Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.384
Filtrar
1.
Biosens Bioelectron ; 262: 116548, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38986250

RESUMEN

An effective strategy for accurately detecting single nucleotide variants (SNVs) is of great significance for genetic research and diagnostics. However, strict amplification conditions, complex experimental instruments, and specialized personnel are required to obtain a satisfactory tradeoff between sensitivity and selectivity for SNV discrimination. In this study, we present a CRISPR-based transistor biosensor for the rapid and highly selective detection of SNVs in viral RNA. By introducing a synthetic mismatch in the crRNA, the CRISPR-Cas13a protein can be engineered to capture the target SNV RNA directly on the surface of the graphene channel. This process induces a fast electrical signal response in the transistor, obviating the need for amplification or reporter molecules. The biosensor exhibits a detection limit for target RNA as low as 5 copies in 100 µL, which is comparable to that of real-time quantitative polymerase chain reaction (PCR). Its operational range spans from 10 to 5 × 105 copy mL-1 in artificial saliva solution. This capability enables the biosensor to discriminate between wild-type and SNV RNA within 15 min. By introducing 10 µL of swab samples during clinical testing, the biosensor provides specific detection of respiratory viruses in 19 oropharyngeal specimens, including influenza A, influenza B, and variants of SARS-CoV-2. This study emphasizes the CRISPR-transistor technique as a highly accurate and sensitive approach for field-deployable nucleic acid screening or diagnostics.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Polimorfismo de Nucleótido Simple , ARN Viral , Transistores Electrónicos , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Humanos , Sistemas CRISPR-Cas/genética , ARN Viral/genética , ARN Viral/aislamiento & purificación , ARN Viral/análisis , Polimorfismo de Nucleótido Simple/genética , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Disparidad de Par Base , Límite de Detección , COVID-19/virología , COVID-19/diagnóstico , Grafito/química
2.
J Org Chem ; 89(16): 11304-11322, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39052894

RESUMEN

The manuscript reports on 7-deazapurine and pyrimidine nucleoside and oligonucleotide cycloadducts formed by the inverse electron demand Diels-Alder (iEDDA) reaction with 3,6-di(pyrid-2-yl)-1,2,4,5-tetrazine. Cycloadducts were constructed from ethynylated and vinylated nucleobases. Oligonucleotides were synthesized containing iEDDA modifications, and the impact on duplex stability was investigated. iEDDA reactions were performed on nucleoside triple bond side chains. Oxidation was not required in these cases as dihydropyridazine intermediates are not formed. In contrast, oxidation is necessary for reactions performed on alkenyl compounds. This was verified on 5-vinyl-2'-deoxyuridine. A diastereomeric mixture of 1,2-dihydropyridazine cycloadduct intermediates was isolated, characterized, and later oxidized. 12-mer oligonucleotides containing 1,2-pyridazine inverse Diels-Alder cycloadducts and their precursors were hybridized to short DNA duplexes. For that, a series of phosphoramidites was prepared. DNA duplexes with 7-functionalized 7-deazaadenines and 5-functionalized pyrimidines display high duplex stability when spacer units are present between nucleobases and pyridazine cycloadducts. A direct connectivity of the pyridazine moiety to nucleobases as reported for metabolic labeling of vinyl nucleosides reduced duplex stability strongly. Oligonucleotides bearing linkers with and without pyridazine cycloadducts attached to the 7-deazaadenine nucleobase significantly reduced mismatch formation with dC and dG.


Asunto(s)
Emparejamiento Base , Reacción de Cicloadición , Oligonucleótidos , Piridazinas , Piridazinas/química , Oligonucleótidos/química , Purinas/química , Estructura Molecular , Nucleósidos de Pirimidina/química , ADN/química , Disparidad de Par Base
3.
Anal Methods ; 16(29): 4951-4959, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38973573

RESUMEN

Glutathione (GSH) is commonly used as a diagnostic biomarker for many diseases. In this study, based on carbon quantum dots prepared from dragon fruit peel (D-CQDs) and the T-Hg(II)-T mismatch, a dual-mode biosensor was developed for the detection of GSH. This system consists of two single-stranded DNA (ssDNA). DNA1 was the T-rich sequence; DNA2 was attached to streptavidin-coated magnetic beads and consisted of T-rich and G-rich fragments. Due to the presence of Hg(II), the T-Hg(II)-T mismatch was formed between T-rich fragments of two ssDNA. In the presence of GSH, Hg(II) detached from dsDNA and bound with GSH to form a new complex. The G-rich fragment assembled with the hemin shed from D-CQDs to form the G-quadruplex/hemin complex. At this time, in fluorescence mode, the fluorescence of D-CQDs quenched by hemin could be restored. In colorimetric mode, after the magnetic beads separate, a visual signal could be produced by catalyzing the oxidation of ABTS using the peroxide-like activity of the G-quadruplex/hemin complex. This biosensor in both fluorescence mode and colorimetric mode had excellent selectivity and sensitivity, and the limit of detection was 0.089 µM and 0.26 µM for GSH, respectively. Moreover, the proposed dual-mode biosensor had good application prospects for detection of GSH.


Asunto(s)
Técnicas Biosensibles , Carbono , Frutas , Glutatión , Puntos Cuánticos , Puntos Cuánticos/química , Técnicas Biosensibles/métodos , Glutatión/química , Glutatión/análisis , Carbono/química , Frutas/química , ADN de Cadena Simple/química , Mercurio/análisis , Mercurio/química , Límite de Detección , Disparidad de Par Base , Humanos , G-Cuádruplex , Cactaceae
4.
J Biol Chem ; 300(7): 107439, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838774

RESUMEN

The therapeutic application of CRISPR-Cas9 is limited due to its off-target activity. To have a better understanding of this off-target effect, we focused on its mismatch-prone PAM distal end. The off-target activity of SpCas9 depends directly on the nature of mismatches, which in turn results in deviation of the active site of SpCas9 due to structural instability in the RNA-DNA duplex strand. In order to test the hypothesis, we designed an array of mismatched target sites at the PAM distal end and performed in vitro and cell line-based experiments, which showed a strong correlation for Cas9 activity. We found that target sites having multiple mismatches in the 18th to 15th position upstream of the PAM showed no to little activity. For further mechanistic validation, Molecular Dynamics simulations were performed, which revealed that certain mismatches showed elevated root mean square deviation values that can be attributed to conformational instability within the RNA-DNA duplex. Therefore, for successful prediction of the off-target effect of SpCas9, along with complementation-derived energy, the RNA-DNA duplex stability should be taken into account.


Asunto(s)
Disparidad de Par Base , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Humanos , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/química , ADN/química , ADN/metabolismo , Simulación de Dinámica Molecular , ARN/química , ARN/metabolismo , ARN Guía de Sistemas CRISPR-Cas/metabolismo , ARN Guía de Sistemas CRISPR-Cas/química , Células HEK293 , Edición Génica
5.
Nature ; 630(8017): 752-761, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867045

RESUMEN

Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other diseases1,2. Most mutations begin as nucleotide mismatches or damage in one of the two strands of the DNA before becoming double-strand mutations if unrepaired or misrepaired3,4. However, current DNA-sequencing technologies cannot accurately resolve these initial single-strand events. Here we develop a single-molecule, long-read sequencing method (Hairpin Duplex Enhanced Fidelity sequencing (HiDEF-seq)) that achieves single-molecule fidelity for base substitutions when present in either one or both DNA strands. HiDEF-seq also detects cytosine deamination-a common type of DNA damage-with single-molecule fidelity. We profiled 134 samples from diverse tissues, including from individuals with cancer predisposition syndromes, and derive from them single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumours deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples that are deficient in only polymerase proofreading. We also define a single-strand damage signature for APOBEC3A. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. As double-strand DNA mutations are only the end point of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable studies of how mutations arise in a variety of contexts, especially in cancer and ageing.


Asunto(s)
Disparidad de Par Base , Daño del ADN , ADN de Cadena Simple , Análisis de Secuencia de ADN , Imagen Individual de Molécula , Humanos , Envejecimiento/genética , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , Disparidad de Par Base/genética , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Citosina/metabolismo , Desaminación , Daño del ADN/genética , Reparación de la Incompatibilidad de ADN/genética , Replicación del ADN/genética , ADN de Cadena Simple/genética , Genoma Mitocondrial/genética , Mutación , Neoplasias/genética , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/normas , Imagen Individual de Molécula/métodos , Masculino , Femenino
6.
Nucleic Acids Res ; 52(11): 6687-6706, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38783391

RESUMEN

The single-stranded RNA genome of SARS-CoV-2 is highly structured. Numerous helical stem-loop structures interrupted by mismatch motifs are present in the functionally important 5'- and 3'-UTRs. These mismatches modulate local helical geometries and feature unusual arrays of hydrogen bonding donor and acceptor groups. However, their conformational and dynamical properties cannot be directly inferred from chemical probing and are difficult to predict theoretically. A mismatch motif (SL1-motif) consisting of three consecutive U•U base pairs is located in stem-loop 1 of the 3'-UTR. We combined NMR-spectroscopy and MD-simulations to investigate its structure and dynamics. All three U•U base pairs feature two direct hydrogen bonds and are as stable as Watson-Crick A:U base pairs. Plasmodium falciparum 25S rRNA contains a triple U•U mismatch motif (Pf-motif) differing from SL1-motif only with respect to the orientation of the two closing base pairs. Interestingly, while the geometry of the outer two U•U mismatches was identical in both motifs the preferred orientation of the central U•U mismatch was different. MD simulations and potassium ion titrations revealed that the potassium ion-binding mode to the major groove is connected to the different preferred geometries of the central base pair in the two motifs.


Asunto(s)
Regiones no Traducidas 3' , Disparidad de Par Base , Motivos de Nucleótidos , ARN Viral , SARS-CoV-2 , Humanos , Emparejamiento Base , COVID-19/virología , Genoma Viral , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Plasmodium falciparum/genética , ARN Viral/química , ARN Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/química
7.
Mikrochim Acta ; 191(6): 334, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758362

RESUMEN

Single nucleotide polymorphism (SNP) biosensors are emerging rapidly for their promising applications in human disease prevention diagnosis, treatment, and prognosis. However, it remains a bottleneck in equipping simple and stable biosensors with the traits of high sensitivity, non-enzyme, and low cost. Double base mismatches mediated chain displacement reactions have attracted fascinating advantages of tailorable thermodynamics stability, non-enzyme, and excellent assembly compliance to involvement in SNP identification. As the base mismatch position and amount in DNA sequence can be artificially adjusted, it provides plenty of selectivity and specificity for exploring perfect biosensors. Herein, a biosensor with double base mismatches mediated catalytic hairpin assembly (CHA) is designed via one base mismatch in the toehold domain and the other base mismatch in the stem sequence of hairpin 1 (H1) by triggering CHA reaction to achieve selective amplification of the mutation target (MT) and fluorescence resonance energy transfer (FRET) effect that is composed of Cy3 and Cy5 terminally attached H1 and hairpin 2 (H2). Depending on the rationally designed base mismatch position and toehold length, the fabricated biosensors show superior SNP detection performance, exhibiting a good linearity with high sensitivity of 6.6 fM detection limit and a broad detection abundance of 1%. The proposed biosensor can be used to detect the KRAS mutation gene in real samples and obtain good recoveries between 106 and 116.99%. Remarkably, these extendible designs of base mismatches can be used for more types of SNP detection, providing flexible adjustment based on base mismatch position and toehold length variations, especially for their thermodynamic model for DNA-strand displacement reactions.


Asunto(s)
Disparidad de Par Base , Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Técnicas de Amplificación de Ácido Nucleico , Polimorfismo de Nucleótido Simple , Técnicas Biosensibles/métodos , Humanos , Transferencia Resonante de Energía de Fluorescencia/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Límite de Detección , Secuencias Invertidas Repetidas , ADN/química , ADN/genética , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Catálisis
8.
J Chem Inf Model ; 64(11): 4511-4517, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38767002

RESUMEN

The A:8OG base pair (bp) is the outcome of DNA replication of the mismatched C:8OG bp. A high A:8OG bp population increases the C/G to A/T transversion mutation, which is responsible for various diseases. MutY is an important enzyme in the error-proof cycle and reverts A:8OG to C:8OG bp by cleaving adenine from the A:8OG bp. Several X-ray crystallography studies have determined the structure of MutY during the lesion scanning and lesion recognition stages. Interestingly, glycosidic bond (χ) angles of A:8OG bp in those two lesion recognition structures were found to differ, which implies that χ-torsion isomerization should occur during the lesion recognition process. In this study, as a first step to understanding this isomerization process, we characterized the intrinsic dynamic features of A:8OG in free DNAs by a free energy landscape simulation at the all-atom level. In this study, four isomerization states were assigned in the order of abundance: Aanti:8OGsyn > Aanti:8OGanti > Asyn:8OGanti ≈ Asyn:8OGsyn. Of these bp states, only 8OG in Asyn:8OGanti was located in the extrahelical space, whereas the purine bases (A and 8OG) in the other bp states remained inside the DNA helix. Also, free energy landscapes showed that the isomerization processes connecting these four bp states proceeded mostly in the intrahelical space via successive single glycosidic bond rotations of either A or 8OG.


Asunto(s)
Disparidad de Par Base , ADN , ADN/química , ADN/metabolismo , Isomerismo , Conformación de Ácido Nucleico , Termodinámica , Modelos Moleculares , Simulación de Dinámica Molecular , Adenina/química , Adenina/metabolismo , Emparejamiento Base
9.
Int J Biol Macromol ; 269(Pt 2): 131965, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697428

RESUMEN

In A-family DNA polymerases (dPols), a functional 3'-5' exonuclease activity is known to proofread newly synthesized DNA. The identification of a mismatch in substrate DNA leads to transfer of the primer strand from the polymerase active site to the exonuclease active site. To shed more light regarding the mechanism responsible for the detection of mismatches, we have utilized DNA polymerase 1 from Aquifex pyrophilus (ApPol1). The enzyme synthesized DNA with high fidelity and exhibited maximal exonuclease activity with DNA substrates bearing mismatches at the -2 and - 3 positions. The crystal structure of apo-ApPol1 was utilized to generate a computational model of the functional ternary complex of this enzyme. The analysis of the model showed that N332 forms interactions with minor groove atoms of the base pairs at the -2 and - 3 positions. The majority of known A-family dPols show the presence of Asn at a position equivalent to N332. The N332L mutation led to a decrease in the exonuclease activity for representative purine-pyrimidine, and pyrimidine-pyrimidine mismatches at -2 and - 3 positions, respectively. Overall, our findings suggest that conserved polar residues located towards the minor groove may facilitate the detection of position-specific mismatches to enhance the fidelity of DNA synthesis.


Asunto(s)
Disparidad de Par Base , Modelos Moleculares , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN/química , ADN/metabolismo , ADN/genética , Dominio Catalítico , Secuencia Conservada , Secuencia de Aminoácidos , Mutación , ADN Polimerasa I/química , ADN Polimerasa I/metabolismo , ADN Polimerasa I/genética , Especificidad por Sustrato
10.
Nucleic Acids Res ; 52(11): 6662-6673, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38621714

RESUMEN

Eukaryotic Argonaut proteins (AGOs) assemble RNA-induced silencing complexes (RISCs) with guide RNAs that allow binding to complementary RNA sequences and subsequent silencing of target genes. The model plant Arabidopsis thaliana encodes 10 different AGOs, categorized into three distinct clades based on amino acid sequence similarity. While clade 1 and 2 RISCs are known for their roles in post-transcriptional gene silencing, and clade 3 RISCs are associated with transcriptional gene silencing in the nucleus, the specific mechanisms of how RISCs from each clade recognize their targets remain unclear. In this study, I conducted quantitative binding analyses between RISCs and target nucleic acids with mismatches at various positions, unveiling distinct target binding characteristics unique to each clade. Clade 1 and 2 RISCs require base pairing not only in the seed region but also in the 3' supplementary region for stable target RNA binding, with clade 1 exhibiting a higher stringency. Conversely, clade 3 RISCs tolerate dinucleotide mismatches beyond the seed region. Strikingly, they bind to DNA targets with an affinity equal to or surpassing that of RNA, like prokaryotic AGO complexes. These insights challenge existing views on plant RNA silencing and open avenues for exploring new functions of eukaryotic AGOs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Complejo Silenciador Inducido por ARN , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Complejo Silenciador Inducido por ARN/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , ARN de Planta/metabolismo , ARN de Planta/genética , ARN de Planta/química , Unión Proteica , Interferencia de ARN , Disparidad de Par Base , ADN de Plantas/metabolismo , ADN de Plantas/genética
11.
Elife ; 132024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656237

RESUMEN

The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.


Asunto(s)
Disparidad de Par Base , ADN , Nucleosomas , Nucleosomas/metabolismo , Nucleosomas/química , Nucleosomas/genética , ADN/química , ADN/metabolismo , ADN/genética , Disparidad de Par Base/genética , Animales , Transferencia Resonante de Energía de Fluorescencia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xenopus laevis
12.
Nucleic Acids Res ; 52(9): 5033-5047, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38444149

RESUMEN

The linear chromosome of Streptomyces exhibits a highly compartmentalized structure with a conserved central region flanked by variable arms. As double strand break (DSB) repair mechanisms play a crucial role in shaping the genome plasticity of Streptomyces, we investigated the role of EndoMS/NucS, a recently characterized endonuclease involved in a non-canonical mismatch repair (MMR) mechanism in archaea and actinobacteria, that singularly corrects mismatches by creating a DSB. We showed that Streptomyces mutants lacking NucS display a marked colonial phenotype and a drastic increase in spontaneous mutation rate. In vitro biochemical assays revealed that NucS cooperates with the replication clamp to efficiently cleave G/T, G/G and T/T mismatched DNA by producing DSBs. These findings are consistent with the transition-shifted mutational spectrum observed in the mutant strains and reveal that NucS-dependent MMR specific task is to eliminate G/T mismatches generated by the DNA polymerase during replication. Interestingly, our data unveil a crescent-shaped distribution of the transition frequency from the replication origin towards the chromosomal ends, shedding light on a possible link between NucS-mediated DSBs and Streptomyces genome evolution.


Asunto(s)
Cromosomas Bacterianos , Reparación de la Incompatibilidad de ADN , Endonucleasas , Streptomyces , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Disparidad de Par Base , Cromosomas Bacterianos/genética , Roturas del ADN de Doble Cadena , Reparación de la Incompatibilidad de ADN/genética , Replicación del ADN/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Mutación , Tasa de Mutación , Streptomyces/genética , Streptomyces/enzimología
13.
Anal Chem ; 96(1): 554-563, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38112727

RESUMEN

The efficiency of the enzyme-free toehold-mediated strand displacement (TMSD) technique is often insufficient to detect single-nucleotide polymorphism (SNP) that possesses only single base pair mismatch discrimination. Here, we report a novel dual base pair mismatch strategy enabling TMSD biosensing for SNP detection under enzyme-free conditions when coupled with catalytic hairpin assembly (CHA) and fluorescence resonance energy transfer (FRET). The strategy is based on a competitive strand displacement reaction mechanism, affected by the thermodynamic stability originating from rationally designed dual base pair mismatch, for the specific recognition of mutant-type DNA. In particular, enzyme-free nucleic acid circuits, such as CHA, emerge as a powerful method for signal amplification. Eventually, the signal transduction of this proposed biosensor was determined by FRET between streptavidin-coated 605 nm emission quantum dots (605QDs, donor) and Cy5/biotin hybridization (acceptor, from CHA) when incubated with each other. The proposed biosensor displayed high sensitivity to the mutant target (MT) with a detection concentration down to 4.3 fM and led to high discrimination factors for all types of mismatches in multiple sequence contexts. As such, the application of this proposed biosensor to investigate mechanisms of the competitive strand displacement reaction further illustrates the versatility of our dual base pair mismatch strategy, which can be utilized for the creation of a new class of biosensors.


Asunto(s)
Técnicas Biosensibles , Polimorfismo de Nucleótido Simple , Disparidad de Par Base , Hibridación de Ácido Nucleico , Transferencia Resonante de Energía de Fluorescencia , Biotina , Técnicas Biosensibles/métodos
14.
Nucleic Acids Res ; 51(20): 11040-11055, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37791890

RESUMEN

DNA mismatch repair (MMR) corrects mismatched DNA bases arising from multiple sources including polymerase errors and base damage. By detecting spontaneous mutagenesis using whole genome sequencing of cultured MMR deficient human cell lines, we show that a primary role of MMR is the repair of oxygen-induced mismatches. We found an approximately twofold higher mutation rate in MSH6 deficient DLD-1 cells or MHL1 deficient HCT116 cells exposed to atmospheric conditions as opposed to mild hypoxia, which correlated with oxidant levels measured using electron paramagnetic resonance spectroscopy. The oxygen-induced mutations were dominated by T to C base substitutions and single T deletions found primarily on the lagging strand. A broad sequence context preference, dependence on replication timing and a lack of transcriptional strand bias further suggested that oxygen-induced mutations arise from polymerase errors rather than oxidative base damage. We defined separate low and high oxygen-specific MMR deficiency mutation signatures common to the two cell lines and showed that the effect of oxygen is observable in MMR deficient cancer genomes, where it best correlates with the contribution of mutation signature SBS21. Our results imply that MMR corrects oxygen-induced genomic mismatches introduced by a replicative process in proliferating cells.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Mutagénesis , Oxígeno , Humanos , Disparidad de Par Base , Reparación del ADN , Replicación del ADN , Mutación , Línea Celular
15.
Biophys J ; 122(15): 3031-3043, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37329136

RESUMEN

The mismatch repair protein MutS safeguards genomic integrity by finding and initiating repair of basepairing errors in DNA. Single-molecule studies show MutS diffusing on DNA, presumably scanning for mispaired/unpaired bases, and crystal structures show a characteristic "mismatch-recognition" complex with DNA enclosed within MutS and kinked at the site of error. But how MutS goes from scanning thousands of Watson-Crick basepairs to recognizing rare mismatches remains unanswered, largely because atomic-resolution data on the search process are lacking. Here, 10 µs all-atom molecular dynamics simulations of Thermus aquaticus MutS bound to homoduplex DNA and T-bulge DNA illuminate the structural dynamics underlying the search mechanism. MutS-DNA interactions constitute a multistep mechanism to check DNA over two helical turns for its 1) shape, through contacts with the sugar-phosphate backbone, 2) conformational flexibility, through bending/unbending engineered by large-scale motions of the clamp domain, and 3) local deformability, through basepair destabilizing contacts. Thus, MutS can localize a potential target by indirect readout due to lower energetic costs of bending mismatched DNA and identify a site that distorts easily due to weaker base stacking and pairing as a mismatch. The MutS signature Phe-X-Glu motif can then lock in the mismatch-recognition complex to initiate repair.


Asunto(s)
Proteínas de Escherichia coli , Simulación de Dinámica Molecular , Disparidad de Par Base , ADN/química , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/química , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Emparejamiento Base , Proteínas de Escherichia coli/genética
16.
J Biol Chem ; 299(6): 104800, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37164156

RESUMEN

For cells, it is important to repair DNA damage, such as double-strand and single-strand DNA breaks, because unrepaired DNA can compromise genetic integrity, potentially leading to cell death or cancer. Cells have multiple DNA damage repair pathways that have been the subject of detailed genetic, biochemical, and structural studies. Recently, the scientific community has started to gain evidence that the repair of DNA double-strand breaks may occur within biomolecular condensates and that condensates may also contribute to DNA damage through concentrating genotoxic agents used to treat various cancers. Here, we summarize key features of biomolecular condensates and note where they have been implicated in the repair of DNA double-strand breaks. We also describe evidence suggesting that condensates may be involved in the repair of other types of DNA damage, including single-strand DNA breaks, nucleotide modifications (e.g., mismatch and oxidized bases), and bulky lesions, among others. Finally, we discuss old and new mysteries that could now be addressed considering the properties of condensates, including chemoresistance mechanisms.


Asunto(s)
Reparación del ADN , ADN , Resistencia a Antineoplásicos , ADN/química , ADN/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Roturas del ADN de Cadena Simple/efectos de los fármacos , Disparidad de Par Base/efectos de los fármacos
17.
J Biol Chem ; 299(4): 104608, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36924943

RESUMEN

Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein-coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and, from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNALys in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.


Asunto(s)
Anticodón , Codón , ARN Ribosómico , Ribosomas , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Codón/química , Codón/genética , Codón/metabolismo , Conformación de Ácido Nucleico , Nucleótidos/química , Nucleótidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/química , Ribosomas/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Disparidad de Par Base , Modelos Moleculares , ARN Ribosómico/química , ARN Ribosómico/metabolismo
18.
Int J Biol Macromol ; 233: 123510, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36739048

RESUMEN

Human genome is continuously susceptible to changes that may lead to undesirable mutations causing various diseases and cancer. Vast majority of techniques has investigated the discrimination between base-pair mismatched nucleic acid, but many of these techniques are time-consuming, complex, expensive, and limited to the detection of specific type of dsDNA mismatches. In this study, we introduce a simple mix-and-read assay for the sensitive and cost-effective analysis of DNA base mismatches and UV-induced DNA damage using Hoechst genosensor dye (H258). This dye is a minor groove binder that undergoes a drastic conformational change upon binding with mismatch DNA. The difference in binding affinity between perfectly matched and mismatched DNA was studied for sequences at different base mismatch locations and finally, extended for the detection of dsDNA damage by UVC radiation in calf thymus DNA. In addition, a comparative DNA damage kinetic study was performed using H258 (minor groove binder) and EvaGreen (intercalating) dye to get insight on assay selectivity and sensitivity with dye binding mechanism. The result shows good reproducibility making H258 genosensor a cheaper alternative for DNA mismatch and damage studies with possibility of extension for in-vitro detection of hot spots of DNA mutations.


Asunto(s)
Disparidad de Par Base , ADN , Humanos , Reproducibilidad de los Resultados , ADN/química , Emparejamiento Base , Daño del ADN , Sondas de ADN
19.
J Biol Chem ; 298(11): 102505, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36126773

RESUMEN

MutS homologs (MSHs) are highly conserved core components of DNA mismatch repair. Mismatch recognition provokes ATP-binding by MSH proteins that drives a conformational transition from a short-lived lesion-searching clamp to an extremely stable sliding clamp on the DNA. Here, we have expanded on previous bulk biochemical studies to examine the stability, lifetime, and kinetics of bacterial and human MSH sliding clamps on mismatched DNA using surface plasmon resonance and single-molecule analysis of fluorescently labeled proteins. We found that ATP-bound MSH complexes bound to blocked-end or very long mismatched DNAs were extremely stable over a range of ionic conditions. These observations underpinned the development of a high-throughput Förster resonance energy transfer system that specifically detects the formation of MSH sliding clamps on mismatched DNA. The Förster resonance energy transfer system is capable of distinguishing between HsMSH2-HsMSH3 and HsMSH2-HsMSH6 and appears suitable for chemical inhibitor screens. Taken together, our results provide additional insight into MSH sliding clamps as well as methods to distinguish their functions in mismatch repair.


Asunto(s)
Proteínas de Escherichia coli , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN , Humanos , Adenosina Trifosfato/metabolismo , Disparidad de Par Base , ADN/metabolismo , Reparación de la Incompatibilidad de ADN , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteínas MutS/genética , Unión Proteica
20.
DNA Repair (Amst) ; 119: 103392, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36095926

RESUMEN

MutS initiates mismatch repair by recognizing mismatches in newly replicated DNA. Specific interactions between MutS and mismatches within double-stranded DNA promote ADP-ATP exchange and a conformational change into a sliding clamp. Here, we demonstrated that MutS from Pseudomonas aeruginosa associates with primed DNA replication intermediates. The predicted structure of this MutS-DNA complex revealed a new DNA binding site, in which Asn 279 and Arg 272 appeared to directly interact with the 3'-OH terminus of primed DNA. Mutation of these residues resulted in a noticeable defect in the interaction of MutS with primed DNA substrates. Remarkably, MutS interaction with a mismatch within primed DNA induced a compaction of the protein structure and impaired the formation of an ATP-bound sliding clamp. Our findings reveal a novel DNA binding mode, conformational change and intramolecular signaling for MutS recognition of mismatches within primed DNA structures.


Asunto(s)
Proteínas de Escherichia coli , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Disparidad de Par Base , ADN/metabolismo , Replicación del ADN , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...