Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.559
Filtrar
1.
Food Res Int ; 183: 114206, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760137

RESUMEN

Yerba mate is increasingly acknowledged for its bioactive properties and is currently being incorporated into various food and pharmaceutical products. When roasted, yerba mate transforms into mate tea, consumed as a hot aqueous infusion, and has gained popularity. This study investigated the bioaccessibility of phenolic compounds, protein-polyphenol interactions, antioxidant activity, and bioactive peptides in roasted yerba mate infusions, utilizing whole, semi-skimmed, and skimmed bovine milk models. The phytochemical profile of roasted yerba mate was analyzed in infusions with water and milk (whole, semi-skimmed, and skimmed), before and after in vitro digestion, identifying 18 compounds that exhibited variations in composition and presence among the samples. Bioavailability varied across different milk matrices, with milk being four times more efficient as a solvent for extraction. Gastric digestion significantly impacted (p < 0.05) the release of phenolic compounds, such as chlorogenic acid and rutin, with only chlorogenic acid remaining 100 % bioavailable in the infusion prepared with skimmed milk. Protein-polyphenol interaction did not influence protein digestion in different infusions, as there was a similarity in the hydrolysis pattern during the digestive process. Changes in antioxidant activity during digestion phases, especially after intestinal digestion in milk infusions, were related to alterations in protein structures and digestive interactions. The evaluation of total phenolic compounds highlighted that skimmed milk infusion notably preserved these compounds during digestion. Peptidomic analysis identified 253, 221, and 191 potentially bioactive peptides for whole, semi-skimmed, and skimmed milk-digested infusions, respectively, with a focus on anti-inflammatory and anticancer activities, presenting a synergistic approach to promote health benefits. The selection of milk type is crucial for comprehending the effects of digestion and interactions in bioactive compound-rich foods, highlighting the advantages of consuming plant infusions prepared with milk.


Asunto(s)
Antioxidantes , Disponibilidad Biológica , Digestión , Ilex paraguariensis , Leche , Péptidos , Fenoles , Polifenoles , Animales , Ilex paraguariensis/química , Antioxidantes/farmacocinética , Leche/química , Bovinos , Fenoles/análisis , Péptidos/química , Polifenoles/farmacocinética , Extractos Vegetales/química
2.
Food Res Int ; 187: 114413, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763665

RESUMEN

In this study, the highly loaded myofibrillar protein (MP)-luteolin (Lut) complexes were noncovalently constructed by using green high-pressure homogenization technology (HPH) and high-pressure micro-fluidization technology (HPM), aiming to optimize the encapsulation efficiency of flavonoids in the protein-based vehicle without relying on the organic solvent (i.e. DMSO, ethanol, etc.). The loading efficiency of Lut into MPs could reach 100 % with a concentration of 120 µmol/g protein by using HPH (103 MPa, 2 passes) without ethanol adoption. The in vitro gastrointestinal digestion behavior and antioxidant activity of the complexes were then compared with those of ethanol-assisted groups. During gastrointestinal digestion, the MP digestibility of complexes, reaching more than 70.56 % after thermal treatment, was higher than that of sole protein. The release profile of Lut encapsulated in ethanol-containing and ethanol-free samples both well fitted with the Hixson-Crowell release kinetic model (R2 = 0.92 and 0.94, respectively), and the total phenol content decreased by ≥ 40.02 % and ≥ 62.62 %, respectively. The in vitro antioxidant activity (DPPH, ABTS, and Fe2+) of the digestive products was significantly improved by 23.89 %, 159.69 %, 351.12 % (ethanol groups) and 13.43 %, 125.48 %, 213.95 % (non-ethanol groups). The 3 mg/mL freeze-dried digesta significantly alleviated lipid accumulation and oxidative stress in HepG2 cells. The triglycerides and malondialdehyde contents decreased by at least 57.62 % and 67.74 % after digesta treatment. This study provides an easily approached and environment-friendly strategy to construct a highly loaded protein-flavonoid conjugate, which showed great potential in the formulation of healthier meat products.


Asunto(s)
Antioxidantes , Disponibilidad Biológica , Digestión , Humanos , Antioxidantes/química , Miofibrillas/química , Miofibrillas/metabolismo , Flavonoides/química , Flavonoides/farmacocinética , Tracto Gastrointestinal/metabolismo , Animales
3.
Food Res Int ; 187: 114420, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763670

RESUMEN

Vitamins are responsible for providing biological properties to the human body; however, their instability under certain environmental conditions limits their utilization in the food industry. The objective was to conduct a systematic review on the use of biopolymers and lipid bases in microencapsulation processes, assessing their impact on the stability, controlled release, and viability of fortified foods with microencapsulated vitamins. The literature search was conducted between the years 2013-2023, gathering information from databases such as Scopus, PubMed, Web of Science and publishers including Taylor & Francis, Elsevier, Springer and MDPI; a total of 49 articles were compiled The results were classified according to the microencapsulation method, considering the following information: core, coating material, solvent, formulation, process conditions, particle size, efficiency, yield, bioavailability, bioaccessibility, in vitro release, correlation coefficient and references. It has been evidenced that gums are the most frequently employed coatings in the protection of vitamins (14.04%), followed by alginate (10.53%), modified chitosan (9.65%), whey protein (8.77%), lipid bases (8.77%), chitosan (7.89%), modified starch (7.89%), starch (7.02%), gelatin (6.14%), maltodextrin (5.26%), zein (3.51%), pectin (2.63%) and other materials (7.89%). The factors influencing the release of vitamins include pH, modification of the coating material and crosslinking agents; additionally, it was determined that the most fitting mathematical model for release values is Weibull, followed by Zero Order, Higuchi and Korsmeyer-Peppas; finally, foods commonly fortified with microencapsulated vitamins were described, with yogurt, bakery products and gummy candies being notable examples.


Asunto(s)
Composición de Medicamentos , Alimentos Fortificados , Vitaminas , Vitaminas/análisis , Quitosano/química , Disponibilidad Biológica , Humanos , Biopolímeros/química , Alginatos/química , Proteína de Suero de Leche/química
4.
Food Res Int ; 187: 114431, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763681

RESUMEN

Among the most consumed foods in the world is potato, which occupies the first place as a non-grain commodity, demonstrating the importance of its assessment concerning the population's food safety. In this study, the nutrients Ca, Mg, K, P, Cu, Mn, Fe, and Zn and the potentially toxic trace elements Cd, Cr, and Pb were evaluated considering their total contents, bioaccessible and bioavailable fractions in different potato cultivars, in an unpublished approach in the literature. The in vitro standard gastrointestinal digestion method (INFOGEST) and a model of the intestinal epithelial barrier using the Caco-2 cell line were applied for investigate the presence of metals in potato. For the macroelements, the bioaccessibility (% w/w) varied in the ranges: K (57-72 %), P (59-76 %), Mg (83-103 %), and Ca (30-123 %), whereas for the microelements were: Cu (27-74 %) and Mn (4.22-12.02, 60-119 %). The potentially of trace toxic elements, Cd and Pb, were found in 75 % of the samples, however, all the concentration values were below the maximum levels allowed of 0.10 µg/g. Chromium was determined only in potato peels and has no maximum established level. The bioaccessible and bioavailable fractions of Cd, Cr, and Pb were below the limits of quantification of the spectrometric methods (LOQ - µg/L: 0.063 Cd, 0.65 Cr, and 0.44 Pb). The potato samples were considered safe for consumption regarding the presence of potentially toxic trace elements, with a remarkable nutritional contribution.


Asunto(s)
Disponibilidad Biológica , Valor Nutritivo , Solanum tuberosum , Oligoelementos , Solanum tuberosum/química , Oligoelementos/análisis , Células CACO-2 , Humanos , Digestión
5.
Food Res Int ; 187: 114426, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763676

RESUMEN

Germination is a process that enhances the content of health-promoting secondary metabolites. However, the bioaccessibility of these compounds depends on their stability and solubility throughout the gastrointestinal tract. The study aimed to explore how germination time influences the content and bioaccessibility of γ-aminobutyric acid and polyphenols and antioxidant capacity of lupin (Lupinus angustifolius L.) sprouts during simulated gastrointestinal digestion. Gamma-aminobutyric acid showed a decrease following gastrointestinal digestion (GID) whereas phenolic acids and flavonoids exhibited bioaccessibilities of up to 82.56 and 114.20%, respectively. Although the digestion process affected the profile of phenolic acids and flavonoids, certain isoflavonoids identified in 7-day sprouts (G7) showed resistance to GID. Germination not only favored antioxidant activity but also resulted in germinated samples exhibiting greater antioxidant properties than ungerminated counter parts after GID. Intestinal digests from G7 did not show cytotoxicity in RAW 264.7 macrophages, and notably, they showed an outstanding ability to inhibit the production of reactive oxygen species. This suggests potential benefit in mitigating oxidative stress. These findings contribute to understand the dynamic interplay between bioprocessing and digestion in modulating the bioaccessibility of bioactive compounds in lupin, thereby impacting health.


