Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Phys Chem B ; 128(41): 10063-10074, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39382058

RESUMEN

Cytoplasmic dynein homodimer is a motor protein that can step processively on microtubules (MTs) toward the minus end by hydrolyzing ATP molecules. Some dynein motors show a complicated stepping behavior with variable step sizes and having both hand-overhand and inchworm steps, while some mammalian dynein motors show simplistic stepping behavior with a constant step size and having only hand-overhand steps. Here, a model for the chemomechanical coupling of the dynein is presented, based on which an analytical theory is given on the dynamics of the motor. The theoretical results explain consistently and quantitatively the available experimental data on various aspects of the dynamics of dynein with complicated stepping behavior and the dynamics of dynein with simplistic stepping behavior. The very differences in the dynamic behavior between the two motors are due solely to different elastic coefficients of the linkage connecting the two dynein heads, with the dynein motors of the complicated and simplistic stepping behaviors having small and large coefficients, respectively. Moreover, it is analyzed that the ATPase rate of the dynein head with a docked linker being larger than that with an undocked linker is indispensable for the unidirectional motility of the motor, and the small free energy change for the linker docking in the strong MT-binding state facilitates the unidirectional motility.


Asunto(s)
Microtúbulos , Microtúbulos/metabolismo , Microtúbulos/química , Dineínas/metabolismo , Dineínas/química , Dineínas Citoplasmáticas/metabolismo , Dineínas Citoplasmáticas/química , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Animales , Modelos Moleculares
2.
J Clin Lab Anal ; 38(7): e25030, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38525916

RESUMEN

BACKGROUND: The motor protein dynein is integral to retrograde transport along microtubules and interacts with numerous cargoes through the recruitment of cargo-specific adaptor proteins. This interaction is mediated by dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which govern the adaptor binding and are present in distinct dynein complexes with overlapping and unique functions. METHODS: Using bioinformatics, we analyzed the C-terminal domains (CTDs) of LIC1 and LIC2, revealing similar structural features but diverse post-translational modifications (PTMs). The methylation status of LIC2 and the proteins involved in this modification were examined through immunoprecipitation and immunoblotting analyses. The specific methylation sites on LIC2 were identified through a site-directed mutagenesis analysis, contributing to a deeper understanding of the regulatory mechanisms of the dynein complex. RESULTS: We found that LIC2 is specifically methylated at the arginine 397 residue, a reaction that is catalyzed by protein arginine methyltransferase 1 (PRMT1). CONCLUSIONS: The distinct PTMs of the LIC subunits offer a versatile mechanism for dynein to transport diverse cargoes efficiently. Understanding how these PTMs influence the functions of LIC2, and how they differ from LIC1, is crucial for elucidating the role of dynein-related transport pathways in a range of diseases. The discovery of the arginine 397 methylation site on LIC2 enhances our insight into the regulatory PTMs of dynein functions.


Asunto(s)
Arginina , Dineínas Citoplasmáticas , Proteína-Arginina N-Metiltransferasas , Proteínas Represoras , Metilación , Arginina/metabolismo , Arginina/química , Humanos , Dineínas Citoplasmáticas/metabolismo , Dineínas Citoplasmáticas/genética , Dineínas Citoplasmáticas/química , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Procesamiento Proteico-Postraduccional , Dineínas/metabolismo , Dineínas/genética , Dineínas/química , Secuencia de Aminoácidos
3.
Nature ; 610(7930): 212-216, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36071160

RESUMEN

Cytoplasmic dynein is a microtubule motor that is activated by its cofactor dynactin and a coiled-coil cargo adaptor1-3. Up to two dynein dimers can be recruited per dynactin, and interactions between them affect their combined motile behaviour4-6. Different coiled-coil adaptors are linked to different cargos7,8, and some share motifs known to contact sites on dynein and dynactin4,9-13. There is limited structural information on how the resulting complex interacts with microtubules and how adaptors are recruited. Here we develop a cryo-electron microscopy processing pipeline to solve the high-resolution structure of dynein-dynactin and the adaptor BICDR1 bound to microtubules. This reveals the asymmetric interactions between neighbouring dynein motor domains and how they relate to motile behaviour. We found that two adaptors occupy the complex. Both adaptors make similar interactions with the dyneins but diverge in their contacts with each other and dynactin. Our structure has implications for the stability and stoichiometry of motor recruitment by cargos.


Asunto(s)
Microscopía por Crioelectrón , Dineínas Citoplasmáticas , Complejo Dinactina , Microtúbulos , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/ultraestructura , Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/metabolismo , Dineínas Citoplasmáticas/ultraestructura , Complejo Dinactina/química , Complejo Dinactina/metabolismo , Complejo Dinactina/ultraestructura , Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Unión Proteica
4.
J Mol Biol ; 434(9): 167520, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35245498

RESUMEN

Multivalent intrinsically disordered protein (IDP) complexes are prevalent in biology and act in regulation of diverse processes, including transcription, signaling events, and the assembly and disassembly of complex macromolecular architectures. These systems pose significant challenges to structural investigation, due to continuum dynamics imparted by the IDP and compositional heterogeneity resulting from characteristic low-affinity interactions. Here, we developed a modular pipeline for automated single-particle electron microscopy (EM) distribution analysis of common but relatively understudied semi-ordered systems: 'beads-on-a-string' assemblies, composed of IDPs bound at multivalent sites to the ubiquitous ∼20 kDa cross-linking hub protein LC8. This approach quantifies conformational geometries and compositional heterogeneity on a single-particle basis, and statistically corrects spurious observations arising from random proximity of bound and unbound LC8. The statistical correction is generically applicable to oligomer characterization and not specific to our pipeline. Following validation, the approach was applied to the nuclear pore IDP Nup159 and the transcription factor ASCIZ. This analysis unveiled significant compositional and conformational diversity in both systems that could not be obtained from ensemble single particle EM class-averaging strategies, and new insights for exploring how these architectural properties might contribute to their physiological roles in supramolecular assembly and transcriptional regulation. We expect that this approach may be adopted to many other intrinsically disordered systems that have evaded traditional methods of structural characterization.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Dineínas Citoplasmáticas/química , Proteínas Intrínsecamente Desordenadas/química , Microscopía Electrónica/métodos , Proteínas de Complejo Poro Nuclear/química , Conformación Proteica , Imagen Individual de Molécula , Factores de Transcripción/química
5.
Cells ; 10(8)2021 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-34440654

RESUMEN

Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel developments in the field.


Asunto(s)
Dineínas Axonemales/metabolismo , Ciliopatías/patología , Dineínas Citoplasmáticas/metabolismo , Animales , Dineínas Axonemales/química , Dineínas Axonemales/genética , Cilios/metabolismo , Ciliopatías/genética , Ciliopatías/metabolismo , Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/genética , Humanos , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patología , Polimorfismo Genético , Síndrome de Costilla Pequeña y Polidactilia/genética , Síndrome de Costilla Pequeña y Polidactilia/metabolismo , Síndrome de Costilla Pequeña y Polidactilia/patología
6.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299323

RESUMEN

Dynein is a ~1.2 MDa cytoskeletal motor protein that carries organelles via retrograde transport in eukaryotic cells. The motor protein belongs to the ATPase family of proteins associated with diverse cellular activities and plays a critical role in transporting cargoes to the minus end of the microtubules. The motor domain of dynein possesses a hexameric head, where ATP hydrolysis occurs. The presented work analyzes the structure-activity relationship (SAR) of dynapyrazole A and B, as well as ciliobrevin A and D, in their various protonated states and their 46 analogues for their binding in the AAA1 subunit, the leading ATP hydrolytic site of the motor domain. This study exploits in silico methods to look at the analogues' effects on the functionally essential subsites of the motor domain of dynein 1, since no similar experimental structural data are available. Ciliobrevin and its analogues bind to the ATP motifs of the AAA1, namely, the walker-A (W-A) or P-loop, the walker-B (W-B), and the sensor I and II. Ciliobrevin A shows a better binding affinity than its D analogue. Although the double bond in ciliobrevin A and D was expected to decrease the ligand potency, they show a better affinity to the AAA1 binding site than dynapyrazole A and B, lacking the bond. In addition, protonation of the nitrogen atom in ciliobrevin A and D, as well as dynapyrazole A and B, at the N9 site of ciliobrevin and the N7 of the latter increased their binding affinity. Exploring ciliobrevin A geometrical configuration suggests the E isomer has a superior binding profile over the Z due to binding at the critical ATP motifs. Utilizing the refined structure of the motor domain obtained through protein conformational search in this study exhibits that Arg1852 of the yeast cytoplasmic dynein could involve in the "glutamate switch" mechanism in cytoplasmic dynein 1 in lieu of the conserved Asn in AAA+ protein family.


Asunto(s)
Adenosina Trifosfato/metabolismo , Dineínas/química , Quinazolinonas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Sitios de Unión , Transporte Biológico , Simulación por Computador , Citoplasma/metabolismo , Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/metabolismo , Dineínas/antagonistas & inhibidores , Dineínas/metabolismo , Hidrólisis , Microtúbulos/metabolismo , Unión Proteica , Conformación Proteica , Quinazolinonas/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
7.
J Microbiol ; 59(4): 410-416, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33630249

RESUMEN

Zaire ebolavirus, commonly called Ebola virus (EBOV), is an RNA virus that causes severe hemorrhagic fever with high mortality. Viral protein 35 (VP35) is a virulence factor encoded in the EBOV genome. VP35 inhibits host innate immune responses and functions as a critical cofactor for viral RNA replication. EBOV VP35 contains a short conserved motif that interacts with dynein light chain 8 (LC8), which serves as a regulatory hub protein by associating with various LC8-binding proteins. Herein, we present the crystal structure of human LC8 bound to the peptide comprising residues 67-76 of EBOV VP35. Two VP35 peptides were found to interact with homodimeric LC8 by extending the central ß-sheets, constituting a 2:2 complex. Structural analysis demonstrated that the intermolecular binding between LC8 and VP35 is mainly sustained by a network of hydrogen bonds and supported by hydrophobic interactions in which Thr73 and Thr75 of VP35 are involved. These findings were verified by binding measurements using isothermal titration calorimetry. Biochemical analyses also verified that residues 67-76 of EBOV VP35 constitute a core region for interaction with LC8. In addition, corresponding motifs from other members of the genus Ebolavirus commonly bound to LC8 but with different binding affinities. Particularly, VP35 peptides originating from pathogenic species interacted with LC8 with higher affinity than those from noninfectious species, suggesting that the binding of VP35 to LC8 is associated with the pathogenicity of the Ebolavirus species.


Asunto(s)
Dineínas Citoplasmáticas/química , Ebolavirus/química , Proteínas de la Nucleocápside/química , Secuencia de Aminoácidos , Calorimetría , Simulación por Computador , Cristalización , Cristalografía por Rayos X , Fiebre Hemorrágica Ebola/virología , Interacciones Microbiota-Huesped , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteínas Virales/química , Factores de Virulencia/química
8.
Methods ; 185: 39-48, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32007556

RESUMEN

Cytoplasmic dynein is responsible for intra-cellular transport in eukaryotic cells. Using Fluctuating Finite Element Analysis (FFEA), a novel algorithm that represents proteins as continuum viscoelastic solids subject to thermal noise, we are building computational tools to study the mechanics of these molecular machines. Here we present a methodology for obtaining the material parameters required to represent the flexibility of cytoplasmic dynein within FFEA from atomistic molecular dynamics (MD) simulations, and show that this continuum representation is sufficient to capture the principal dynamic properties of the motor.


Asunto(s)
Dineínas Citoplasmáticas/metabolismo , Análisis de Elementos Finitos , Simulación de Dinámica Molecular , Algoritmos , Dineínas Citoplasmáticas/química
9.
Nat Commun ; 11(1): 5952, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230227

RESUMEN

Cytoplasmic dynein is the primary motor for microtubule minus-end-directed transport and is indispensable to eukaryotic cells. Although each motor domain of dynein contains three active AAA+ ATPases (AAA1, 3, and 4), only the functions of AAA1 and 3 are known. Here, we use single-molecule fluorescence and optical tweezers studies to elucidate the role of AAA4 in dynein's mechanochemical cycle. We demonstrate that AAA4 controls the priming stroke of the motion-generating linker, which connects the dimerizing tail of the motor to the AAA+ ring. Before ATP binds to AAA4, dynein remains incapable of generating motion. However, when AAA4 is bound to ATP, the gating of AAA1 by AAA3 prevails and dynein motion can occur. Thus, AAA1, 3, and 4 work together to regulate dynein function. Our work elucidates an essential role for AAA4 in dynein's stepping cycle and underscores the complexity and crosstalk among the motor's multiple AAA+ domains.


Asunto(s)
Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/metabolismo , Dominio AAA , Adenosina Trifosfato/metabolismo , Dineínas Citoplasmáticas/genética , Hidrólisis , Microtúbulos/metabolismo , Movimiento , Mutagénesis , Pinzas Ópticas , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
10.
Cell Death Dis ; 11(8): 619, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796833

RESUMEN

Emerging evidence indicates that neurodegenerative diseases (NDs) result from a failure to clear toxic protein aggregates rather than from their generation. We previously showed N-acetylglucosamine kinase (NAGK) promotes dynein functionality and suggested this might promote aggregate removal and effectively address proteinopathies. Here, we report NAGK interacts with dynein light chain roadblock type 1 (DYNLRB1) and efficiently suppresses mutant huntingtin (mHtt) (Q74) and α-synuclein (α-syn) A53T aggregation in mouse brain cells. A kinase-inactive NAGKD107A also efficiently cleared Q74 aggregates. Yeast two-hybrid selection and in silico protein-protein docking analysis showed the small domain of NAGK (NAGK-DS) binds to the C-terminal of DYNLRB1. Furthermore, a small peptide derived from NAGK-DS interfered with Q74 clearance. We propose binding of NAGK-DS to DYNLRB1 'pushes up' the tail of dynein light chain and confers momentum for inactive phi- to active open-dynein transition.


Asunto(s)
Dineínas Citoplasmáticas/metabolismo , Dineínas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Agregado de Proteínas , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Dineínas Citoplasmáticas/química , Células HEK293 , Humanos , Proteína Huntingtina/metabolismo , Ratones , Mitocondrias/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Péptidos/química , Péptidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Unión Proteica , Dominios Proteicos , ARN Interferente Pequeño/metabolismo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , alfa-Sinucleína/metabolismo
11.
SLAS Discov ; 25(9): 985-999, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32436764

RESUMEN

Cytoplasmic dynein-1 (hereafter dynein) is a six-subunit motor complex that transports a variety of cellular components and pathogens along microtubules. Dynein's cellular functions are only partially understood, and potent and specific small-molecule inhibitors and activators of this motor would be valuable for addressing this issue. It has also been hypothesized that an inhibitor of dynein-based transport could be used in antiviral or antimitotic therapy, whereas an activator could alleviate age-related neurodegenerative diseases by enhancing microtubule-based transport in axons. Here, we present the first high-throughput screening (HTS) assay capable of identifying both activators and inhibitors of dynein-based transport. This project is also the first collaborative screening report from the Medical Research Council and AstraZeneca agreement to form the UK Centre for Lead Discovery. A cellular imaging assay was used, involving chemically controlled recruitment of activated dynein complexes to peroxisomes. Such a system has the potential to identify molecules that affect multiple aspects of dynein biology in vivo. Following optimization of key parameters, the assay was developed in a 384-well format with semiautomated liquid handling and image acquisition. Testing of more than 500,000 compounds identified both inhibitors and activators of dynein-based transport in multiple chemical series. Additional analysis indicated that many of the identified compounds do not affect the integrity of the microtubule cytoskeleton and are therefore candidates to directly target the transport machinery.


Asunto(s)
Dineínas Citoplasmáticas/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento/métodos , Peroxisomas/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Transporte Biológico/efectos de los fármacos , Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/genética , Humanos , Transporte Iónico/genética , Microtúbulos/efectos de los fármacos
12.
Sci Rep ; 10(1): 1080, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974448

RESUMEN

Cytoplasmic dynein is a dimeric motor protein which processively moves along microtubule. Its motor domain (head) hydrolyzes ATP and induces conformational changes of linker, stalk, and microtubule binding domain (MTBD) to trigger stepping motion. Here we applied scattering imaging of gold nanoparticle (AuNP) to visualize load-free stepping motion of processive dynein. We observed artificially-dimerized chimeric dynein, which has the head, linker, and stalk from Dictyostelium discoideum cytoplasmic dynein and the MTBD from human axonemal dynein, whose structure has been well-studied by cryo-electron microscopy. One head of a dimer was labeled with 30 nm AuNP, and stepping motions were observed with 100 µs time resolution and sub-nanometer localization precision at physiologically-relevant 1 mM ATP. We found 8 nm forward and backward steps and 5 nm side steps, consistent with on- and off-axes pitches of binding cleft between αß-tubulin dimers on the microtubule. Probability of the forward step was 1.8 times higher than that of the backward step, and similar to those of the side steps. One-head bound states were not clearly observed, and the steps were limited by a single rate constant. Our results indicate dynein mainly moves with biased small stepping motion in which only backward steps are slightly suppressed.


Asunto(s)
Dineínas Axonemales/química , Dineínas Citoplasmáticas/química , Dictyostelium/química , Proteínas Protozoarias/química , Dineínas Axonemales/metabolismo , Fenómenos Bioquímicos , Microscopía por Crioelectrón , Dictyostelium/metabolismo , Oro/química , Humanos , Nanopartículas del Metal/química , Microtúbulos/química , Microtúbulos/metabolismo , Unión Proteica , Proteínas Protozoarias/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
13.
Life Sci Alliance ; 2(4)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31266884

RESUMEN

Hub proteins participate in cellular regulation by dynamic binding of multiple proteins within interaction networks. The hub protein LC8 reversibly interacts with more than 100 partners through a flexible pocket at its dimer interface. To explore the diversity of the LC8 partner pool, we screened for LC8 binding partners using a proteomic phage display library composed of peptides from the human proteome, which had no bias toward a known LC8 motif. Of the identified hits, we validated binding of 29 peptides using isothermal titration calorimetry. Of the 29 peptides, 19 were entirely novel, and all had the canonical TQT motif anchor. A striking observation is that numerous peptides containing the TQT anchor do not bind LC8, indicating that residues outside of the anchor facilitate LC8 interactions. Using both LC8-binding and nonbinding peptides containing the motif anchor, we developed the "LC8Pred" algorithm that identifies critical residues flanking the anchor and parses random sequences to predict LC8-binding motifs with ∼78% accuracy. Our findings significantly expand the scope of the LC8 hub interactome.


Asunto(s)
Dineínas Citoplasmáticas/metabolismo , Péptidos/química , Dominios y Motivos de Interacción de Proteínas , Algoritmos , Calorimetría , Proteínas de Ciclo Celular/metabolismo , Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/genética , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Unión Proteica , Proteómica , Termodinámica
14.
Nucleic Acids Res ; 47(12): 6236-6249, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-30982887

RESUMEN

The tumor suppressor protein 53BP1 plays key roles in response to DNA double-strand breaks (DSBs) by serving as a master scaffold at the damaged chromatin. Current evidence indicates that 53BP1 assembles a cohort of DNA damage response (DDR) factors to distinctly execute its repertoire of DSB responses, including checkpoint activation and non-homologous end joining (NHEJ) repair. Here, we have uncovered LC8 (a.k.a. DYNLL1) as an important 53BP1 effector. We found that LC8 accumulates at laser-induced DNA damage tracks in a 53BP1-dependent manner and requires the canonical H2AX-MDC1-RNF8-RNF168 signal transduction cascade. Accordingly, genetic inactivation of LC8 or its interaction with 53BP1 resulted in checkpoint defects. Importantly, loss of LC8 alleviated the hypersensitivity of BRCA1-depleted cells to ionizing radiation and PARP inhibition, highlighting the 53BP1-LC8 module in counteracting BRCA1-dependent functions in the DDR. Together, these data establish LC8 as an important mediator of a subset of 53BP1-dependent DSB responses.


Asunto(s)
Dineínas Citoplasmáticas/fisiología , Roturas del ADN de Doble Cadena , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína BRCA1/genética , Línea Celular , Cromatina/metabolismo , Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/metabolismo , Reparación del ADN , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Radiación Ionizante
15.
Int J Mol Sci ; 20(5)2019 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-30832428

RESUMEN

This study compares the role of electrostatics in the binding process between microtubules and two dynein microtubule-binding domains (MTBDs): cytoplasmic and axonemal. These two dyneins are distinctively different in terms of their functionalities: cytoplasmic dynein is processive, while axonemal dynein is involved in beating. In both cases, the binding requires frequent association/disassociation between the microtubule and MTBD, and involves highly negatively charged microtubules, including non-structured C-terminal domains (E-hooks), and an MTBD interface that is positively charged. This indicates that electrostatics play an important role in the association process. Here, we show that the cytoplasmic MTBD binds electrostatically tighter to microtubules than to the axonemal MTBD, but the axonemal MTBD experiences interactions with microtubule E-hooks at longer distances compared with the cytoplasmic MTBD. This allows the axonemal MTBD to be weakly bound to the microtubule, while at the same time acting onto the microtubule via the flexible E-hooks, even at MTBD⁻microtubule distances of 45 Å. In part, this is due to the charge distribution of MTBDs: in the cytoplasmic MTBD, the positive charges are concentrated at the binding interface with the microtubule, while in the axonemal MTBD, they are more distributed over the entire structure, allowing E-hooks to interact at longer distances. The dissimilarities of electrostatics in the cases of axonemal and cytoplasmic MTBDs were found not to result in a difference in conformational dynamics on MTBDs, while causing differences in the conformational states of E-hooks. The E-hooks' conformations in the presence of the axonemal MTBD were less restricted than in the presence of the cytoplasmic MTBD. In parallel with the differences, the common effect was found that the structural fluctuations of MTBDs decrease as either the number of contacts with E-hooks increases or the distance to the microtubule decreases.


Asunto(s)
Dineínas Axonemales/química , Dineínas Citoplasmáticas/química , Simulación de Dinámica Molecular , Animales , Dineínas Axonemales/metabolismo , Sitios de Unión , Dineínas Citoplasmáticas/metabolismo , Ratones , Microtúbulos/metabolismo , Unión Proteica
16.
J Cell Biol ; 218(1): 220-233, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30373907

RESUMEN

Axonal transport is required for neuronal development and survival. Transport from the axon to the soma is driven by the molecular motor cytoplasmic dynein, yet it remains unclear how dynein is spatially and temporally regulated. We find that the dynein effector Hook1 mediates transport of TrkB-BDNF-signaling endosomes in primary hippocampal neurons. Hook1 comigrates with a subpopulation of Rab5 endosomes positive for TrkB and BDNF, which exhibit processive retrograde motility with faster velocities than the overall Rab5 population. Knockdown of Hook1 significantly reduced the motility of BDNF-signaling endosomes without affecting the motility of other organelles. In microfluidic chambers, Hook1 depletion resulted in a significant decrease in the flux and processivity of BDNF-Qdots along the mid-axon, an effect specific for Hook1 but not Hook3. Hook1 depletion inhibited BDNF trafficking to the soma and blocked downstream BDNF- and TrkB-dependent signaling to the nucleus. Together, these studies support a model in which differential association with cargo-specific effectors efficiently regulates dynein in neurons.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dineínas Citoplasmáticas/metabolismo , Endosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Receptor trkB/metabolismo , Animales , Transporte Axonal , Sitios de Unión , Factor Neurotrófico Derivado del Encéfalo/genética , Núcleo Celular/metabolismo , Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/genética , Endosomas/ultraestructura , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/metabolismo , Hipocampo/ultraestructura , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Modelos Moleculares , Neuronas/ultraestructura , Cultivo Primario de Células , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Receptor trkB/genética , Transducción de Señal , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo , Proteína Fluorescente Roja
17.
Sci Rep ; 8(1): 16333, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30397249

RESUMEN

A power stroke of dynein is thought to be responsible for the stepping of dimeric dynein. However, the actual size of the displacement driven by a power stroke has not been directly measured. Here, the displacements of single-headed cytoplasmic dynein were measured by optical tweezers. The mean displacement of dynein interacting with microtubule was ~8 nm at 100 µM ATP, and decreased sigmoidally with a decrease in the ATP concentration. The ATP dependence of the mean displacement was explained by a model that some dynein molecules bind to microtubule in pre-stroke conformation and generate 8-nm displacement, while others bind in the post-stroke one and detach without producing a power stroke. Biochemical assays showed that the binding affinity of the post-stroke dynein to a microtubule was ~5 times higher than that of pre-stroke dynein, and the dissociation rate was ~4 times lower. Taking account of these rates, we conclude that the displacement driven by a power stroke is 8.3 nm. A working model of dimeric dynein driven by the 8-nm power stroke was proposed.


Asunto(s)
Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/metabolismo , Dineínas/química , Dineínas/metabolismo , Pinzas Ópticas , Adenosina Trifosfato/metabolismo , Humanos , Cinética , Microtúbulos/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína
18.
Structure ; 26(12): 1664-1677.e5, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30270176

RESUMEN

Cytoplasmic dynein, whose motor domain belongs to the AAA+ family, walks on microtubules toward the minus end. Using the available structures in different nucleotide states, we performed simulations of a coarse-grained model to elucidate the dynamics of allosteric transitions. Binding of ATP closes the cleft between the AAA1 and AAA2 domains, triggering conformational changes in the rest of the motor domain, thus forming the pre-power stroke state. Interactions with the microtubule, modeled implicitly, enhance ADP release rate, and the formation of the post-power stroke state. The dynamics of the linker (LN), which reversibly changes from a straight to a bent state, is heterogeneous. Persistent interactions between the LN and the insert loops in the AAA2 domain prevent the formation of pre-power stroke state when ATP is bound to AAA3, thus locking dynein in a repressed non-functional state. Application of mechanical force to the LN restores motility in the repressed state.


Asunto(s)
Adenosina Trifosfato/metabolismo , Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/metabolismo , Regulación Alostérica , Animales , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica , Dominios Proteicos
19.
Elife ; 72018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29944118

RESUMEN

Polarised mRNA transport is a prevalent mechanism for spatial control of protein synthesis. However, the composition of transported ribonucleoprotein particles (RNPs) and the regulation of their movement are poorly understood. We have reconstituted microtubule minus end-directed transport of mRNAs using purified components. A Bicaudal-D (BicD) adaptor protein and the RNA-binding protein Egalitarian (Egl) are sufficient for long-distance mRNA transport by the dynein motor and its accessory complex dynactin, thus defining a minimal transport-competent RNP. Unexpectedly, the RNA is required for robust activation of dynein motility. We show that a cis-acting RNA localisation signal promotes the interaction of Egl with BicD, which licenses the latter protein to recruit dynein and dynactin. Our data support a model for BicD activation based on RNA-induced occupancy of two Egl-binding sites on the BicD dimer. Scaffolding of adaptor protein assemblies by cargoes is an attractive mechanism for regulating intracellular transport.


Asunto(s)
Proteínas de Drosophila/genética , Complejo Dinactina/genética , Dineínas/genética , Animales , Sitios de Unión , Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/genética , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Complejo Dinactina/química , Dineínas/química , Unión Proteica/genética , Multimerización de Proteína , Transporte de Proteínas/genética , Transporte de ARN/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/genética
20.
Elife ; 72018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29714690

RESUMEN

The transcription factor ASCIZ (ATMIN, ZNF822) has an unusually high number of recognition motifs for the product of its main target gene, the hub protein LC8 (DYNLL1). Using a combination of biophysical methods, structural analysis by NMR and electron microscopy, and cellular transcription assays, we developed a model that proposes a concerted role of intrinsic disorder and multiple LC8 binding events in regulating LC8 transcription. We demonstrate that the long intrinsically disordered C-terminal domain of ASCIZ binds LC8 to form a dynamic ensemble of complexes with a gradient of transcriptional activity that is inversely proportional to LC8 occupancy. The preference for low occupancy complexes at saturating LC8 concentrations with both human and Drosophila ASCIZ indicates that negative cooperativity is an important feature of ASCIZ-LC8 interactions. The prevalence of intrinsic disorder and multivalency among transcription factors suggests that formation of heterogeneous, dynamic complexes is a widespread mechanism for tuning transcriptional regulation.


Asunto(s)
Dineínas Citoplasmáticas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Regulación de la Expresión Génica , Proteínas Intrínsecamente Desordenadas/metabolismo , Factores de Transcripción/metabolismo , Animales , Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Dineínas/química , Dineínas/genética , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Factores de Transcripción/química , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...