Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.779
Filtrar
1.
J Cell Biol ; 223(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-38949648

RESUMEN

The diverse roles of the dynein motor in shaping microtubule networks and cargo transport complicate in vivo analysis of its functions significantly. To address this issue, we have generated a series of missense mutations in Drosophila Dynein heavy chain. We show that mutations associated with human neurological disease cause a range of defects, including impaired cargo trafficking in neurons. We also describe a novel microtubule-binding domain mutation that specifically blocks the metaphase-anaphase transition during mitosis in the embryo. This effect is independent from dynein's canonical role in silencing the spindle assembly checkpoint. Optical trapping of purified dynein complexes reveals that this mutation only compromises motor performance under load, a finding rationalized by the results of all-atom molecular dynamics simulations. We propose that dynein has a novel function in anaphase progression that depends on it operating in a specific load regime. More broadly, our work illustrates how in vivo functions of motors can be dissected by manipulating their mechanical properties.


Asunto(s)
Anafase , Proteínas de Drosophila , Drosophila melanogaster , Dineínas , Microtúbulos , Animales , Dineínas/metabolismo , Dineínas/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Microtúbulos/metabolismo , Microtúbulos/genética , Simulación de Dinámica Molecular , Mutación/genética , Huso Acromático/metabolismo , Huso Acromático/genética , Humanos , Mutación Missense
2.
Development ; 151(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007638

RESUMEN

Vertebrate motile cilia are classified as (9+2) or (9+0), based on the presence or absence of the central pair apparatus, respectively. Cryogenic electron microscopy analyses of (9+2) cilia have uncovered an elaborate axonemal protein composition. The extent to which these features are conserved in (9+0) cilia remains unclear. CFAP53, a key axonemal filamentous microtubule inner protein (fMIP) and a centriolar satellites component, is essential for motility of (9+0), but not (9+2) cilia. Here, we show that in (9+2) cilia, CFAP53 functions redundantly with a paralogous fMIP, MNS1. MNS1 localises to ciliary axonemes, and combined loss of both proteins in zebrafish and mice caused severe outer dynein arm loss from (9+2) cilia, significantly affecting their motility. Using immunoprecipitation, we demonstrate that, whereas MNS1 can associate with itself and CFAP53, CFAP53 is unable to self-associate. We also show that additional axonemal dynein-interacting proteins, two outer dynein arm docking (ODAD) complex members, show differential localisation between types of motile cilia. Together, our findings clarify how paralogous fMIPs, CFAP53 and MNS1, function in regulating (9+2) versus (9+0) cilia motility, and further emphasise extensive structural diversity among these organelles.


Asunto(s)
Axonema , Cilios , Pez Cebra , Animales , Cilios/metabolismo , Cilios/ultraestructura , Pez Cebra/metabolismo , Ratones , Axonema/metabolismo , Axonema/ultraestructura , Dineínas Axonemales/metabolismo , Dineínas Axonemales/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Dineínas/metabolismo
3.
Cell Death Dis ; 15(7): 499, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997255

RESUMEN

Dynein complexes are large, multi-unit assemblies involved in many biological processes via their critical roles in protein transport and axoneme motility. Using next-generation sequencing of infertile men presenting with low or no sperm in their ejaculates, we identified damaging variants in the dynein-related gene AXDND1. We thus hypothesised that AXDND1 is a critical regulator of male fertility. To test this hypothesis, we produced a knockout mouse model. Axdnd1-/- males were sterile at all ages but presented with an evolving testis phenotype wherein they could undergo one round of histologically replete spermatogenesis followed by a rapid depletion of the seminiferous epithelium. Marker experiments identified a role for AXDND1 in maintaining the balance between differentiation-committed and self-renewing spermatogonial populations, resulting in disproportionate production of differentiating cells in the absence of AXDND1 and increased sperm production during initial spermatogenic waves. Moreover, long-term spermatogonial maintenance in the Axdnd1 knockout was compromised, ultimately leading to catastrophic germ cell loss, destruction of blood-testis barrier integrity and immune cell infiltration. In addition, sperm produced during the first wave of spermatogenesis were immotile due to abnormal axoneme structure, including the presence of ectopic vesicles and abnormalities in outer dense fibres and microtubule doublet structures. Sperm output was additionally compromised by a severe spermiation defect and abnormal sperm individualisation. Collectively these data identify AXDND1 as an atypical dynein complex-related protein with a role in protein/vesicle transport of relevance to spermatogonial function and sperm tail formation in mice and humans. This study underscores the importance of studying the consequences of gene loss-of-function on both the establishment and maintenance of male fertility.


Asunto(s)
Ratones Noqueados , Cola del Espermatozoide , Espermatogénesis , Espermatogonias , Masculino , Animales , Humanos , Espermatogénesis/genética , Ratones , Espermatogonias/metabolismo , Cola del Espermatozoide/metabolismo , Dineínas/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Testículo/metabolismo , Diferenciación Celular , Ratones Endogámicos C57BL
4.
Life Sci Alliance ; 7(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876797

RESUMEN

Calcium is critical for regulating the waveform of motile cilia and flagella. Calaxin is currently the only known molecule involved in the calcium-dependent regulation in ascidians. We have recently shown that Calaxin stabilizes outer arm dynein (OAD), and the knockout of Calaxin results in primary ciliary dyskinesia phenotypes in vertebrates. However, from the knockout experiments, it was not clear which functions depend on calcium and how Calaxin regulates the waveform. To address this question, here, we generated transgenic zebrafish expressing a mutant E130A-Calaxin deficient in calcium binding. E130A-Calaxin restored the OAD reduction of calaxin -/- sperm and the abnormal movement of calaxin -/- left-right organizer cilia, showing that Calaxin's stabilization of OADs is calcium-independent. In contrast, our quantitative analysis of E130A-Calaxin sperms showed that the calcium-induced asymmetric beating was not restored, linking Calaxin's calcium-binding ability with an asymmetric flagellar beating for the first time. Our data show that Calaxin is a calcium-dependent regulator of the ciliary beating and a calcium-independent OAD stabilizer.


Asunto(s)
Proteínas de Unión al Calcio , Espermatozoides , Proteínas de Pez Cebra , Pez Cebra , Animales , Masculino , Animales Modificados Genéticamente , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Cilios/metabolismo , Dineínas/metabolismo , Dineínas/genética , Flagelos/metabolismo , Flagelos/fisiología , Motilidad Espermática/genética , Motilidad Espermática/fisiología , Espermatozoides/metabolismo , Espermatozoides/fisiología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas del Citoesqueleto/metabolismo
5.
J Cell Biol ; 223(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-38935075

RESUMEN

Regulated cell shape change requires the induction of cortical cytoskeletal domains. Often, local changes to plasma membrane (PM) topography are involved. Centrosomes organize cortical domains and can affect PM topography by locally pulling the PM inward. Are these centrosome effects coupled? At the syncytial Drosophila embryo cortex, centrosome-induced actin caps grow into dome-like compartments for mitoses. We found the nascent cap to be a collection of PM folds and tubules formed over the astral centrosomal MT array. The localized infoldings require centrosome and dynein activities, and myosin-based surface tension prevents them elsewhere. Centrosome-engaged PM infoldings become specifically enriched with an Arp2/3 induction pathway. Arp2/3 actin network growth between the infoldings counterbalances centrosomal pulling forces and disperses the folds for actin cap expansion. Abnormal domain topography with either centrosome or Arp2/3 disruption correlates with decreased exocytic vesicle association. Together, our data implicate centrosome-organized PM infoldings in coordinating Arp2/3 network growth and exocytosis for cortical domain assembly.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Actinas , Membrana Celular , Centrosoma , Proteínas de Drosophila , Drosophila melanogaster , Animales , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Actinas/metabolismo , Membrana Celular/metabolismo , Centrosoma/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Dineínas/metabolismo , Exocitosis , Microtúbulos/metabolismo
6.
J Cell Sci ; 137(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38853670

RESUMEN

Intraflagellar transport (IFT) is required for ciliary assembly. The IFT machinery comprises the IFT motors kinesin-2 and IFT dynein plus IFT-A and IFT-B complexes, which assemble into IFT trains in cilia. To gain mechanistic understanding of IFT and ciliary assembly, here, we performed an absolute quantification of IFT machinery in Chlamydomonas reinhardtii cilium. There are ∼756, ∼532, ∼276 and ∼350 molecules of IFT-B, IFT-A, IFT dynein and kinesin-2, respectively, per cilium. The amount of IFT-B is sufficient to sustain rapid ciliary growth in terms of tubulin delivery. The stoichiometric ratio of IFT-B:IFT-A:dynein is ∼3:2:1 whereas the IFT-B:IFT-A ratio in an IFT dynein mutant is 2:1, suggesting that there is a plastic interaction between IFT-A and IFT-B that can be influenced by IFT dynein. Considering diffusion of kinesin-2 during retrograde IFT, it is estimated that one kinesin-2 molecule drives eight molecules of IFT-B during anterograde IFT. These data provide new insights into the assembly of IFT trains and ciliary assembly.


Asunto(s)
Chlamydomonas reinhardtii , Cilios , Dineínas , Flagelos , Cinesinas , Proteómica , Cilios/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Proteómica/métodos , Cinesinas/metabolismo , Cinesinas/genética , Dineínas/metabolismo , Flagelos/metabolismo , Transporte Biológico
7.
J Cell Biol ; 223(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38869473

RESUMEN

At each cell division, nanometer-scale motors and microtubules give rise to the micron-scale spindle. Many mitotic motors step helically around microtubules in vitro, and most are predicted to twist the spindle in a left-handed direction. However, the human spindle exhibits only slight global twist, raising the question of how these molecular torques are balanced. Here, we find that anaphase spindles in the epithelial cell line MCF10A have a high baseline twist, and we identify factors that both increase and decrease this twist. The midzone motors KIF4A and MKLP1 are together required for left-handed twist at anaphase, and we show that KIF4A generates left-handed torque in vitro. The actin cytoskeleton also contributes to left-handed twist, but dynein and its cortical recruitment factor LGN counteract it. Together, our work demonstrates that force generators regulate twist in opposite directions from both within and outside the spindle, preventing strong spindle twist during chromosome segregation.


Asunto(s)
Anafase , Cinesinas , Microtúbulos , Huso Acromático , Humanos , Huso Acromático/metabolismo , Cinesinas/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Dineínas/metabolismo , Dineínas/genética , Torque , Segregación Cromosómica , Citoesqueleto de Actina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética
8.
Mol Biol Cell ; 35(8): ar106, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38865178

RESUMEN

Outer dynein arms (ODAs) are responsible for ciliary beating in eukaryotes. They are assembled in the cytoplasm and shipped by intraflagellar transport (IFT) before attachment to microtubule doublets via the docking complex. The LRRC56 protein has been proposed to contribute to ODAs maturation. Mutations or deletion of the LRRC56 gene lead to reduced ciliary motility in all species investigated so far, but with variable impact on dynein arm presence. Here, we investigated the role of LRRC56 in the protist Trypanosoma brucei, where its absence results in distal loss of ODAs, mostly in growing flagella. We show that LRRC56 is a transient cargo of IFT trains during flagellum construction and surprisingly, is required for efficient attachment of a subset of docking complex proteins present in the distal portion of the organelle. This relation is interdependent since the knockdown of the distal docking complex prevents LRRC56's association with the flagellum. Intriguingly, lrrc56-/- cells display shorter flagella whose maturation is delayed. Inhibition of cell division compensates for the distal ODAs absence thanks to the redistribution of the proximal docking complex, restoring ODAs attachment but not the flagellum length phenotype. This work reveals an unexpected connection between LRRC56 and the docking complex.


Asunto(s)
Dineínas , Flagelos , Proteínas Protozoarias , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Flagelos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Dineínas/metabolismo , Microtúbulos/metabolismo , Cilios/metabolismo , Transporte Biológico/fisiología , Axonema/metabolismo
9.
PLoS Pathog ; 20(6): e1012289, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38829892

RESUMEN

During entry, human papillomavirus (HPV) traffics from the endosome to the trans Golgi network (TGN) and Golgi and then the nucleus to cause infection. Although dynein is thought to play a role in HPV infection, how this host motor recruits the virus to support infection and which entry step(s) requires dynein are unclear. Here we show that the dynein cargo adaptor BICD2 binds to the HPV L2 capsid protein during entry, recruiting HPV to dynein for transport of the virus along the endosome-TGN/Golgi axis to promote infection. In the absence of BICD2 function, HPV accumulates in the endosome and TGN and infection is inhibited. Cell-based and in vitro binding studies identified a short segment near the C-terminus of L2 that can directly interact with BICD2. Our results reveal the molecular basis by which the dynein motor captures HPV to promote infection and identify this virus as a novel cargo of the BICD2 dynein adaptor.


Asunto(s)
Proteínas de la Cápside , Papillomavirus Humano 16 , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Humanos , Proteínas de la Cápside/metabolismo , Papillomavirus Humano 16/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/virología , Dineínas/metabolismo , Endosomas/metabolismo , Endosomas/virología , Red trans-Golgi/metabolismo , Red trans-Golgi/virología , Internalización del Virus , Unión Proteica , Células HeLa , Proteínas Asociadas a Microtúbulos/metabolismo , Dineínas Citoplasmáticas/metabolismo
10.
J Cell Biol ; 223(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38829962

RESUMEN

Two sets of motor proteins underpin motile cilia/flagella function. The axoneme-associated inner and outer dynein arms drive sliding of adjacent axoneme microtubule doublets to periodically bend the flagellum for beating, while intraflagellar transport (IFT) kinesins and dyneins carry IFT trains bidirectionally along the axoneme. Despite assembling motile cilia and flagella, IFT train speeds have only previously been quantified in immobilized flagella-mechanical immobilization or genetic paralysis. This has limited investigation of the interaction between IFT and flagellar beating. Here, in uniflagellate Leishmania parasites, we use high-frequency, dual-color fluorescence microscopy to visualize IFT train movement in beating flagella. We discovered that adhesion of flagella to a microscope slide is detrimental, reducing IFT train speed and increasing train stalling. In flagella free to move, IFT train speed is not strongly dependent on flagella beat type; however, permanent disruption of flagella beating by deletion of genes necessary for formation or regulation of beating showed an inverse correlation of beat frequency and IFT train speed.


Asunto(s)
Flagelos , Leishmania , Microtúbulos , Axonema/metabolismo , Axonema/genética , Transporte Biológico , Cilios/metabolismo , Cilios/genética , Dineínas/metabolismo , Dineínas/genética , Flagelos/metabolismo , Flagelos/genética , Cinesinas/metabolismo , Cinesinas/genética , Leishmania/citología , Leishmania/genética , Leishmania/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Microtúbulos/metabolismo
11.
Mol Biol Cell ; 35(7): ar90, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38758663

RESUMEN

Tubulins undergo several kinds of posttranslational modifications (PTMs) including glutamylation and glycylation. The contribution of these PTMs to the motilities of cilia and flagella is still unclear. Here, we investigated the role of tubulin glycylation by examining a novel Chlamydomonas mutant lacking TTLL3, an enzyme responsible for initiating glycylation. Immunostaining of cells and flagella revealed that glycylation is only restricted to the axonemal tubulin composing the outer-doublet but not the central-pair microtubules. Furthermore, the flagellar localization of TTLL3 was found to be dependent on intraflagellar transport. The mutant, ttll3(ex5), completely lacks glycylation and consequently exhibits slower swimming velocity compared with the wild-type strain. By combining the ttll3(ex5) mutation with multiple axonemal dynein-deficient mutants, we found that the lack of glycylation does not affect the motility of the outer-arm dynein lacking mutations. Sliding disintegration assay using isolated axonemes revealed that the lack of glycylation decreases microtubule sliding velocity in the normal axoneme but not in the axoneme lacking the outerarm dyneins. Based on our recent study that glycylation occurs exclusively on ß-tubulin in Chlamydomonas, these findings suggest that tubulin glycylation controls flagellar motility through modulating outer-arm dyneins, presumably by neutralizing the negative charges of glutamate residues at the C-terminus region of ß-tubulin.


Asunto(s)
Axonema , Cilios , Flagelos , Microtúbulos , Procesamiento Proteico-Postraduccional , Tubulina (Proteína) , Cilios/metabolismo , Tubulina (Proteína)/metabolismo , Flagelos/metabolismo , Axonema/metabolismo , Microtúbulos/metabolismo , Chlamydomonas reinhardtii/metabolismo , Dineínas/metabolismo , Chlamydomonas/metabolismo , Mutación , Dineínas Axonemales/metabolismo
12.
Cell Rep ; 43(6): 114252, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38771696

RESUMEN

Motor proteins transport diverse membrane-bound vesicles along microtubules inside cells. How specific lipids, particularly rare lipids, on the membrane recruit and activate motors is poorly understood. To address this, we prepare spherical supported lipid bilayers (SSLBs) consisting of a latex bead enclosed within a membrane of desired lipid composition. SSLBs containing phosphatidic acid recruit dynein when incubated with Dictyostelium fractions but kinesin-1 when incubated with rat brain fractions. These SSLBs allow controlled biophysical investigation of membrane-bound motors along with their regulators at the single-cargo level in vitro. Optical trapping of single SSLBs reveals that motor-specific inhibitors can "lock" a motor to a microtubule, explaining the paradoxical arrest of overall cargo transport by such inhibitors. Increasing their size causes SSLBs to reverse direction more frequently, relevant to how large cargoes may navigate inside cells. These studies are relevant to understand how unidirectional or bidirectional motion of vesicles might be generated.


Asunto(s)
Dictyostelium , Membrana Dobles de Lípidos , Microtúbulos , Ácidos Fosfatidicos , Membrana Dobles de Lípidos/metabolismo , Ácidos Fosfatidicos/metabolismo , Ácidos Fosfatidicos/química , Microtúbulos/metabolismo , Animales , Dictyostelium/metabolismo , Ratas , Cinesinas/metabolismo , Dineínas/metabolismo
13.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719748

RESUMEN

Rab6 is a key modulator of protein secretion. The dynein adapter Bicaudal D2 (BicD2) recruits the motors cytoplasmic dynein and kinesin-1 to Rab6GTP-positive vesicles for transport; however, it is unknown how BicD2 recognizes Rab6. Here, we establish a structural model for recognition of Rab6GTP by BicD2, using structure prediction and mutagenesis. The binding site of BicD2 spans two regions of Rab6 that undergo structural changes upon the transition from the GDP- to GTP-bound state, and several hydrophobic interface residues are rearranged, explaining the increased affinity of the active GTP-bound state. Mutations of Rab6GTP that abolish binding to BicD2 also result in reduced co-migration of Rab6GTP/BicD2 in cells, validating our model. These mutations also severely diminished the motility of Rab6-positive vesicles in cells, highlighting the importance of the Rab6GTP/BicD2 interaction for overall motility of the multi-motor complex that contains both kinesin-1 and dynein. Our results provide insights into trafficking of secretory and Golgi-derived vesicles and will help devise therapies for diseases caused by BicD2 mutations, which selectively affect the affinity to Rab6 and other cargoes.


Asunto(s)
Dineínas , Unión Proteica , Proteínas de Unión al GTP rab , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Humanos , Dineínas/metabolismo , Dineínas/química , Sitios de Unión , Cinesinas/metabolismo , Cinesinas/química , Cinesinas/genética , Mutación , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/química , Transporte de Proteínas , Modelos Moleculares , Guanosina Trifosfato/metabolismo
14.
Mol Biol Cell ; 35(5): ar72, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568782

RESUMEN

Cilia generate three-dimensional waveforms required for cell motility and transport of fluid, mucus, and particles over the cell surface. This movement is driven by multiple dynein motors attached to nine outer doublet microtubules that form the axoneme. The outer and inner arm dyneins are organized into 96-nm repeats tandemly arrayed along the length of the doublets. Motility is regulated in part by projections from the two central pair microtubules that contact radial spokes located near the base of the inner dynein arms in each repeat. Although much is known about the structures and protein complexes within the axoneme, many questions remain about the regulatory mechanisms that allow the cilia to modify their waveforms in response to internal or external stimuli. Here, we used Chlamydomonas mbo (move backwards only) mutants with altered waveforms to identify at least two conserved proteins, MBO2/CCDC146 and FAP58/CCDC147, that form part of a L-shaped structure that varies between doublet microtubules. Comparative proteomics identified additional missing proteins that are altered in other motility mutants, revealing overlapping protein defects. Cryo-electron tomography and epitope tagging revealed that the L-shaped, MBO2/FAP58 structure interconnects inner dynein arms with multiple regulatory complexes, consistent with its function in modifying the ciliary waveform.


Asunto(s)
Axonema , Dineínas , Axonema/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Cilios/metabolismo , Proteínas/metabolismo , Flagelos/metabolismo
15.
J Biol Chem ; 300(6): 107323, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677516

RESUMEN

Organelles and vesicular cargoes are transported by teams of kinesin and dynein motors along microtubules. We isolated endocytic organelles from cells at different stages of maturation and reconstituted their motility along microtubules in vitro. We asked how the sets of motors transporting a cargo determine its motility and response to the microtubule-associated protein tau. Here, we find that phagosomes move in both directions along microtubules, but the directional bias changes during maturation. Early phagosomes exhibit retrograde-biased transport while late phagosomes are directionally unbiased. Correspondingly, early and late phagosomes are bound by different numbers and combinations of kinesins-1, -2, -3, and dynein. Tau stabilizes microtubules and directs transport within neurons. While single-molecule studies show that tau differentially regulates the motility of kinesins and dynein in vitro, less is known about its role in modulating the trafficking of endogenous cargoes transported by their native teams of motors. Previous studies showed that tau preferentially inhibits kinesin motors, which biases late phagosome transport towards the microtubule minus-end. Here, we show that tau strongly inhibits long-range, dynein-mediated motility of early phagosomes. Tau reduces forces generated by teams of dynein motors on early phagosomes and accelerates dynein unbinding under load. Thus, cargoes differentially respond to tau, where dynein complexes on early phagosomes are more sensitive to tau inhibition than those on late phagosomes. Mathematical modeling further explains how small changes in the number of kinesins and dynein on cargoes impact the net directionality but also that cargoes with different sets of motors respond differently to tau.


Asunto(s)
Dineínas , Cinesinas , Microtúbulos , Proteínas tau , Cinesinas/metabolismo , Cinesinas/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Dineínas/metabolismo , Dineínas/genética , Animales , Microtúbulos/metabolismo , Fagosomas/metabolismo , Transporte Biológico , Ratones , Humanos , Endocitosis/fisiología
16.
Genetics ; 227(2)2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581414

RESUMEN

In humans, MAPK8IP3 (also known as JIP3) is a neurodevelopmental disorder-associated gene. In Caenorhabditis elegans, the UNC-16 ortholog of the MAPK8IP3 protein can regulate the termination of axon growth. However, its role in this process is not well understood. Here, we report that UNC-16 promotes axon termination through a process that includes the LRK-1 (LRRK-1/LRRK-2) kinase and the WDFY-3 (WDFY3/Alfy) selective autophagy protein. Genetic analysis suggests that UNC-16 promotes axon termination through an interaction between its RH1 domain and the dynein complex. Loss of unc-16 function causes accumulation of late endosomes specifically in the distal axon. Moreover, we observe synergistic interactions between loss of unc-16 function and disruptors of endolysosomal function, indicating that the endolysosomal system promotes axon termination. We also find that the axon termination defects caused by loss of UNC-16 function require the function of a genetic pathway that includes lrk-1 and wdfy-3, 2 genes that have been implicated in autophagy. These observations suggest a model where UNC-16 promotes axon termination by interacting with the endolysosomal system to regulate a pathway that includes LRK-1 and WDFY-3.


Asunto(s)
Axones , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Endosomas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Axones/metabolismo , Endosomas/metabolismo , Autofagia , Dineínas/metabolismo , Dineínas/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Serina-Treonina Quinasas , Proteínas Adaptadoras Transductoras de Señales
17.
Nat Commun ; 15(1): 3456, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658528

RESUMEN

Intraflagellar transport (IFT) orchestrates entry of proteins into primary cilia. At the ciliary base, assembled IFT trains, driven by kinesin-2 motors, can transport cargo proteins into the cilium, across the crowded transition zone. How trains assemble at the base and how proteins associate with them is far from understood. Here, we use single-molecule imaging in the cilia of C. elegans chemosensory neurons to directly visualize the entry of kinesin-2 motors, kinesin-II and OSM-3, as well as anterograde cargo proteins, IFT dynein and tubulin. Single-particle tracking shows that IFT components associate with trains sequentially, both in time and space. Super-resolution maps of IFT components in wild-type and mutant worms reveal ciliary ultrastructure and show that kinesin-II is essential for axonemal organization. Finally, imaging cilia lacking kinesin-II and/or transition zone function uncovers the interplay of kinesin-II and OSM-3 in driving efficient transport of IFT trains across the transition zone.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cilios , Cinesinas , Caenorhabditis elegans/metabolismo , Animales , Cilios/metabolismo , Cilios/ultraestructura , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cinesinas/metabolismo , Cinesinas/genética , Flagelos/metabolismo , Flagelos/ultraestructura , Tubulina (Proteína)/metabolismo , Axonema/metabolismo , Axonema/ultraestructura , Dineínas/metabolismo , Transporte Biológico , Imagen Individual de Molécula , Transporte de Proteínas
18.
J Clin Lab Anal ; 38(7): e25030, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38525916

RESUMEN

BACKGROUND: The motor protein dynein is integral to retrograde transport along microtubules and interacts with numerous cargoes through the recruitment of cargo-specific adaptor proteins. This interaction is mediated by dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which govern the adaptor binding and are present in distinct dynein complexes with overlapping and unique functions. METHODS: Using bioinformatics, we analyzed the C-terminal domains (CTDs) of LIC1 and LIC2, revealing similar structural features but diverse post-translational modifications (PTMs). The methylation status of LIC2 and the proteins involved in this modification were examined through immunoprecipitation and immunoblotting analyses. The specific methylation sites on LIC2 were identified through a site-directed mutagenesis analysis, contributing to a deeper understanding of the regulatory mechanisms of the dynein complex. RESULTS: We found that LIC2 is specifically methylated at the arginine 397 residue, a reaction that is catalyzed by protein arginine methyltransferase 1 (PRMT1). CONCLUSIONS: The distinct PTMs of the LIC subunits offer a versatile mechanism for dynein to transport diverse cargoes efficiently. Understanding how these PTMs influence the functions of LIC2, and how they differ from LIC1, is crucial for elucidating the role of dynein-related transport pathways in a range of diseases. The discovery of the arginine 397 methylation site on LIC2 enhances our insight into the regulatory PTMs of dynein functions.


Asunto(s)
Arginina , Dineínas Citoplasmáticas , Proteína-Arginina N-Metiltransferasas , Proteínas Represoras , Metilación , Arginina/metabolismo , Arginina/química , Humanos , Dineínas Citoplasmáticas/metabolismo , Dineínas Citoplasmáticas/genética , Dineínas Citoplasmáticas/química , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Procesamiento Proteico-Postraduccional , Dineínas/metabolismo , Dineínas/genética , Dineínas/química , Secuencia de Aminoácidos
19.
Science ; 383(6690): eadk8544, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547289

RESUMEN

Cytoplasmic dynein is a microtubule motor vital for cellular organization and division. It functions as a ~4-megadalton complex containing its cofactor dynactin and a cargo-specific coiled-coil adaptor. However, how dynein and dynactin recognize diverse adaptors, how they interact with each other during complex formation, and the role of critical regulators such as lissencephaly-1 (LIS1) protein (LIS1) remain unclear. In this study, we determined the cryo-electron microscopy structure of dynein-dynactin on microtubules with LIS1 and the lysosomal adaptor JIP3. This structure reveals the molecular basis of interactions occurring during dynein activation. We show how JIP3 activates dynein despite its atypical architecture. Unexpectedly, LIS1 binds dynactin's p150 subunit, tethering it along the length of dynein. Our data suggest that LIS1 and p150 constrain dynein-dynactin to ensure efficient complex formation.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa , Proteínas Adaptadoras Transductoras de Señales , Complejo Dinactina , Dineínas , Proteínas Asociadas a Microtúbulos , Proteínas del Tejido Nervioso , Microscopía por Crioelectrón , Complejo Dinactina/química , Complejo Dinactina/genética , Complejo Dinactina/metabolismo , Dineínas/química , Dineínas/genética , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Unión Proteica , Humanos , Células HeLa , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Repeticiones WD40 , Mapeo de Interacción de Proteínas
20.
PLoS Genet ; 20(3): e1011038, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38498551

RESUMEN

Motile cilia assembly utilizes over 800 structural and cytoplasmic proteins. Variants in approximately 58 genes cause primary ciliary dyskinesia (PCD) in humans, including the dynein arm (pre)assembly factor (DNAAF) gene DNAAF4. In humans, outer dynein arms (ODAs) and inner dynein arms (IDAs) fail to assemble motile cilia when DNAAF4 function is disrupted. In Chlamydomonas reinhardtii, a ciliated unicellular alga, the DNAAF4 ortholog is called PF23. The pf23-1 mutant assembles short cilia and lacks IDAs, but partially retains ODAs. The cilia of a new null allele (pf23-4) completely lack ODAs and IDAs and are even shorter than cilia from pf23-1. In addition, PF23 plays a role in the cytoplasmic modification of IC138, a protein of the two-headed IDA (I1/f). As most PCD variants in humans are recessive, we sought to test if heterozygosity at two genes affects ciliary function using a second-site non-complementation (SSNC) screening approach. We asked if phenotypes were observed in diploids with pairwise heterozygous combinations of 21 well-characterized ciliary mutant Chlamydomonas strains. Vegetative cultures of single and double heterozygous diploid cells did not show SSNC for motility phenotypes. When protein synthesis is inhibited, wild-type Chlamydomonas cells utilize the pool of cytoplasmic proteins to assemble half-length cilia. In this sensitized assay, 8 double heterozygous diploids with pf23 and other DNAAF mutations show SSNC; they assemble shorter cilia than wild-type. In contrast, double heterozygosity of the other 203 strains showed no effect on ciliary assembly. Immunoblots of diploids heterozygous for pf23 and wdr92 or oda8 show that PF23 is reduced by half in these strains, and that PF23 dosage affects phenotype severity. Reductions in PF23 and another DNAAF in diploids affect the ability to assemble ODAs and IDAs and impedes ciliary assembly. Thus, dosage of multiple DNAAFs is an important factor in cilia assembly and regeneration.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Humanos , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cilios/genética , Cilios/metabolismo , Mutación , Dineínas/genética , Dineínas/metabolismo , Proteínas/genética , Chlamydomonas/genética , Chlamydomonas/metabolismo , Dosificación de Gen , Axonema/genética , Axonema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...