Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.649
Filtrar
1.
Genome Biol ; 25(1): 115, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711126

RESUMEN

BACKGROUND: In dinoflagellates, a unique and extremely divergent genomic and nuclear organization has evolved. The highly unusual features of dinoflagellate nuclei and genomes include permanently condensed liquid crystalline chromosomes, primarily packaged by proteins other than histones, genes organized in very long unidirectional gene arrays, a general absence of transcriptional regulation, high abundance of the otherwise very rare DNA modification 5-hydroxymethyluracil (5-hmU), and many others. While most of these fascinating properties are originally identified in the 1970s and 1980s, they have not yet been investigated using modern genomic tools. RESULTS: In this work, we address some of the outstanding questions regarding dinoflagellate genome organization by mapping the genome-wide distribution of 5-hmU (using both immunoprecipitation-based and basepair-resolution chemical mapping approaches) and of chromatin accessibility in the genome of the Symbiodiniaceae dinoflagellate Breviolum minutum. We find that the 5-hmU modification is preferentially enriched over certain classes of repetitive elements, often coincides with the boundaries between gene arrays, and is generally correlated with decreased chromatin accessibility, the latter otherwise being largely uniform along the genome. We discuss the potential roles of 5-hmU in the functional organization of dinoflagellate genomes and its relationship to the transcriptional landscape of gene arrays. CONCLUSIONS: Our results provide the first window into the 5-hmU and chromatin accessibility landscapes in dinoflagellates.


Asunto(s)
Cromatina , Dinoflagelados , Pentoxil (Uracilo) , Pentoxil (Uracilo)/análogos & derivados , Dinoflagelados/genética , Dinoflagelados/metabolismo , Cromatina/metabolismo , Pentoxil (Uracilo)/metabolismo , Genoma de Protozoos
2.
Sci Total Environ ; 931: 172997, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38714256

RESUMEN

Diatoms and dinoflagellates are two typical functional groups of phytoplankton, playing important roles in ecosystem processes and biogeochemical cycles. Changes in diatoms and dinoflagellates are thought to be one of the possible mechanisms for the increase in harmful algal blooms (HABs), due to changing hydrological conditions associated with climate change and human activities. However, little is known about their ability to adapt to changing ocean environments, thus making it difficult to know whether and how they are adapting. By analyzing a 44-year monitoring dataset in the central Bohai Sea during 1978-2021, we found that the abundance ratio of diatoms to dinoflagellates showed a decreasing trend seasonally and ecologically, indicating that the phytoplankton community underwent distinct successional processes from diatom dominance to diatom-dinoflagellate co-dominance. These processes exhibited varying responses to temperature, nutrient concentrations and ratios, and their interactions, of which temperature primarily drove the seasonal succession whereas nutrients were responsible for the ecological succession. Specifically, diatoms showed a preference for lower temperatures and higher DIP concentrations, and were able to tolerate lower DIN at lower temperatures. In contrast, dinoflagellates tended to prevail at conditions of warming and high N/P ratios. These different traits of diatoms and dinoflagellates reflected the fact that warming as a result of rising temperature and eutrophication as a consequence of nutrient input would favor dinoflagellates over diatoms. Moreover, the increasing dominance of dinoflagellates indicated that dinoflagellate blooms were likely to become more frequent and intense in the central Bohai Sea.


Asunto(s)
Cambio Climático , Diatomeas , Dinoflagelados , Eutrofización , Temperatura , Fitoplancton , Nutrientes/análisis , Monitoreo del Ambiente , China , Floraciones de Algas Nocivas , Ecosistema , Estaciones del Año
3.
Harmful Algae ; 134: 102603, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38705609

RESUMEN

Toxic dinoflagellate Alexandrium can produce saxitoxins (STXs) and cause paralytic shellfish poisoning (PSP), and thus they are monitored for environmental safety management. Microscopic discrimination of dinoflagellates is difficult to distinguish between toxic and non-toxic species due to their similar morphology. Meanwhile, an alternative quantitative PCR (qPCR) assay is sensitive, rapid, and cost-effective for harmful species monitoring. Herein, we developed a novel qPCR assay to detect the STXs biosynthesis gene sxtB of Alexandrium catenella and A. pacificum, the leading cause of PSP outbreaks in Asian coasts and worldwide. The newly designed sxtB TaqMan probes target the species without any positive signal in other relative dinoflagellates. Deming regression analysis revealed that the sxtB copy number of A. catenella and A. pacificum was 3.6 and 4.1 copies per cell, respectively. During the blooming periods (April 13th-14th, 2020), only A. catenella cells were detected through the qPCR assay, ranging from 5.0 × 10 to 2.5 × 104 eq cells L-1. In addition, sxtB qPCR quantified more accurately compared to large subunit (LSU) rRNA targeting qPCR assay that overestimate cell density. Besides, the sensitivity of sxtB was higher compared to the microscope when the species were rarely present (5.0 × 102 cells L-1). These suggest that the sxtB qPCR assay can be applied to toxic Alexandrium monitoring in the Korean coast, even in the early stage of bloomings.