Asunto(s)
Antioxidantes , Disponibilidad Biológica , Digestión , Germinación , Lupinus , Lupinus/metabolismo , Lupinus/química , Antioxidantes/metabolismo , Germinación/efectos de los fármacos , Ratones , Células RAW 264.7 , Animales , Polifenoles/metabolismo , Flavonoides/análisis , Flavonoides/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hidroxibenzoatos/metabolismo , Hidroxibenzoatos/análisis , Tracto Gastrointestinal/metabolismo
6.
Food Res Int ; 187: 114460, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763688

RESUMEN

In order to fully understand the nutritional heterogeneity of plant-based meat analogues and real meat, this review summarized their similarities and differences in terms of ingredients, nutrient contents, bioavailability and health impacts. Plant-based meat analogues have some similarities to real meat. However, plant-based meat analogues are lower in protein, cholesterol and VB12 but higher in dietary fiber, carbohydrates, sugar, salt and various food additives than real meat. Moreover, some nutrients in plant-based meat analogues, such as protein and iron, are less bioavailable. There is insufficient evidence that plant-based meat analogues are healthier, which may be related to the specific attributes of these products such as formulation and degree of processing. As things stand, it is necessary to provide comprehensive nutrition information on plant-based meat products so that consumers can make informed choices based on their nutritional needs.


Asunto(s)
Disponibilidad Biológica , Productos de la Carne , Valor Nutritivo , Humanos , Productos de la Carne/análisis , Animales , Nutrientes/análisis , Dieta Vegetariana , Ingredientes Alimentarios/análisis , Carne/análisis , Sustitutos de la Carne
7.
Int J Nanomedicine ; 19: 4045-4060, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736656

RESUMEN

Purpose: Dry eye disease (DED) is a multifactorial ocular surface disease with a rising incidence. Therefore, it is urgent to construct a reliable and efficient drug delivery system for DED treatment. Methods: In this work, we loaded C-dots nanozyme into a thermosensitive in situ gel to create C-dots@Gel, presenting a promising composite ocular drug delivery system to manage DED. Results: This composite ocular drug delivery system (C-dots@Gel) demonstrated the ability to enhance adherence to the corneal surface and extend the ocular surface retention time, thereby enhancing bioavailability. Furthermore, no discernible ocular surface irritation or systemic toxicity was observed. In the DED mouse model induced by benzalkonium chloride (BAC), it was verified that C-dots@Gel effectively mitigated DED by stabilizing the tear film, prolonging tear secretion, repairing corneal surface damage, and augmenting the population of conjunctival goblet cells. Conclusion: Compared to conventional dosage forms (C-dots), the C-dots@Gel could prolong exhibited enhanced retention time on the ocular surface and increased bioavailability, resulting in a satisfactory therapeutic outcome for DED.


Asunto(s)
Antioxidantes , Carbono , Córnea , Síndromes de Ojo Seco , Hidrogeles , Animales , Síndromes de Ojo Seco/tratamiento farmacológico , Ratones , Carbono/química , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Antioxidantes/administración & dosificación , Hidrogeles/química , Hidrogeles/administración & dosificación , Hidrogeles/farmacocinética , Córnea/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Modelos Animales de Enfermedad , Disponibilidad Biológica , Lágrimas/efectos de los fármacos , Lágrimas/química , Compuestos de Benzalconio/química , Compuestos de Benzalconio/administración & dosificación , Compuestos de Benzalconio/farmacocinética , Femenino , Masculino , Temperatura , Puntos Cuánticos/química
8.
Food Res Int ; 186: 114321, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729691

RESUMEN

Biogenic nanoparticles are promising carriers to deliver essential minerals. Here, calcium-enriched polyphosphate nanoparticles (CaPNPs) with a Ca/P molar ratio > 0.5 were produced by Synechococcus sp. PCC 7002 in the growth medium containing 1.08 g/L CaCl2, and had nearly spherical morphologies with a wide size distribution of 5-75 nm and strongly anionic surface properties with an average ζ-potential of -39 mV, according to dynamic light-scattering analysis, transmission and scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The ex-vivo ligated mouse ileal loop assays found that calcium in CaPNPs was readily available to intestinal absorption via both ion channel-mediated and endocytic pathways, specifically invoking macropinocytic internalization, lysosomal degradation, and transcytosis. Rat oral pharmacokinetics revealed that CaPNPs had a calcium bioavailability approximately 100 % relative to that of CaCl2 and more than 1.6 times of that of CaCO3. CaPNPs corrected the retinoic acid-induced increase in serum calcium, phosphorus, and bone-specific alkaline phosphatase, and decrease in serum osteocalcin, bone mineral content/density, and femoral geometric parameters with an efficacy equivalent to CaCl2 and markedly greater than CaCO3. In contrast to CaCl2, CaPNPs possessed desirable resistance against phytate's antagonistic action on calcium absorption in these ex vivo and in vivo studies. Overall, CaPNPs are attractive as a candidate agent for calcium supplementation, especially to populations on high-phytate diets.


Asunto(s)
Disponibilidad Biológica , Calcio , Microalgas , Nanopartículas , Ácido Fítico , Polifosfatos , Animales , Polifosfatos/química , Ratones , Ácido Fítico/química , Calcio/metabolismo , Masculino , Ratas , Absorción Intestinal/efectos de los fármacos , Ratas Sprague-Dawley
9.
Food Res Int ; 186: 114339, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729694

RESUMEN

The health-promoting activities of polyphenols and their metabolites originating from germinated quinoa (GQ) are closely related to their digestive behavior, absorption, and colonic fermentation; however, limited knowledge regarding these properties hinder further development. The aim of this study was to provide metabolomic insights into the profile, bioaccessibility, and transepithelial transport of polyphenols from germinated quinoa during in vitro gastrointestinal digestion and Caco-2 cell transport, whilst also investigating the changes in the major polyphenol metabolites and the effects of prebiotics during colonic fermentation. It was found that germination treatment increased the polyphenol content of quinoa by 21.91%. Compared with RQ group, 23 phenolic differential metabolites were upregulated and 47 phenolic differential metabolites were downregulated in GQ group. Compared with RQ group after simulated digestion, 7 kinds of phenolic differential metabolites were upregulated and 17 kinds of phenolic differential metabolites were downregulated in GQ group. Compared with RQ group after cell transport, 7 kinds of phenolic differential metabolites were upregulated and 9 kinds of phenolic differential metabolites were downregulated in GQ group. In addition, GQ improved the bioaccessibilities and transport rates of various polyphenol metabolites. During colonic fermentation, GQ group can also increase the content of SCFAs, reduce pH value, and adjust gut microbial populations by increasing the abundance of Actinobacteria, Bacteroidetes, Verrucomicrobiota, and Spirochaeota at the phylum level, as well as Bifidobacterium, Megamonas, Bifidobacterium, Brevundimonas, and Bacteroides at the genus level. Furthermore, the GQ have significantly inhibited the activity of α-amylase and α-glucosidase. Based on these results, it was possible to elucidate the underlying mechanisms of polyphenol metabolism in GQ and highlight its beneficial effects on the gut microbiota.


Asunto(s)
Chenopodium quinoa , Colon , Digestión , Fermentación , Metabolómica , Polifenoles , Prebióticos , Humanos , Polifenoles/metabolismo , Chenopodium quinoa/metabolismo , Células CACO-2 , Colon/metabolismo , Colon/microbiología , Germinación , Transporte Biológico , Disponibilidad Biológica , Microbioma Gastrointestinal/fisiología
10.
Food Res Int ; 186: 114350, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729698

RESUMEN

In this study, three types of ß-sitosterol-based oleogels (ß-sitosterol + Î³-oryzanol oleogels, ß-sitosterol + lecithin, oleogels and ß-sitosterol + monostearate oleogels), loaded with astaxanthin, were employed as the oil phase to create oleogel-based emulsions (SO, SL, and SM) using high-pressure homogenization. The microstructure revealed that fine-scale crystals were dispersed within the oil phase of the droplets in the ß-sitosterol oleogel-based emulsion. The bioaccessibility of astaxanthin was found to be 58.13 %, 51.24 %, 36.57 %, and 45.72 % for SM, SL, SO, and the control group, respectively. Interestingly, the release of fatty acids was positively correlated with the availability of astaxanthin (P = 0.981). Further analysis of FFAs release and kinetics indicated that the structural strength of the oil-phase in the emulsions influenced the degree and rate of lipolysis. Additionally, the micellar fraction analysis suggested that the nature and composition of the oleogelators in SM and SL also impacted lipolysis and the bioaccessibility of astaxanthin. Furthermore, interfacial binding of lipase and isothermal titration calorimetry (ITC) measurements revealed that the oleogel network within the oil phase of the emulsion acted as a physical barrier, hindering the interaction between lipase and lipid. Overall, ß-sitosterol oleogel-based emulsions offer a versatile platform for delivering hydrophobic molecules, enhancing the bioavailability of active compounds, and achieving sustained release.


Asunto(s)
Emulsiones , Compuestos Orgánicos , Sitoesteroles , Xantófilas , Sitoesteroles/química , Xantófilas/química , Compuestos Orgánicos/química , Disponibilidad Biológica , Lipólisis , Lecitinas/química , Ácidos Grasos/química , Fenilpropionatos
11.
Food Res Int ; 186: 114344, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729696

RESUMEN

The research aimed to evaluate the effect of ultrasonication and succinylation on the functional, iron binding, physiochemical, and cellular mineral uptake efficacy of chickpea protein concentrate. Succinylation resulted in significant improvements in the water-holding capacity (WHC) (25.47 %), oil-holding capacity (OHC) (31.38 %), and solubility (5.80 %) of the chickpea protein-iron complex. Mineral bioavailability significantly increased by 4.41 %, and there was a significant increase in cellular mineral uptake (64.64 %), retention (36.68 %), and transport (27.96 %). The ferritin content of the succinylated chickpea protein-iron complex showed a substantial increase of 66.31%. Furthermore, the dual modification approach combining ultrasonication and succinylation reduced the particle size of the protein-iron complex with a substantial reduction of 83.25 %. It also resulted in a significant enhancement of 51.5 % in the SH (sulfhydryl) content and 48.92 % in the surface hydrophobicity. Mineral bioavailability and cellular mineral uptake, retention, and transport were further enhanced through dual modification. In terms of application, the addition of single and dual-modified chickpea protein-iron complex to a fruit-based smoothie demonstrated positive acceptance in sensory attributes. Overall, the combined approach of succinylation and ultrasonication to the chickpea protein-iron complex shows a promising strategy for enhancing the physiochemical and techno-functional characteristics, cellular mineral uptake, and the development of vegan food products.


Asunto(s)
Disponibilidad Biológica , Cicer , Hierro , Cicer/química , Hierro/química , Hierro/metabolismo , Humanos , Alimentos Fortificados , Proteínas de Plantas/química , Digestión , Minerales/química , Células CACO-2 , Ácido Succínico/química , Tamaño de la Partícula , Manipulación de Alimentos/métodos , Solubilidad , Ferritinas/química , Ferritinas/metabolismo
12.
Food Res Int ; 186: 114336, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729713

RESUMEN

Alternative milk products such as A2 milk are gaining popular stand within consumer market, for their healthy profile and expected greater digestibility characteristics. However, total mineral content and its bioaccessible profile have lacked in studies through the years, even more because of their relevance in public health. The present study aimed to evaluate the mineral profile of commercial A2 bovine milk (AT) and estimate the bioaccessibility of calcium, phosphorus and magnesium using the INFOGEST protocol. Non-A2 samples (NAT) were evaluated for comparison purpose. The determination of Ca, Mg, Na and K was performed by FAAS and total P was quantified by colorimetric method. Total protein content was determined by Kjeldahl method. Free amino acids were quantified by OPA method along the in vitro digestion stages. Total content of Ca, Na and P exhibited equivalent results between samples, although A2 milk showed elevated levels of total Mg and K in the analyzed batches. AT showed protein content equivalent to NAT. In addition, levels of free NH2 were observed 2 times higher in AT, during the first hour of pancreatic phase in the intestinal digestion. Bioaccessibility of Ca showed equivalent percentages for AT (12-42 %) and NAT (10-39 %). The observed low values were possibly derived from interferences with saturated fatty acids and standardized electrolytes during digestion. Similar amounts of bioaccessible Mg were found for all milk samples (35-97 %), while A2 samples evidenced percentages of bioaccessible P exceeding 60 % across the three batches. Despite the health benefits associated to A2 milk, the study did not evidence clear distinction from non-A2 milk in terms of enhanced essential mineral solubility in digestive tract simulation, considering the association of greater digestibility expected for A2 milk.


Asunto(s)
Aminoácidos , Disponibilidad Biológica , Digestión , Leche , Minerales , Animales , Leche/química , Aminoácidos/análisis , Minerales/análisis , Bovinos , Magnesio/análisis
13.
Food Res Int ; 186: 114367, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729727

RESUMEN

Dry-cured hams contain abundant bioactive peptides with significant potential for the development of functional foods. However, the limited bioavailability of food-derived bioactive peptides has hindered their utilization in health food development. Moreover, there is insufficient regulatory information regarding bioactive peptides and related products globally. This review summarizes diverse bioactive peptides derived from dry-cured ham and by-products originating from various countries and regions. The bioactivity, preparation techniques, bioavailability, and metabolic stability of these bioactive peptides are described, as well as the legal and regulatory frameworks in various countries. The primary objectives of this review are to dig deeper into the functionality of dry-cured ham and provide theoretical support for the commercialization of bioactive peptides from food sources, especially the dry-cured ham.


Asunto(s)
Manipulación de Alimentos , Productos de la Carne , Péptidos , Animales , Productos de la Carne/análisis , Manipulación de Alimentos/métodos , Disponibilidad Biológica , Porcinos , Humanos , Alimentos Funcionales , Estabilidad Proteica
14.
AAPS PharmSciTech ; 25(5): 107, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730121

RESUMEN

Treatment therapies used to manage osteoporosis are associated with severe side effects. So worldwide herbs are widely studied to develop alternative safe & effective treatments. Cissus quadrangularis (CQ) has a significant role in bone health and fracture healing. It is documented that its extracts increase osteoblastic differentiation & mineralization. Currently, Cissus quadrangularis is available in the form of tablets in the market for oral delivery. But these conventional forms are associated with poor bioavailability. There is a need for a novel drug delivery system with improving oral bioavailability. Therefore, a Cissus quadrangularis-loaded self-emulsifying drug delivery system (CQ-SEDDS) was developed which disperses rapidly in the gastrointestinal fluids, yielding nano-emulsions containing a solubilized drug. This solubilized form of the drug can be easily absorbed through lymphatic pathways and bypass the hepatic first-pass effect. The emulsification efficiency, zeta potential, globule size, in-vitro dissolution, ex-vivo, in-vivo and bone marker studies were performed to assess the absorption and permeation potential of CQ incorporated in SEDDS. CQ-SEDDS with excipients Tween 80, Cremophor RH40, Transcutol HP & α-Tocopherol acetate had shown about 76% enhancement in the bioavailability of active constituents of CQ. This study provided the pre-clinical data of CQ-SEDDS using osteoporotic rat model studies.


Asunto(s)
Disponibilidad Biológica , Cissus , Sistemas de Liberación de Medicamentos , Emulsiones , Osteoporosis , Animales , Osteoporosis/tratamiento farmacológico , Ratas , Cissus/química , Sistemas de Liberación de Medicamentos/métodos , Femenino , Administración Oral , Excipientes/química , Solubilidad , Extractos Vegetales/farmacocinética , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Tamaño de la Partícula , Ratas Sprague-Dawley
15.
Clin Transl Sci ; 17(5): e13796, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712716

RESUMEN

Apomorphine, used to treat OFF episodes in patients with Parkinson's disease (PD), is typically administered via subcutaneous injections. Administration of an oromucosal solution could offer a non-invasive and user-friendly alternative. This two-part clinical study evaluated the safety, tolerability, pharmacokinetics (PK), and dose proportionality of a novel apomorphine hydrochloride oromucosal solution, as well as its relative bioavailability to subcutaneous apomorphine injection and apomorphine sublingual film. In part A of the study, 12 patients with PD received 2 mg oromucosal apomorphine (4% weight/volume) and 2 mg subcutaneous apomorphine in a randomized order, followed by 4 and 8 mg oromucosal apomorphine. In part B of the study, 13 patients with PD received 7 mg oromucosal apomorphine (7% weight/volume) and 30 mg sublingual apomorphine in a randomized order, followed by 14 mg oromucosal apomorphine. Washout between dose administrations in both study parts was at least 2 days. Safety, tolerability, and PK were assessed pre- and post-dose. Both study parts showed that oromucosal apomorphine was generally well-tolerated. Observed side effects were typical for apomorphine administration and included asymptomatic orthostatic hypotension, yawning, fatigue, and somnolence. Oromucosal apomorphine exposure increased with dose, although less than dose proportional. The mean (SD) maximum exposure reached with 14 mg oromucosal apomorphine was 753.0 (298.6) ng*min/mL (area under the plasma concentration-time curve from zero to infinity) and 8.0 (3.3) ng/mL (maximum plasma concentration). This was comparable to exposure reached after 2 mg subcutaneous apomorphine and approximately half of the exposure observed with 30 mg sublingual apomorphine. In summary, clinically relevant plasma concentrations could be reached in PD patients without tolerability issues.


Asunto(s)
Apomorfina , Enfermedad de Parkinson , Humanos , Apomorfina/administración & dosificación , Apomorfina/farmacocinética , Apomorfina/efectos adversos , Enfermedad de Parkinson/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Femenino , Anciano , Administración Sublingual , Inyecciones Subcutáneas , Relación Dosis-Respuesta a Droga , Administración Oral , Disponibilidad Biológica , Antiparkinsonianos/administración & dosificación , Antiparkinsonianos/farmacocinética , Antiparkinsonianos/efectos adversos , Estudios Cruzados
16.
Sci Total Environ ; 930: 172765, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38692323

RESUMEN

The presence of contaminated sites/soils in or near cities can pose significant risks to public health. The city of Viviez (France) was taken in reference site bears significant industrial responsibility, particularly in zinc metallurgy, with the presence of a now rehabilitated smelter. This has led to soil contamination by zinc (Zn), lead (Pb), arsenic (As), and cadmium (Cd), with concentrations reaching up to 4856 mg kg-1, 1739 mg kg-1, 195 mg kg-1, and 110 mg kg-1, respectively. The aim of this study is to comprehend the contamination patterns of the site post-rehabilitation, the geochemical behavior of each element, and their speciation (analyzed through BCR, XRD, and XANES) in relation to associated health risks due to metals accessibility for oral ingestion and inhalation by the local population. The findings revealed that elements inducing health risks were not necessarily those with the highest metal contents. All results are discussed in terms of the relationship between element speciation, stability of bearing phases, and their behavior in different media. XANES is an important tool to determine and estimate the Pb-bearing phases in garden soils, as well as the As speciation, which consist of Pb-goethite, anglesite, and Pb-humate, with variations in proportions (the main phases being 66 %, 12 % and 22 % for Pb-goethite, anglesite, and Pb-humate, respectively) whereas As-bearing phase are As(V)-rich ferrihydrite-like. A new aspect lies in the detailed characterization of solid phases before and after bioaccessibility tests, to qualify and quantify the bearing phases involved in the mobility of metallic elements to understand the bioaccessibility behavior. Ultimately, the health risk associated with exposure to inhabitants, in terms of particle ingestion and inhalation, was assessed. Only ingestion-related risk was deemed unacceptable due to the levels of As and Pb.


Asunto(s)
Monitoreo del Ambiente , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Francia , Humanos , Arsénico/análisis , Sincrotrones , Pulmón , Plomo/análisis , Zinc/análisis , Metales Pesados/análisis , Disponibilidad Biológica , Medición de Riesgo , Cadmio/análisis , Suelo/química
17.
Drug Des Devel Ther ; 18: 1469-1495, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707615

RESUMEN

This manuscript offers a comprehensive overview of nanotechnology's impact on the solubility and bioavailability of poorly soluble drugs, with a focus on BCS Class II and IV drugs. We explore various nanoscale drug delivery systems (NDDSs), including lipid-based, polymer-based, nanoemulsions, nanogels, and inorganic carriers. These systems offer improved drug efficacy, targeting, and reduced side effects. Emphasizing the crucial role of nanoparticle size and surface modifications, the review discusses the advancements in NDDSs for enhanced therapeutic outcomes. Challenges such as production cost and safety are acknowledged, yet the potential of NDDSs in transforming drug delivery methods is highlighted. This contribution underscores the importance of nanotechnology in pharmaceutical engineering, suggesting it as a significant advancement for medical applications and patient care.


Asunto(s)
Disponibilidad Biológica , Nanotecnología , Solubilidad , Humanos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/administración & dosificación , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Portadores de Fármacos/química , Animales
18.
Carbohydr Polym ; 337: 122118, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710546

RESUMEN

Chrysin and rutin are natural polyphenols with multifaceted biological activities but their applications face challenges in bioavailability. Encapsulation using starch nanoparticles (SNPs) presents a promising approach to overcome the limitations. In this study, chrysin and rutin were encapsulated into self-assembled SNPs derived from quinoa (Q), maize (M), and waxy maize (WM) starches using enzyme-hydrolysis. Encapsulation efficiencies ranged from 74.3 % to 79.1 %, with QSNPs showing superior performance. Simulated in vitro digestion revealed sustained release and higher antioxidant activity in QSNPs compared to MSNPs and WMSNPs. Variations in encapsulation properties among SNPs from different sources were attributed to the differences in the structural properties of the starches. The encapsulated SNPs exhibited excellent stability, retaining over 90 % of chrysin and 85 % of rutin after 15 days of storage. These findings underscore the potential of SNP encapsulation to enhance the functionalities of chrysin and rutin, facilitating the development of fortified functional foods with enhanced bioavailability and health benefits.


Asunto(s)
Antioxidantes , Chenopodium quinoa , Flavonoides , Nanopartículas , Rutina , Almidón , Zea mays , Flavonoides/química , Rutina/química , Zea mays/química , Nanopartículas/química , Chenopodium quinoa/química , Almidón/química , Antioxidantes/química , Antioxidantes/farmacología , Disponibilidad Biológica , Hidrólisis
19.
AAPS PharmSciTech ; 25(5): 95, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710921

RESUMEN

Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.


Asunto(s)
Administración Intranasal , Encéfalo , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Glicéridos , Mucosa Nasal , Tamaño de la Partícula , Verapamilo , Administración Intranasal/métodos , Animales , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Verapamilo/administración & dosificación , Verapamilo/farmacocinética , Distribución Tisular , Glicéridos/química , Mucosa Nasal/metabolismo , Disponibilidad Biológica , Ratas , Bloqueadores de los Canales de Calcio/farmacocinética , Bloqueadores de los Canales de Calcio/administración & dosificación , Poloxámero/química , Masculino , Química Farmacéutica/métodos , Ratas Wistar , Nanopartículas/química
20.
Am J Ther ; 31(3): e258-e267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38691665

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is characterized by loss of motor neurons due to degeneration of nerve cells within the brain and spinal cord. Early symptoms include limb weakness, twitching or muscle cramping, and slurred speech. As the disease progresses, difficulty breathing, swallowing, and paralysis can lead to death. Currently, there are no medications that cure ALS, and guidelines recommend treatments focused on symptom management. Intravenous (IV) edaravone was approved by the US Food and Drug Administration (FDA) in 2017 as a treatment to slow the progression of ALS. In May 2022, the FDA approved an oral suspension (ORS) formulation of edaravone. MECHANISM OF ACTION: The mechanism of action of edaravone is not well defined. However, its neuroprotective effects are thought to result from antioxidant properties occurring through elimination of free radicals. PHARMACOKINETICS: Edaravone ORS (105 mg) has a bioavailability of 57% when compared with edaravone IV (60 mg). The ORS should be taken on an empty stomach in the morning, with water and no food or beverages, for 1 hour. Edaravone is bound to albumin (92%), has a mean volume of distribution of 63.1 L, a half-life of 4.5-9 hours, and a total clearance of 35.9 L/h after intravenous administration. Edaravone is metabolized into nonactive sulfate and glucuronide conjugates. CLINICAL TRIALS: The FDA approval was based on studies of the pharmacokinetics, safety, tolerability, and bioavailability of edaravone ORS. A phase III, global, multicenter, open-label safety study was conducted on edaravone ORS in 185 patients with ALS over 48 weeks. The most reported treatment-emergent adverse events were falls, muscular weakness, and constipation. Serious treatment-emergent adverse events included disease worsening, dysphagia, dyspnea, and respiratory failure. THERAPEUTIC ADVANCE: Oral edaravone is an ALS treatment that can be self-administered or administered by a caregiver, precluding the need for administration by a health care professional in an institutional setting.


Asunto(s)
Esclerosis Amiotrófica Lateral , Edaravona , Fármacos Neuroprotectores , Edaravona/administración & dosificación , Edaravona/farmacología , Edaravona/uso terapéutico , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/efectos adversos , Administración Oral , Suspensiones , Disponibilidad Biológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA