbents and detection methods. Herein, 2D hemin-bridged MOF nanozyme (2D-ZHM) was fabricated and applied to the efficient removal and ultrasensitive dual-mode aptasensing of OPs. On the one hand, the prepared 2D-ZHM contained Zr-OH groups with high affinity for phosphate groups, endowing it with selective recognition and high adsorption capacity for OPs (285.7 mg g-1 for glyphosate). On the other hand, the enhanced peroxidase-mimicking biocatalytic property of 2D-ZHM allowed rapid H2O2-directed transformation of 3,3',5,5'-tetramethylbenzidine to oxidic product, producing detectable colorimetric or photothermal signals. Using aptamers of specific recognition capacity, the rapid quantification of two typical OPs, glyphosate and omethoate, was realized with remarkable sensitivity and selectivity. The limit of detections (LODs) of glyphosate were 0.004 nM and 0.02 nM for colorimetric and photothermal methods, respectively, and the LODs of omethoate were 0.005 nM and 0.04 nM for colorimetric and photothermal methods, respectively. The constructed dual-mode aptasensing platform exhibited outstanding performance for monitoring OPs in water and fruit samples. This work provides a novel pathway to develop MOF-based artificial peroxidase and integrated platform for pollutant removal and multi-mode aptasensing.


Asunto(s)
Glicina , Glifosato , Hemina , Límite de Detección , Estructuras Metalorgánicas , Plaguicidas , Plaguicidas/análisis , Plaguicidas/química , Estructuras Metalorgánicas/química , Hemina/química , Glicina/análogos & derivados , Glicina/química , Glicina/análisis , Colorimetría/métodos , Bencidinas/química , Adsorción , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Peróxido de Hidrógeno/química , Dimetoato/análisis , Dimetoato/química , Aptámeros de Nucleótidos/química , Compuestos Organofosforados/análisis , Compuestos Organofosforados/química
7.
J Chromatogr A ; 1722: 464859, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38604056

RESUMEN

In this study, molecularly imprinted polymers (MIPs) were prepared for the specific recognition of organophosphorus pesticides and a rapid, efficient and simple method was established for the detection of dimethoate (DIT) in food samples. Fe3O4 magnetic nanoparticles were synthesized by co-precipitation, and Fe3O4/ZIF-8 complexes were prepared by a modified in-situ polymerization method, and then magnetic molecularly imprinted polymers (MMIPs) were prepared and synthetic route was optimized by applying density functional theory (DFT). The morphological characterization showed that the MMIPs were coarse porous spheres with an average particle size of 50 nm. The synthesized materials are highly selective for the organophosphorus pesticide dimethoate with an adsorption capacity of 461.50 mg·g-1 and are effective resistance to matrix effects. A novel method for the determination of DIT in cabbage was developed using the prepared MMIPs in combination with HPLC. The practical results showed that the method can meet the requirements for the determination of DIT in cabbage with recoveries of 85.6-121.1 % and detection limits of 0.033 µg·kg-1.


Asunto(s)
Brassica , Dimetoato , Límite de Detección , Polímeros Impresos Molecularmente , Dimetoato/análisis , Brassica/química , Polímeros Impresos Molecularmente/química , Adsorción , Cromatografía Líquida de Alta Presión/métodos , Impresión Molecular/métodos , Nanopartículas de Magnetita/química , Extracción en Fase Sólida/métodos , Contaminación de Alimentos/análisis
8.
Chemosphere ; 354: 141652, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462182

RESUMEN

The high diversity and distinctive characteristics of stingless bees pose challenges in utilizing toxicity test results for agrochemical registrations. Toxicity assessments were performed on 15 stingless bee species, along with the honey bee, using the insecticide dimethoate, following adapted OECD protocols. Median lethal doses over 24 h (24 h-LD50) were determined for exposure routes (acute oral or contact) and species. Species sensitivity distribution (SSD) curves were constructed and the 5% hazard doses (HD5) were estimated based on 24 h-LD50 values. The SSD curve was adjusted as the body weight and dimethoate response were correlated. Lighter bees (<10 mg) had lower 24 h-LD50 values. Contact exposure for adjusted HD5 suggested insufficient protection for Melipona mondury, whereas the oral exposure HD5 indicated no risks for the other 14 species. Comprehensive risk assessments are crucial for understanding the agrochemical impact on stingless bees, emphasizing the need for a broader species range in formulating conservation strategies.


Asunto(s)
Dimetoato , Insecticidas , Abejas , Animales , Dimetoato/toxicidad , Insecticidas/toxicidad , Dosificación Letal Mediana , Agroquímicos , Peso Corporal
9.
Org Biomol Chem ; 22(15): 2963-2967, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38529657

RESUMEN

A type of modified nucleotide, deoxynucleotide γ-amidotriphosphates (dNTPγNH2s), exhibited around five times higher stability than dNTPs. These phosphamide nucleotides can be utilized by several DNA polymerases, and the amplification of a 10 kb DNA fragment through the polymerase chain reaction (PCR) can be accomplished even under conditions of high temperature, extended storage, or repeated freeze-thaw cycles. However, the control PCR with standard dNTPs was unsuccessful. These results indicate that dNTPγNH2s have the potential to substitute dNTPs in PCR.


Asunto(s)
ADN , Dimetoato , ADN Polimerasa Dirigida por ADN , Nucleótidos/genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-38437997

RESUMEN

One of the main causes of contamination of aquatic environments, which affects biotic communities, is the use of pesticides in agricultural regions. Amphibians are considered good bio-indicators of aquatic pollution, because they are one of the most susceptible groups to pollution. Several studies suggest that both pollution and climate change produce synergistic effects in amphibians which amplify the toxicity afecting survival, and malformations with an increase in temperature. We studied the sensitivity of sublethal concentrations of dimethoate in Rhinella arenarum tadpoles on two fitness related thermal traits including locomotor swimming performance and thermal tolerance limits (CTmax = critical thermal maximum and CTmin = critical thermal minimum). The locomotor performance of R. arenarum tadpoles decreased with increasing sublethal dimethoate concentrations up to ∼60 % at intermediates dimethoate concentration. The tadpoles showed a tendency to decrease their tolerance to high temperatures (CTmax) with increasing dimethoate concentration around ∼0.5 °C, however no significant differences were found among treatments. Similarly, tadpoles showed decreases in their cold resistance (CTmin) with dimethoate concentrations, around 1 °C the high concentrations of dimethoate. The increase of atypical climatic events, such as heat waves may put R. arenarum tadpoles at greater risk when exposed to dimethoate. Our results show that the sublethal concentrations of the dimethoate pesticide may affect the fitness and survival of the larvae of R. arenarum in natural, and seminatural enviroments.


Asunto(s)
Plaguicidas , Animales , Plaguicidas/toxicidad , Larva , Dimetoato/toxicidad , Contaminación Ambiental , Temperatura
11.
Int J Biol Macromol ; 265(Pt 1): 130711, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490378

RESUMEN

Magnesium-trapped hydroxyapatite (Mg.HP) was hybridized with cellulose fiber to produce a bio-composite (CLF/HP) with enhanced adsorption affinities for two types of toxic pesticides (chlorpyrifos (CF) and omethoate (OM)). The enhancement influence of the hybridized cellulose on the adsorption performances of Mg.HP was illustrated based on the determined steric and energetic factors. The computed CF and OM adsorption performances of CLF/HP during the saturation phases are 279.8 mg/g and 317.9 mg/g, respectively, which are significantly higher than the determined values using Mg/HP (143.4 mg/g (CF) and 145.3 mg/g (OM)). The steric analysis demonstrates a strong impact of the hybridization process on the reactivity of the surface of the composite. While CLF/HP reflects effective uptake site densities (Nm) of 93.3 mg/g (CF) and 135.3 mg/g (OM), the estimated values for Mg.HP are 51.2 mg/g (CF) and 46.11 mg/g (OM), which explain the reported enhancement in the adsorption performances of the composite. The capacity of each uptake site to be occupied with more than one molecule (n (CF) = 3-3.74 and n (OM) = 2.35-3.54) suggests multimolecular uptake. The energetic factors suggested physical mechanistic processes of spontaneous and exothermic behaviors either during the uptake of CF or OM.


Asunto(s)
Cloropirifos , Dimetoato/análogos & derivados , Plaguicidas , Celulosa , Durapatita , Adsorción
12.
Anal Chim Acta ; 1293: 342284, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331552

RESUMEN

In the present work, we developed a photoelectrochemical aptasensor to determine omethoate (OMT) based on the dual signal amplification of CeO2@MnO2 photocatalysis for glucose oxidation and exonuclease I-assisted cyclic catalytic hydrolysis. CeO2@MnO2 heterojunction material prepared by hydrothermal method was linked with captured DNA (cDNA) and then assembled on the ITO conductive glass to form ITO/CeO2@MnO2-cDNA, which exhibited significant photocurrent response and good photocatalytic performance for glucose oxidation under visible light irradiation, providing the feasibility for sensitive determining OMT. After binding with the aptamer of OMT (apt), the formation of rigid double stranded cDNA/apt kept CeO2@MnO2 away from ITO surface, which ensured a low photocurrent background for the constructed ITO/CeO2@MnO2-cDNA/apt aptasensor. In the presence of target OMT, the restoration of the cDNA hairpin structure and the exonuclease I-assisted cyclic catalytic hydrolysis led to the generation and amplification of measurement photocurrent signals, and allowed the aptasensor to have an ideal quantitative range of 0.01-10.0 nM and low detection limit of 0.0027 nM. Moreover, the aptasensor has been applied for selective determination of OMT in real samples with good precision of the relative standard deviation less than 6.2 % and good accuracy of the recoveries from 93 % to 108 %. What's more, the aptasensor can be used for other target determination only by replacing the captured DNA and corresponding aptamer.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Dimetoato/análogos & derivados , Glucosa , ADN Complementario , Compuestos de Manganeso , Óxidos , ADN/química , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Límite de Detección
13.
Environ Res ; 249: 118310, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331154

RESUMEN

Organophosphorus (OP) insecticides are widely used for on-field pest control, constituting about 38% of global pesticide consumption. Insecticide tolerance has been recorded in microorganisms isolated from the contaminated soil. However, the cross-tolerance of laboratory-enriched cultures remains poorly understood. A chlorpyrifos tolerant (T) strain of Anabaena sp. PCC 7119 was developed through continuous enrichment of the wild strain (W). The cross-tolerance of the T strain to the OP insecticide dimethoate was assessed by measuring photosynthetic performance, key enzyme activities and degradation potential. The presence of dimethoate led to a significant reduction in the growth and pigment content of the W strain. In contrast, the T strain demonstrated improved growth and metabolic performance. Chl a and carotenoids were degraded faster than phycobiliproteins in both strains. The T strain exhibited superior photosynthetic performance, metabolic efficiency and photosystem functions, than of W strain, at both the tested dimethoate concentrations (100 and 200 µM). The treated T strain had more or less a normal OJIP fluorescence transient and bioenergetic functions, while the W strain showed a greater fluorescence rise at ≤ 300 µs indicating the inhibition of electron donation to PS II, and at 2 ms due to reduced electron release beyond QA. The T strain had significantly higher levels of esterase and phosphatases, further enhanced by insecticide treatment. Dimethoate degradation efficiency of the T strain was significantly higher than of the W strain. T strain also removed chlorpyrifos more efficiently than W strain at both the tested concentrations. The BCFs of both chlorpyrifos and dimethoate were lower in the T strain compared to the W strain. These findings suggest that the enriched strain exhibits promising results in withstanding dimethoate toxicity and could be explored for its potential as a bioremediating organism for OP degradation.


Asunto(s)
Anabaena , Cloropirifos , Dimetoato , Insecticidas , Cloropirifos/toxicidad , Dimetoato/toxicidad , Anabaena/efectos de los fármacos , Insecticidas/toxicidad , Fotosíntesis/efectos de los fármacos
14.
Biosensors (Basel) ; 14(2)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38391988

RESUMEN

Dimethoate contaminants in food pose a threat to human health. Rapid and sensitive trace detection methods are required to keep food safe. In this study, a novel fluorescent aptasensor was developed for the sensitive detection of dimethoate based on carbon quantum dots labeled with double-stranded DNA (CQDs-apt-cDNA) and Ti3C2Tx flakes. Under optimal conditions, the aptasensor showed a good linear range of 1 × 10-9 to 5 × 10-5 M for dimethoate with a coefficient of determination (R2) of 0.996. Besides, a low detection limit of 2.18 × 10-10 M was obtained. The aptasensor showed high selectivity in interference samples and good reproducibility with an RSD of 3.06% (<5%) for dimethoate detection. Furthermore, the proposed aptasensor was applied to the detection of dimethoate in apple juice and tap water with satisfactory recoveries from 96.2 to 104.4%. Because of these benefits, this aptasensor has the potential and promise for detecting food contaminants in the food industry.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nitritos , Plaguicidas , Elementos de Transición , Humanos , Dimetoato , Reproducibilidad de los Resultados , Titanio , Límite de Detección , Técnicas Biosensibles/métodos
15.
BMC Pharmacol Toxicol ; 25(1): 3, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167230

RESUMEN

BACKGROUND: Multiple pesticides are often used in combination for plant protection and public health. Therefore, it is important to analyze the physiological changes induced by multiple pesticides exposure. The objective of this study was to investigate the combined toxicity of the widely-used organophosphorus and pyrethroid pesticides diazinon, dimethoate, and cypermethrin. METHODS: Male Wistar rats were administrated by gavage once daily with the three pesticides individual or in combination for consecutive 28 days. The metabolic components of serum and urine samples were detected by using 1H nuclear magnetic resonance (NMR)-based metabolomics method. Histopathological examination of liver and kidneys and serum biochemical determination were also carried out. RESULTS: The results showed that after the 28-day subacute exposure, serum glutamic transaminase and albumin were significantly increased and blood urea nitrogen was significantly decreased in the rats exposed to the mixture of the pesticides compared with the control rats, suggesting that the co-exposure impaired liver and kidney function. Metabolomics analysis indicated that the indicators 14 metabolites were statistically significant altered in the rats after the exposure of the pesticides. The increase in 3-hydroxybutyric acid in urine or decrease of lactate and N-acetyl-L-cysteine in serum could be a potentially sensitive biomarker of the subchronic combined effects of the three insecticides. The reduction level of 2-oxoglutarate and creatinine in urine may be indicative of dysfunction of liver and kidneys. CONCLUSION: In summary, the exposure of rats to pesticides diazinon, dimethoate, and cypermethrin could cause disorder of lipid and amino acid metabolism, induction of oxidative stress, and dysfunction of liver and kidneys, which contributes to the understanding of combined toxic effects of the pesticides revealed by using the metabolomics analysis of the urine and serum profiles.


Asunto(s)
Plaguicidas , Piretrinas , Ratas , Animales , Diazinón/toxicidad , Diazinón/metabolismo , Dimetoato/toxicidad , Dimetoato/metabolismo , Ratas Wistar , Piretrinas/toxicidad , Plaguicidas/toxicidad , Hígado
16.
Sci Total Environ ; 913: 169805, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38181956

RESUMEN

The ecological risks posed by widespread organophosphorus pesticide (OPs) pollution in the surface waters of China remain unclear. In this study, species sensitivity distribution (SSD) parametric statistical approaches were coupled with fully acute and chronic toxicity data to fit the sensitivity distributions of different aquatic species to five typical OPs: dimethoate, malathion, parathion-methyl, trichlorfon, and dichlorvos. Crustaceans exhibit the highest sensitivity to OPs, whereas algae are the least sensitive. The acute hazardous concentrations that affected 5 % of the species (HC5) were 0.112, 0.001, 0.001, 0.001, and 0.001 mg/L for dimethoate, malathion, parathion-methyl, trichlorfon, and dichlorvos, respectively, whereas their chronic HC5 values were 0.004, 0.004, 0.053, 0.001, and 0.0005 mg/L, respectively. Hence, dichlorvos is highly toxic and poses greater risk to non-target aquatic species. The evaluation data revealed varying geographical distribution characteristics of the ecological risks from OPs in 15 freshwater aquatic systems across different regions of China. Dichlorvos posed the highest risk in the basins of Zhejiang and Guangdong Provinces, with the highest chronic Risk Quotient (RQ) and Hazard Index (HI) at 9.34 and 9.92, respectively. This is much higher than what was collected and evaluated for foreign rivers (the highest chronic RQ and HI in foreign rivers were 1.65 and 2.24, respectively). Thus, dichlorvos in the surface waters of China poses a substantial ecological risk to aquatic organisms, and may endanger human health.


Asunto(s)
Metil Paratión , Plaguicidas , Contaminantes Químicos del Agua , Humanos , Plaguicidas/toxicidad , Plaguicidas/análisis , Compuestos Organofosforados/toxicidad , Diclorvos , Malatión , Dimetoato , Agua , Triclorfón , Organismos Acuáticos , China , Medición de Riesgo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
17.
Gene ; 891: 147799, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37739194

RESUMEN

The insecticide dimethoate, an organophosphate, has been used on crops, soybeans, fruits, and vegetables since the 1960s and is considered one of the most widely used pesticides. However, the understanding of the molecular mechanisms of dimethoate in crops, especially crop seedlings, is still limited. The green vegetable soya bean (Glycine max merr) is usually used as a vegetable-like fruit of soybean in many Asian countries. This study aimed to analyze the effect of dimethoate on the growth of green vegetable soya bean seedlings at the metabolic and transcriptional levels. An integrated analysis of the transcriptome and metabolome was performed to determine the responses of green vegetable soya bean seedlings to different concentrations (D1 for low dose, D2 for high dose and C for control) of dimethoate. In omics analyses, 4156 differentially expressed genes (DEGs) and 1935 differentially abundant metabolites (DAMs) were identified in the D1/C comparison, and 11,162 DEGs and 819 DAMs were identified in D2/C. Correlation analyses revealed dimethoate affected the metabolic pathways of green vegetable soya beans such as the biosynthesis of secondary metabolites and microbial metabolism in diverse environmental pathways, demonstrating that even small doses of dimethoate can affect green vegetable soya bean seedlings in a short period of time. Our study further enriches our understanding of the molecular mechanisms by which green vegetable soya beans are treated with dimethoate and provides a deeper understanding of the effects of dimethoate on crops.


Asunto(s)
Glycine max , Verduras , Glycine max/genética , Verduras/genética , Dimetoato/toxicidad , Dimetoato/metabolismo , Transcriptoma , Plantones/genética , Plantones/metabolismo
18.
Pestic Biochem Physiol ; 197: 105699, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072554

RESUMEN

Dimethoate is a broad-spectrum organophosphate insecticide and acaricide. Through various pathways, such as runoff and drift, dimethoate can reach marine environment, and easily impact common organisms in coastal areas, close to agriculture lands, namely crustaceans. The purpose of this study was to investigate the potential effects of dimethoate exposure (50, 100, and 200 µg/l), for 1 day, on a wide range of markers of oxidative stress and neurotransmission impairment, as well as fatty acids composition and histopathological aspect in the gills of the green crab Carcinus aestuarii. A significant increase in n-3 polyunsaturated fatty acids series, namely the eicosapentaenoic acid (C20: 5n3) and its precursor alpha-linolenic acid (C 18: 3n3) in dimethoate-treated crabs was recorded. Concerning n-6 polyunsaturated fatty acids, we noted a high reduction in arachidonic acid (C20:4n-6) levels. Dimethoate exposure increased the levels of hydrogen peroxide, malondialdehyde, lipid hydroperoxides, protein carbonyl, and caused the advanced oxidation of protein products along with enzymatic and non-enzymatic antioxidant-related markers. Acetylcholinesterase activity was highly inhibited following exposure to dimethoate in a concentration-dependent manner. Finally, deleterious histopathological changes with several abnormalities were noted in exposed animals confirming our biochemical findings. The present study offered unique insights to establish a relationship between redox status and alterations in fatty acid composition, allowing a better understanding of dimethoate-triggered toxicity.


Asunto(s)
Braquiuros , Dimetoato , Animales , Dimetoato/toxicidad , Braquiuros/metabolismo , Ácidos Grasos , Acetilcolinesterasa/metabolismo , Branquias , Oxidación-Reducción , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/farmacología
19.
Anal Bioanal Chem ; 415(29-30): 7127-7138, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37770666

RESUMEN

A novel deep learning-enabled smartphone platform is developed to assist a colorimetric aptamer biosensor for fast and highly sensitive detection of dimethoate. The colorimetric determination of dimethoate is based on the specific binding of dimethoate and aptamer, which leads to the aggregation of AuNPs in high-concentration NaCl solution, resulting in an obvious color change from red to blue. This color change provides sufficient data for self-learning enabled by a convolutional neural network (CNN) model, which is established to predict dimethoate concentration based on images acquired from a smartphone. To enhance user-friendliness for non-experts, the CNN model is then embedded into a smartphone app, enabling offline detection of dimethoate pesticide in real environments within just 15 min using a pre-configured colorimetric probe. The developed platform exhibits superior performance, achieving a regression coefficient of 0.9992 in the concentration range of 0-10 µM. Moreover, the app's performance is found to be consistent with the ELISA kit. These remarkable findings demonstrate the potential of combining colorimetric biosensors with smartphone-based deep learning methods for the development of portable and affordable tools for pesticide detection.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Aprendizaje Profundo , Nanopartículas del Metal , Plaguicidas , Colorimetría/métodos , Dimetoato , Teléfono Inteligente , Oro , Límite de Detección , Técnicas Biosensibles/métodos
20.
An Acad Bras Cienc ; 95(4): e20200463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37729300

RESUMEN

Although it is known that organophosphate insecticides are harmfull to aquatic ecosystems, oxidative damages caused by Dimethoate and Chlorpyrifos are not studied on Arthrospira platensis Gomont. In this study, various Chlorpyrifos (0-150 µg mL-1) and Dimethoate (0-250 µg mL-1) concentrations were added to the culture medium in laboratory to evaulate growth rate, chlorophyll-a content and antioxidant parameters of A. platensis. Optical Density (OD560) and chlorophyll-a decreased compared to the control for seven days in both pesticide applications. Superoxide dismutase (SOD) activity increased at 50 µg mL-1 Chlorpyrifos concentration but it decreased at all concentrations. Although Ascorbate peroxidase (APX) and glutathione reductase (GR) activities increased with Chlorpyrifos application, they did not change with Dimethoate application. Malondialdehyde (MDA) amount decreased at 150 µg mL-1 Chlorpyrifos concentration but it increased in Dimethoate application. The H2O2 content were increased in both applications. Proline decreased in 50 and 75 µg mL-1 Chlorpyrifos concentrations and increased at 150 µg mL-1 concentration, while it increased at 25 µg mL-1 Dimethoate concentration. The results were tested at 0.05 significance level. These pesticides inhibit A. platensis growth and chlorophyll-a production and cause oxidative stress. The excessive use may affect the phytoplankton and have negative consequences in the aquatic ecosystem.


Asunto(s)
Cloropirifos , Insecticidas , Plaguicidas , Insecticidas/toxicidad , Cloropirifos/toxicidad , Dimetoato/toxicidad , Ecosistema , Peróxido de Hidrógeno , Estrés Oxidativo , Plaguicidas/toxicidad , Antioxidantes , Clorofila , Clorofila A , Compuestos Organofosforados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...