Asunto(s)
Dinoflagelados , Reacción en Cadena en Tiempo Real de la Polimerasa , Saxitoxina , Dinoflagelados/genética , Saxitoxina/genética , Saxitoxina/biosíntesis , República de Corea , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Floraciones de Algas Nocivas
4.
Harmful Algae ; 134: 102604, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38705610

RESUMEN

In the North Sea, Tripos and Dinophysis are commonly occurring mixotrophic planktonic dinoflagellate genera. In order to understand their bloom dynamics, an occurring bloom dominated by T. furca and D. norvegica was followed for several days. High cell abundances of these species were located to estimate: in situ growth rates from cell cycle analyses, depth distributions, growth rates sustained by photosynthesis, and parasite infection prevalence in all T. furca, T. fusus, D. norvegica and D. acuminata. Cell abundances were over 10000 cells L-1 for T. furca and up to 18000 cells L-1 for D. norvegica. Cells accumulated between 15-25 m depth and presented low specific in situ growth rates of 0.04-0.15 d-1 for T. furca and 0.02-0.16 d-1 for D. norvegica. Photosynthesis could sustain growth rates of 0.01-0.18 d-1 for T. furca and 0.02 to 0.14 d-1 for D. norvegica, suggesting that these species were relying mainly on photosynthesis. Parasite infections where generally low, with occasional high prevalence in D. norvegica (by Parvilucifera sp.) and T. fusus (by Amoebophrya sp.), while both parasites showed comparable prevalence in D. acuminata, which could offset in situ growth rates by parasite-induced host mortality. The restructuring effect of parasites on dinoflagellate blooms is often overlooked and this study elucidates their effect to cell abundances and their growth at the final stages of a bloom.


Asunto(s)
Dinoflagelados , Fotosíntesis , Dinámica Poblacional , Dinoflagelados/fisiología , Dinoflagelados/crecimiento & desarrollo , Mar del Norte , Floraciones de Algas Nocivas
5.
Harmful Algae ; 134: 102626, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38705614

RESUMEN

Harmful algal bloom (HAB) is a rapidly expanding marine ecological hazard. Although numerous studies have been carried out about the ecological impact and the ecological mechanism of HAB outbreaks, few studies have comprehensively addressed the shifts of species composition, metabolic activity level, driving factors and community assembly mechanisms of microeukaryotic plankton in the course of the bloom event. To fill the gap of research, we conducted 18S ribosomal DNA and RNA sequencing during the initiation, development, sustenance and decline stages of a Scrippsiella acuminata (S. acuminata) bloom at the coastal sea of Fujian Province, China. We found that the bloom event caused a decrease in microeukaryotic plankton species diversity and increase in community homogeneity. Our results revealed that the RNA- and DNA-inferred communities were similar, but α-diversity was more dynamic in RNA- than in DNA-inferred communities. The main taxa with high projected metabolic activity (with RNA:DNA ratio as the proxy) during the bloom included dinoflagellates, Cercozoa, Chlorophyta, Protalveolata, and diatoms. The role of deterministic processes in microeukaryotic plankton community assembly increased during the bloom, but stochastic processes were always the dominant assembly mechanism throughout the bloom process. Our findings improve the understanding of temporal patterns, driving factors and assembly mechanisms underlying the microeukarytic plankton community in a dinoflagellate bloom.


Asunto(s)
Biodiversidad , Dinoflagelados , Floraciones de Algas Nocivas , Dinoflagelados/genética , Dinoflagelados/fisiología , China , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/análisis , Plancton/genética , Diatomeas/genética , Diatomeas/fisiología
6.
Harmful Algae ; 134: 102620, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38705616

RESUMEN

The marine dinoflagellate Alexandrium is known to form harmful algal blooms, and at least 14 species within the genus can produce saxitoxins (STXs). STX biosynthesis genes (sxt) are individually revealed in toxic dinoflagellates; however, the evolutionary history remains controversial. Herein, we determined the transcriptome sequences of toxic Alexandrium (A. catenella and A. pacificum) and non-toxic Alexandrium (A. fraterculus and A. fragae) and characterized their sxt by focusing on evolutionary events and STX production. Comparative transcriptome analysis revealed higher homology of the sxt in toxic Alexandrium than in non-toxic species. Notably, non-toxic Alexandrium spp. were found to have lost two sxt core genes, namely sxtA4 and sxtG. Expression levels of 28 transcripts related to eight sxt core genes showed that sxtA, sxtG, and sxtI were relatively high (>1.5) in the toxic group compared to the non-toxic group. In contrast, the non-toxic group showed high expression levels in sxtU (1.9) and sxtD (1.7). Phylogenetic tree comparisons revealed distinct evolutionary patterns between 28S rDNA and sxtA, sxtB, sxtI, sxtD, and sxtU. However, similar topology was observed between 28S rDNA, sxtS, and sxtH/T. In the sxtB and sxtI phylogeny trees, toxic Alexandrium and cyanobacteria were clustered together, separating from non-toxic species. These suggest that Alexandrium may acquire sxt genes independently via horizontal gene transfer from toxic cyanobacteria and other multiple sources, demonstrating monocistronic transcripts of sxt in dinoflagellates.


Asunto(s)
Dinoflagelados , Filogenia , Saxitoxina , Transcriptoma , Dinoflagelados/genética , Dinoflagelados/metabolismo , Saxitoxina/genética , Saxitoxina/biosíntesis , Perfilación de la Expresión Génica , Evolución Molecular
7.
Harmful Algae ; 134: 102609, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38705612

RESUMEN

Modified clay compounds are used globally as a method of controlling harmful algal blooms, and their use is currently under consideration to control Karenia brevis blooms in Florida, USA. In 1400 L mesocosm tanks, chemical dynamics and lethal and sublethal impacts of MC II, a polyaluminum chloride (PAC)-modified kaolinite clay, were evaluated over 72 h on a benthic community representative of Sarasota Bay, which included blue crab (Callinectes sapidus), sea urchin (Lytechinus variegatus), and hard clam (Mercenaria campechiensis). In this experiment, MC II was dosed at 0.2 g L-1 to treat bloom-level densities of K. brevis at 1 × 106 cells L-1. Cell removal in MC II-treated tanks was 57% after 8 h and 95% after 48 h. In the water column, brevetoxin analogs BTx-1 and BTx-2 were found to be significantly higher in untreated tanks at 24 and 48 h, while in MC II-treated tanks, BTx-3 was found to be higher at 48 h and BTx-B5 was found to be higher at 24 and 48 h. In MC II floc, we found no significant differences in BTx-1 or BTx-2 between treatments for any time point, while BTx-3 was found to be significantly higher in the MC II-treated tanks at 48 and 72 h, and BTx-B5 was higher in MC II-treated tanks at 24 and 72 h. Among various chemical dynamics observed, it was notable that dissolved phosphorus was consistently significantly lower in MC II tanks after 2 h, and that turbidity in MC II tanks returned to control levels 48 h after treatment. Dissolved inorganic carbon and total seawater alkalinity were significantly reduced in MC II tanks, and partial pressure of CO2 (pCO2) was significantly higher in the MC II-only treatment after 2 h. In MC II floc, particulate phosphorus was found to be significantly higher in MC II tanks after 24 h. In animals, lethal and sublethal responses to MC II-treated K. brevis did not differ from untreated K. brevis for either of our three species at any time point, suggesting MC II treatment at this dosage has negligible impacts to these species within 72 h of exposure. These results appear promising in terms of the environmental safety of MC II as a potential bloom control option, and we recommend scaling up MC II experiments to field trials in order to gain deeper understanding of MC II performance and dynamics in natural waters.


Asunto(s)
Hidróxido de Aluminio , Dinoflagelados , Floraciones de Algas Nocivas , Toxinas Marinas , Animales , Dinoflagelados/efectos de los fármacos , Dinoflagelados/fisiología , Dinoflagelados/química , Arcilla/química , Bivalvos/fisiología , Bivalvos/efectos de los fármacos , Erizos de Mar/fisiología , Erizos de Mar/efectos de los fármacos , Florida , Braquiuros/fisiología , Braquiuros/efectos de los fármacos , Mercenaria/efectos de los fármacos , Mercenaria/fisiología , Silicatos de Aluminio/farmacología , Silicatos de Aluminio/química
8.
Harmful Algae ; 134: 102621, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38705617

RESUMEN

Vulcanodinium rugosum is a benthic dinoflagellate known for producing pinnatoxins, pteriatoxins, portimines and kabirimine. In this study, we aimed to identify unknown analogs of these emerging toxins in mussels collected in the Ingril lagoon, France. First, untargeted data acquisitions were conducted by means of liquid chromatography coupled to hybrid quadrupole-orbitrap mass spectrometry. Data processing involved a molecular networking approach, and a workflow dedicated to the identification of biotransformed metabolites. Additionally, targeted analyses by liquid chromatography coupled to triple quadrupole mass spectrometry were also implemented to further investigate and confirm the identification of new compounds. For the first time, a series of 13-O-acyl esters of portimine-A (n = 13) were identified, with fatty acid chains ranging between C12:0 and C22:6. The profile was dominated by the palmitic acid conjugation. This discovery was supported by fractionation experiments combined with the implementation of a hydrolysis reaction, providing further evidence of the metabolite identities. Furthermore, several analogs were semi-synthesized, definitively confirming the discovery of these metabolization products. A new analog of pinnatoxin, with a molecular formula of C42H65NO9, was also identified across the year 2018, with the highest concentration observed in August (4.5 µg/kg). The MS/MS data collected for this compound exhibited strong structural similarities with PnTX-A and PnTX-G, likely indicating a substituent C2H5O2 in the side chain at C33. The discovery of these new analogs will contribute to deeper knowledge of the chemodiversity of toxins produced by V. rugosum or resulting from shellfish metabolism, thereby improving our ability to characterize the risks associated with these emerging toxins.


Asunto(s)
Bivalvos , Dinoflagelados , Ésteres , Ácidos Grasos , Toxinas Marinas , Animales , Bivalvos/metabolismo , Bivalvos/química , Dinoflagelados/química , Dinoflagelados/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/análisis , Ácidos Grasos/química , Ésteres/metabolismo , Ésteres/química , Toxinas Marinas/metabolismo , Toxinas Marinas/química , Cromatografía Liquida , Francia
9.
Harmful Algae ; 134: 102625, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38705619

RESUMEN

There is a concern that harmful algal bloom (HAB) species may increase under climate change. Yet, we lack understanding of how ecological interactions will be affected under ocean warming and acidification (OWA) conditions. We tested the antagonistic effects of three strains of the dinoflagellate HAB species Alexandrium catenella on three target species (the chlorophyte Tetraselmis sp., the cryptomonad Rhodomonas salina, and the diatom Thalassiosira weissflogii) at various biomass ratios between species, at ambient (16 °C and 400 µatm CO2) and OWA (20 °C and 2000 µatm CO2) conditions. In these experiments the Alexandrium strains had been raised under OWA conditions for ∼100 generations. All three non-HAB species increased their growth rate under OWA relative to ambient conditions. Growth rate inhibition was evident for R. salina and Tetraselmis sp. under OWA conditions, but not under ambient conditions. These negative effects were exacerbated at higher concentrations of Alexandrium relative to non-HAB species. By contrast, T. weissflogii showed positive growth in the presence of two strains of Alexandrium under ambient conditions, whereas growth was unaffected under OWA. Contrary to our expectations, A. catenella had a slight negative response in the presence of the diatom. These results demonstrate that Alexandrium exerts higher antagonistic effects under OWA compared to ambient conditions, and these effects are species-specific and density dependent. These negative effects may shift phytoplankton community composition under OWA conditions.


Asunto(s)
Dinoflagelados , Dinoflagelados/fisiología , Concentración de Iones de Hidrógeno , Agua de Mar/química , Floraciones de Algas Nocivas/fisiología , Diatomeas/fisiología , Cambio Climático
10.
World J Microbiol Biotechnol ; 40(7): 210, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38773011

RESUMEN

Bioactive compounds derived from microalgae have garnered considerable attention as valuable resources for drugs, functional foods, and cosmetics. Among these compounds, photosynthetic pigments and polyunsaturated fatty acids (PUFAs) have gained increasing interest due to their numerous beneficial properties, including anti-oxidant, anti-viral, anti-bacterial, anti-fungal, anti-inflammatory, and anti-tumor effects. Several microalgae species have been identified as rich sources of bioactive compounds, including the Chlorophyceae Dunaliella and Haematococcus, the Bacillariophyta Phaeodactylum and Nitzschia, and the dinoflagellate Crypthecodinium cohnii. However, most of the reported microalgae species primarily grow through autotrophic mechanisms, resulting in low yields and high production costs of bioactive compounds. Consequently, the utilization of heterotrophic microalgae, such as Chromochloris zofingiensis and Nitzschia laevis, has shown significant advantages in the production of astaxanthin and eicosapentaenoic acid (EPA), respectively. These heterotrophic microalgae exhibit superior capabilities in synthesizing target compounds. This comprehensive review provides a thorough examination of the heterotrophic production of bioactive compounds by microalgae. It covers key aspects, including the metabolic pathways involved, the impact of cultivation conditions, and the practical applications of these compounds. The review discusses how heterotrophic cultivation strategies can be optimized to enhance bioactive compound yields, shedding light on the potential of microalgae as a valuable resource for high-value product development.


Asunto(s)
Procesos Heterotróficos , Microalgas , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Productos Biológicos/metabolismo , Dinoflagelados/metabolismo , Dinoflagelados/crecimiento & desarrollo , Fotosíntesis
11.
J Environ Manage ; 357: 120799, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581895

RESUMEN

Policies and management decisions in the marine environment are driven in part by public sentiment which can grow more intense during hazard events like Harmful Algae Blooms (HABs). The public conversations on social media sites like Twitter (before X) reveal the polarized nature of HABs through nuanced language and sentiment. This article uses mixed methods of machine learned topic modeling and inductive qualitative coding to describe the ways the long-term 2017-2019 Karenia brevis "red tide" bloom were politicized across Florida's South West coast. It finds that there are topical differences in keywords related to place (e.g. beach, Florida, coast), agent (individual or organization), and epistemic values (reliance on scientific and/or media reports). These topical differences demonstrate different levels of politicization and partisanship in qualitative analysis. Conceptually, this research demonstrates the ways different dimensions of a long-duration marine hazard can be polarized. Regarding management, this research provides insights to political and organizational stakeholders and the gaps in the discourse shaping marine hazards which can be used to strategically guide future social media engagement to manage politicization. What if all the careful work that resource and environmental managers do can be undone by simple, seemingly uncontroversial words? In an era of increased environmental and marine distress-coupled with short format communication-the ways environmental managers choose their words is crucial, even between ostensibly inconsequential nouns like "red tide" or "algae bloom." Policies and management decisions in the marine environment are driven in part by public sentiment which can grow more intense during hazard events like Harmful Algae Blooms (HABs). The public conversations on social media sites like Twitter (before X) reveal the polarized nature of HABs through nuanced language and sentiment. This article relies on mining social media posts, and uses mixed methods of machine-learned topic modeling and human-driven inductive qualitative coding to describe the ways the long-term 2017-2019 Karenia brevis "red tide" blooms were politicized across Florida's South West coast. It finds that there are topical differences in keywords related to place (e.g. beach, Florida, coast), agent (individual or organization), and epistemic values (reliance on scientific and/or media reports). These topical differences demonstrate different levels of politicization and partisanship in qualitative analysis. Conceptually, this research demonstrates the ways different dimensions of a long-duration marine hazard can be polarized. Regarding management, this research provides insights to political and organizational stakeholders and the gaps in the discourse shaping marine hazards which can be used to strategically guide future social media engagement to manage politicization.


Asunto(s)
Dinoflagelados , Medios de Comunicación Sociales , Humanos , Floraciones de Algas Nocivas , Toxinas Marinas/análisis , Florida
12.
Curr Biol ; 34(8): 1810-1816.e4, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38608678

RESUMEN

Coral reefs are a biodiversity hotspot,1,2 and the association between coral and intracellular dinoflagellates is a model for endosymbiosis.3,4 Recently, corals and related anthozoans have also been found to harbor another kind of endosymbiont, apicomplexans called corallicolids.5 Apicomplexans are a diverse lineage of obligate intracellular parasites6 that include human pathogens such as the malaria parasite, Plasmodium.7 Global environmental sequencing shows corallicolids are tightly associated with tropical and subtropical reef environments,5,8,9 where they infect diverse corals across a range of depths in many reef systems, and correlate with host mortality during bleaching events.10 All of this points to corallicolids being ecologically significant to coral reefs, but it is also possible they are even more widely distributed because most environmental sampling is biased against parasites that maintain a tight association with their hosts throughout their life cycle. We tested the global distribution of corallicolids using a more direct approach, by specifically targeting potential anthozoan host animals from cold/temperate marine waters outside the coral reef context. We found that corallicolids are in fact common in such hosts, in some cases at high frequency, and that they infect the same tissue as parasites from topical coral reefs. Parasite phylogeny suggests corallicolids move between hosts and habitats relatively frequently, but that biogeography is more conserved. Overall, these results greatly expand the range of corallicolids beyond coral reefs, suggesting they are globally distributed parasites of marine anthozoans, which also illustrates significant blind spots that result from strategies commonly used to sample microbial biodiversity.


Asunto(s)
Antozoos , Arrecifes de Coral , Antozoos/parasitología , Animales , Apicomplexa/fisiología , Apicomplexa/genética , Apicomplexa/clasificación , Simbiosis , Frío , Dinoflagelados/fisiología , Dinoflagelados/genética , Interacciones Huésped-Parásitos
13.
Ying Yong Sheng Tai Xue Bao ; 35(3): 817-826, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646770

RESUMEN

To explore the causes of red tides in Qinhuangdao coastal water, we conducted surveys on both water quality and red tides during April to September of 2022 and analyzed the relationships between main environmental factors and red tide organisms through the factor analysis and canonical correspondence analysis. The results showed that there were eight red tides along the coast of Qinhuangdao in 2022, with a cumulative blooming area of 716.1 km2. The red tides could be divided into three kinds based on the major blooming organisms and occurrence time, Noctiluca scintillans bloom, diatom-euglena (Skeletonema costatum, Eutreptiella gymnastica, Pseudo-nitzschia spp.) bloom, and dinoflagellate (Scrippsiella trochoidea and Ceratium furca) bloom. Seasonal factor played roles mainly during July to September, while inorganic nutrients including nitrogen and phosphorus influenced the blooms mainly in April and July. The canonical correspondence analysis suggested that N. scintillans preferred low temperature, and often bloomed with high concentrations of ammonium nitrogen and dissolved inorganic phosphorus. S. costatum, E. gymnastica, and Pseudo-nitzschia spp. could tolerate broad ranges of various environmental factors, but favored high temperature and nitrogen-rich seawater. C. furca and S. trochoidea had higher survival rate and competitiveness in phosphate-poor waters. Combined the results from both analyses, we concluded that the causes for the three kinds of red tide processes in Qinhuangdao coastal areas in 2022 were different. Adequate diet algae and appropriate water temperature were important factors triggering and maintaining the N. scintillans bloom. Suitable temperature, salinity and eutrophication were the main reasons for the diatom-euglena bloom. The abundant nutrients and seawater disturbance promoted the germination of S. trochoidea cysts, while phosphorus limitation caused the blooming organism switched to C. furca and maintained the bloom hereafter.


Asunto(s)
Diatomeas , Dinoflagelados , Monitoreo del Ambiente , Floraciones de Algas Nocivas , Agua de Mar , China , Dinoflagelados/crecimiento & desarrollo , Agua de Mar/análisis , Agua de Mar/química , Diatomeas/crecimiento & desarrollo , Océanos y Mares , Fósforo/análisis , Nitrógeno/análisis , Estaciones del Año
14.
Sci Rep ; 14(1): 8340, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594439

RESUMEN

The community structure and co-occurrence pattern of eukaryotic algae in Yuncheng Salt Lake were analyzed based on marker gene analysis of the 18S rRNA V4 region to understand the species composition and their synergistic adaptations to the environmental factors in different salinity waters. The results showed indicated that the overall algal composition of Yuncheng Salt Lake showed a Chlorophyta-Pyrrophyta-Bacillariophyta type structure. Chlorophyta showed an absolute advantage in all salinity waters. In addition, Cryptophyta dominated in the least saline waters; Pyrrophyta and Bacillariophyta were the dominant phyla in the waters with salinity ranging from 13.2 to 18%. Picochlorum, Nannochloris, Ulva, and Tetraselmis of Chlorophyta, Biecheleria and Oxyrrhis of Pyrrophyta, Halamphora, Psammothidium, and Navicula of Bacillariophyta, Guillardia and Rhodomonas of Cryptophyta were not observed in previous surveys of the Yuncheng Salt Lake, suggesting that the algae are undergoing a constant turnover as the water environment of the Salt Lake continues to change. The network diagram demonstrated that the algae were strongly influenced by salinity, NO3-, and pH, changes in these environmental factors would lead to changes in the algal community structure, thus affecting the stability of the network structure.


Asunto(s)
Chlorophyta , Diatomeas , Dinoflagelados , Lagos/química , Fitoplancton , Salinidad , Chlorophyta/genética , China
15.
Mol Phylogenet Evol ; 196: 108086, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38677354

RESUMEN

Dinoflagellates are diverse and ecologically important protists characterized by many morphological and molecular traits that set them apart from other eukaryotes. These features include, but are not limited to, massive genomes organized using bacterially-derived histone-like proteins (HLPs) and dinoflagellate viral nucleoproteins (DVNP) rather than histones, and a complex history of photobiology with many independent losses of photosynthesis, numerous cases of serial secondary and tertiary plastid gains, and the presence of horizontally acquired bacterial rhodopsins and type II RuBisCo. Elucidating how this all evolved depends on knowing the phylogenetic relationships between dinoflagellate lineages. Half of these species are heterotrophic, but existing molecular data is strongly biased toward the photosynthetic dinoflagellates due to their amenability to cultivation and prevalence in culture collections. These biases make it impossible to interpret the evolution of photosynthesis, but may also affect phylogenetic inferences that impact our understanding of character evolution. Here, we address this problem by isolating individual cells from the Salish Sea and using single cell, culture-free transcriptomics to expand molecular data for dinoflagellates to include 27 more heterotrophic taxa, resulting in a roughly balanced representation. Using these data, we performed a comprehensive search for proteins involved in chromatin packaging, plastid function, and photoactivity across all dinoflagellates. These searches reveal that 1) photosynthesis was lost at least 21 times, 2) two known types of HLP were horizontally acquired around the same time rather than sequentially as previously thought; 3) multiple rhodopsins are present across the dinoflagellates, acquired multiple times from different donors; 4) kleptoplastic species have nucleus-encoded genes for proteins targeted to their temporary plastids and they are derived from multiple lineages, and 5) warnowiids are the only heterotrophs that retain a whole photosystem, although some photosynthesis-related electron transport genes are widely retained in heterotrophs, likely as part of the iron-sulfur cluster pathway that persists in non-photosynthetic plastids.


Asunto(s)
Dinoflagelados , Fotosíntesis , Filogenia , Dinoflagelados/genética , Dinoflagelados/clasificación , Fotosíntesis/genética , Procesos Heterotróficos/genética , Evolución Biológica , Evolución Molecular , Plastidios/genética
16.
J Hazard Mater ; 471: 134220, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38636232

RESUMEN

The presence in marine shellfish of toxins and pollutants like rare earth elements (REEs) poses a major threat to human well-being, coastal ecosystems, and marine life. Among the REEs, neodymium (Nd) stands out as a widely utilized element and is projected to be among the top five critical elements by 2025. Gymnodinum catenatum is a phytoplankton species commonly associated with the contamination of bivalves with paralytic shellfish toxins. This study evaluated the biological effects of Nd on the mussel species Mytilus galloprovincialis when exposed to G. catenatum cells for fourteen days, followed by a recovery period in uncontaminated seawater for another fourteen days. After co-exposure, mussels showed similar toxin accumulation in the Nd and G. catenatum treatment in comparison with the G. catenatum treatment alone. Increased metabolism and enzymatic defenses were observed in organisms exposed to G. catenatum cells, while Nd inhibited enzyme activity and caused cellular damage. Overall, this study revealed that the combined presence of G. catenatum cells and Nd, produced positive synergistic effects on M. galloprovincialis biochemical responses compared to G. catenatum alone, indicating that organisms' performance may be significantly modulated by the presence of multiple co-occurring stressors, such those related to chemical pollution and harmful algal blooms. ENVIRONMENTAL IMPLICATIONS: Neodymium (Nd) is widely used in green technologies like wind turbines, and this element's potential threats to aquatic environments are almost unknown, especially when co-occurring with other environmental factors such as blooms of toxic algae. This study revealed the cellular impacts induced by Nd in the bioindicator species Mytilus galloprovincialis but further demonstrated that the combination of both stressors can generate a positive defense response in mussels. The present findings also demonstrated that the impacts caused by Nd lasted even after a recovery period while a previous exposure to the toxins generated a faster biochemical improvement by the mussels.


Asunto(s)
Mytilus , Neodimio , Animales , Mytilus/efectos de los fármacos , Neodimio/toxicidad , Dinoflagelados/efectos de los fármacos , Dinoflagelados/metabolismo , Toxinas Marinas/toxicidad , Floraciones de Algas Nocivas , Contaminantes Químicos del Agua/toxicidad
17.
Environ Sci Technol ; 58(15): 6519-6531, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38578272

RESUMEN

Paralytic shellfish toxins (PSTs) are widely distributed neurotoxins, and the PST metabolic detoxification mechanism in bivalves has received increasing attention. To reveal the effect of phase I (cytochrome P450)-II (GST)-III (ABC transport) metabolic systems on the PST metabolism in Azumapecten farreri, this study amplified stress on the target systems using rifampicin, dl-α-tocopherol, and colchicine; measured PST levels; and conducted transcriptomic analyses. The highest toxin content reached 1623.48 µg STX eq/kg in the hepatopancreas and only 8.8% of that in the gills. Inducer intervention significantly decreased hepatopancreatic PST accumulation. The proportional reductions in the rifampicin-, dl-α-tocopherol-, and colchicine-induced groups were 55.3%, 50.4%, and 36.1%, respectively. Transcriptome analysis showed that 11 modules were significantly correlated with PST metabolism (six positive/five negative), with phase I CYP450 and phase II glutathione metabolism significantly enriched in negatively correlated pathways. Twenty-three phase I-II-III core genes were further validated using qRT-PCR and correlated with PST metabolism, revealing that CYP46A1, CYP4F6, GSTM1, and ABCF2 were significantly correlated, while CYP4F11 and ABCB1 were indirectly correlated. In conclusion, phase I-II-III detoxification enzyme systems jointly participate in the metabolic detoxification of PSTs in A. farreri. This study provides key data support to profoundly elucidate the PST metabolic detoxification mechanism in bivalves.


Asunto(s)
Bivalvos , Dinoflagelados , Animales , Rifampin/metabolismo , alfa-Tocoferol/metabolismo , Mariscos/análisis , Colchicina/metabolismo , Dinoflagelados/metabolismo
18.
Environ Sci Technol ; 58(16): 6924-6933, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38608723

RESUMEN

Paralytic shellfish toxins (PSTs) produced by marine dinoflagellates significantly impact shellfish industries worldwide. Early detection on-farm and with minimal training would allow additional time for management decisions to minimize economic losses. Here, we describe and test a standardized workflow based on the detection of sxtA4, an initial gene in the biosynthesis of PSTs. The workflow is simple and inexpensive and does not require a specialized laboratory. It consists of (1) water collection and filtration using a custom gravity sampler, (2) buffer selection for sample preservation and cell lysis for DNA, and (3) an assay based on a region of sxtA, DinoDtec lyophilized quantitative polymerase chain reaction (qPCR) assay. Water samples spiked with Alexandrium catenella showed a cell recovery of >90% when compared to light microscopy counts. The performance of the lysis method (90.3% efficient), Longmire's buffer, and the DinoDtec qPCR assay (tested across a range of Alexandrium species (90.7-106.9% efficiency; r2 > 0.99)) was found to be specific, sensitive, and efficient. We tested the application of this workflow weekly from May 2016 to 30th October 2017 to compare the relationship between sxtA4 copies L-1 in seawater and PSTs in mussel tissue (Mytilus galloprovincialis) on-farm and spatially (across multiple sites), effectively demonstrating an ∼2 week early warning of two A. catenella HABs (r = 0.95). Our tool provides an early, accurate, and efficient method for the identification of PST risk in shellfish aquaculture.


Asunto(s)
Acuicultura , Dinoflagelados , Floraciones de Algas Nocivas , Toxinas Marinas , Flujo de Trabajo , Animales , Mariscos , Granjas , Intoxicación por Mariscos
19.
Sci Data ; 11(1): 430, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664437

RESUMEN

Prorocentrum shikokuense (formerly P. donghaiense) is a pivotal dinoflagellate species associating with the HABs in the East China Sea. The complexity of its large nuclear genome hindered us from understanding its genomic characteristics. Full-length transcriptome sequencing offers a practical solution to decipher the physiological mechanisms of a species without the reference genome. In this study, we employed single-molecule real-time (SMRT) sequencing technology to sequence the full-length transcriptome of Prorocentrum shikokuense. We successfully generated 41.73 Gb of clean SMRT sequencing reads and isolated 105,249 non-redundant full-length non-chimeric reads. Our trial has led to the identification of 11,917 long non-coding RNA transcripts, 514 alternative splicing events, 437 putative transcription factor genes from 17 TF gene families, and 34,723 simple sequence repeats. Additionally, a total of 78,265 open reading frames were identified, of them 15,501 were the protein coding sequences. This dataset is valuable for annotating P. shikokuense genome, and will contribute significantly to the in-depth studies on the molecular mechanisms underlining the dinoflagellate bloom formation.


Asunto(s)
Dinoflagelados , Transcriptoma , Empalme Alternativo , China , Dinoflagelados/genética , Perfilación de la Expresión Génica , Sistemas de Lectura Abierta , Factores de Transcripción/genética , Eutrofización
20.
Sci Total Environ ; 928: 172374, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38615760

RESUMEN

The Reloncaví estuary in southern Chile is famous for its aquaculture. However, recurring harmful algal blooms have adversely affected mussel production. Therefore, regular monitoring of algal toxins is urgently needed to better understand the contamination status of the estuary. In this study, we quantified 15 types of lipophilic shellfish toxins in Metri Bay in the Reloncaví estuary on a biweekly basis for 4 years. We identified algal species using microscopy and metabarcoding analysis. We also measured water temperature, salinity, chlorophyll-a, and dissolved oxygen to determine the potential relationships of these parameters with algal toxin production. Our results revealed the presence of a trace amount of pectenotoxin and the causal phytoplankton Dinophysis, as well as yessotoxin and the causal phytoplankton Protoceratium. Statistical analysis indicated that fluctuations in water temperature affected the detection of these toxins. Additionally, metabarcoding analysis detected the highly toxic phytoplankton Alexandrium spp. in some samples. Although our results suggest that the level of lipophilic shellfish toxins in Metri Bay during the study period was insignificantly low using our current LC-MS method, the confirmed presence of highly toxic algae in Metri Bay raises concerns, given that favorable environmental conditions could cause blooms.


Asunto(s)
Monitoreo del Ambiente , Estuarios , Floraciones de Algas Nocivas , Toxinas Marinas , Fitoplancton , Chile , Toxinas Marinas/análisis , Animales , Dinoflagelados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA