Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.390
Filtrar
1.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717262

RESUMEN

Climate change is a prominent factor reshaping the distribution of invasive species. Metcalfa pruinosa (Say 1830) (Hemiptera: Flatidae), native to North America, has invaded other continents and poses a serious threat to various agricultural crops and the human residential environment. Understanding the distribution of M. pruinosa based on climatic conditions is a critical first step to prevent its further invasion. Therefore, based on its occurrence records and associated environmental variables, a Maxent model was developed to predict suitable areas for this species in the present and future on a global scale. The model exhibited outstanding performance, with a mean area under the receiver operating characteristic curve and true skill statistic values of 0.9329 and 0.926, respectively. The model also indicated that annual precipitation (Bio12) and max temperature of the warmest month (Bio5) were the key environmental variables limiting the distribution of M. pruinosa. Moreover, the model revealed that the current suitable area is 1.01 × 107 km2 worldwide, with southern China, southern Europe, and the eastern United States predicted to be the primary and highly suitable areas in the latter 2 regions. This area is expected to increase under future climate scenarios, mainly in the northern direction. The study's findings contribute to our understanding of climate change's impact on M. pruinosa distribution, and they will aid governments in developing appropriate pest management strategies, including global monitoring and strict quarantine measures.


Asunto(s)
Distribución Animal , Cambio Climático , Especies Introducidas , Animales , Hemípteros/fisiología , Control de Insectos/métodos
2.
Invertebr Syst ; 382024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38744499

RESUMEN

Mastigusa is a genus of small palearctic spiders that has recently been moved to the family Cybaeidae after the first inclusion of the genus in a phylogenetic matrix. Three species are currently recognised: M. arietina , M. lucifuga and M. macrophthalma . The status and delimitation, though, has always been problematic due to inconsistency in the characters used to discriminate between these, leading to great confusion in identity and distribution. We present a detailed morphological redescription of the genus and a taxonomic revision of the included species by the combined use of morphological data and molecular species-delimitation techniques based on the mitochondrial COI gene. The status of the three currently described species has been reevaluated and Mastigusa diversa was revalidated based on material from the Iberian Peninsula, North Africa and the United Kingdom. The distribution of Mastigusa species is updated based on novel taxonomic considerations, and comments on the natural history and ecological differences observed in the species are provided. ZooBank: urn:lsid:zoobank.org:pub:AAD3FAED-440F-4295-B458-455B1D913F81.


Asunto(s)
Filogenia , Arañas , Arañas/clasificación , Arañas/anatomía & histología , Arañas/genética , Animales , Masculino , Femenino , Especificidad de la Especie , Genitales/anatomía & histología , Distribución Animal , Complejo IV de Transporte de Electrones/genética
3.
An Acad Bras Cienc ; 96(2): e20230972, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747796

RESUMEN

There is a marked disparity in the state of knowledge of Holartic x Neotropical species of the freshwater snail family Physidae; the incipiency of data on Neotropical physids reflecting the lower number of dedicated specialists. The gaps in the knowledge on Neotropical physids have led to historical uncertainty about species validity. Revisiting the species is essential to reduce taxonomic impediment and delineating their probable distribution is the first step to attain this purpose. We aimed at critically analyze occurrence records of South American physids, compiled through an intensive search in the literature, biodiversity and molecular databases. We present a provisional characterization of the distribution of this family in South America, considering the probable versus the poorly documented distribution of the species. The critical underrepresentation of South American physids in collections, molecular databases and literature reinforces the role of taxonomic impediment in delaying the advance of the knowledge on species diversity. Malacological collections represented the main source of records, evidencing the relevance of unpublished data associated to specimens to assess distributional information on neglected groups. As most of the species are represented by shells, the reassessment of species identity and distribution must be done, using molecular and anatomical criteria for species delimitation.


Asunto(s)
Biodiversidad , Animales , América del Sur , Distribución Animal , Gastrópodos/clasificación , Caracoles/clasificación
4.
PLoS One ; 19(5): e0294376, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739612

RESUMEN

Understanding and mitigating the effects of anthropogenic climate change on species distributions requires the ability to track range shifts over time. This is particularly true for species occupying high-latitude regions, which are experiencing more extreme climate change than the rest of the world. In North America, the geographic ranges of many mammals reach their northernmost extent in Alaska, positioning this region at the leading edge of climate-induced distribution change. Over a decade has elapsed since the publication of the last spatial assessments of terrestrial mammals in the state. We compared public occurrence records against commonly referenced range maps to evaluate potential extralimital records and develop repeatable baseline range maps. We compared occurrence records from the Global Biodiversity Information Facility for 61 terrestrial mammal species native to mainland Alaska against a variety of range estimates (International Union for Conservation of Nature, Alaska Gap Analysis Project, and the published literature). We mapped extralimital records and calculated proportions of occurrences encompassed by range extents, measured mean direction and distance to prior range margins, evaluated predictive accuracy of published species models, and highlighted observations on federal lands in Alaska. Range comparisons identified 6,848 extralimital records for 39 of 61 (63.9%) terrestrial mainland Alaskan species. On average, 95.5% of Alaska Gap Analysis Project occurrence records and ranges were deemed accurate (i.e., > 90.0% correct) for 31 of 37 species, but overestimated extents for 13 species. The International Union for Conservation of Nature range maps encompassed 68.1% of occurrence records and were > 90% accurate for 17 of 39 species. Extralimital records represent either improved sampling and digitization or actual geographic range expansions. Here we provide new data-driven range maps, update standards for the archiving of museum-quality locational records and offer recommendations for mapping range changes for monitoring and conservation.


Asunto(s)
Biodiversidad , Cambio Climático , Mamíferos , Alaska , Animales , Mamíferos/fisiología , Conservación de los Recursos Naturales , Distribución Animal
5.
Zool Res ; 45(4): 711-723, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38766761

RESUMEN

The genus Silurus, an important group of catfish, exhibits heterogeneous distribution in Eurasian freshwater systems. This group includes economically important and endangered species, thereby attracting considerable scientific interest. Despite this interest, the lack of a comprehensive phylogenetic framework impedes our understanding of the mechanisms underlying the extensive diversity found within this genus. Herein, we analyzed 89 newly sequenced and 20 previously published mitochondrial genomes (mitogenomes) from 13 morphological species to reconstruct the phylogenetic relationships, biogeographic history, and species diversity of Silurus. Our phylogenetic reconstructions identified eight clades, supported by both maximum-likelihood and Bayesian inference. Sequence-based species delimitation analyses yielded multiple molecular operational taxonomic units (MOTUs) in several taxa, including the Silurus asotus complex (four MOTUs) and Silurus microdorsalis (two MOTUs), suggesting that species diversity is underestimated in the genus. A reconstructed time-calibrated tree of Silurus species provided an age estimate of the most recent common ancestor of approximately 37.61 million years ago (Ma), with divergences among clades within the genus occurring between 11.56 Ma and 29.44 Ma, and divergences among MOTUs within species occurring between 3.71 Ma and 11.56 Ma. Biogeographic reconstructions suggested that the ancestral area for the genus likely encompassed China and the Korean Peninsula, with multiple inferred dispersal events to Europe and Central and Western Asia between 21.78 Ma and 26.67 Ma and to Japan between 2.51 Ma and 18.42 Ma. Key factors such as the Eocene-Oligocene extinction event, onset and intensification of the monsoon system, and glacial cycles associated with sea-level fluctuations have likely played significant roles in shaping the evolutionary history of the genus Silurus.


Asunto(s)
Bagres , Filogenia , Filogeografía , Animales , Bagres/genética , Bagres/clasificación , Genoma Mitocondrial , Variación Genética , Distribución Animal
6.
Proc Biol Sci ; 291(2023): 20240172, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38772418

RESUMEN

Tests for the role of species' relative dispersal abilities in ecological and biogeographical models rely heavily on dispersal proxies, which are seldom substantiated by empirical measures of actual dispersal. This is exemplified by tests of dispersal-range size relationships and by metacommunity research that often features invertebrates, particularly freshwater insects. Using rare and unique empirical data on dispersal abilities of caddisflies, we tested whether actual dispersal abilities were associated with commonly used dispersal proxies (metrics of wing size and shape; expert opinion). Across 59 species in 12 families, wing morphology was not associated with actual dispersal. Within some families, individual wing metrics captured some dispersal differences among species, although useful metrics varied among families and predictive power was typically low. Dispersal abilities assigned by experts were either no better than random or actually poorer than random. Our results cast considerable doubt on research underpinned by dispersal proxies and scrutiny of previous research results may be warranted. Greater progress may lie in employing innovative survey and experimental design to measure actual dispersal in the field.


Asunto(s)
Distribución Animal , Insectos , Alas de Animales , Animales , Alas de Animales/anatomía & histología , Alas de Animales/fisiología , Insectos/fisiología
7.
PLoS One ; 19(5): e0303137, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722911

RESUMEN

The Asian tiger mosquito, Aedes albopictus, is a significant public health concern owing to its expanding habitat and vector competence. Disease outbreaks attributed to this species have been reported in areas under its invasion, and its northward expansion in Japan has caused concern because of the potential for dengue virus infection in newly populated areas. Accurate prediction of Ae. albopictus distribution is crucial to prevent the spread of the disease. However, limited studies have focused on the prediction of Ae. albopictus distribution in Japan. Herein, we used the random forest model, a machine learning approach, to predict the current and potential future habitat ranges of Ae. albopictus in Japan. The model revealed that these mosquitoes prefer urban areas over forests in Japan on the current map. Under predictions for the future, the species will expand its range to the surrounding areas and eventually reach many areas of northeastern Kanto, Tohoku District, and Hokkaido, with a few variations in different scenarios. However, the affected human population is predicted to decrease owing to the declining birth rate. Anthropogenic and climatic factors contribute to range expansion, and urban size and population have profound impacts. This prediction map can guide responses to the introduction of this species in new areas, advance the spatial knowledge of diseases vectored by it, and mitigate the possible disease burden. To our knowledge, this is the first distribution-modelling prediction for Ae. albopictus with a focus on Japan.


Asunto(s)
Aedes , Mosquitos Vectores , Animales , Aedes/virología , Aedes/fisiología , Japón , Mosquitos Vectores/virología , Ecosistema , Humanos , Distribución Animal , Dengue/transmisión , Dengue/epidemiología , Aprendizaje Automático , Modelos Biológicos
8.
Malar J ; 23(1): 158, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773512

RESUMEN

BACKGROUND: This study aimed to assess the spatial distribution of Anopheles mosquito larval habitats and the environmental factors associated with them, as a prerequisite for the implementation of larviciding. METHODS: The study was conducted in December 2021, during the transition period between the end of the short rainy season (September-November) and the short dry season (December-February). Physical, biological, and land cover data were integrated with entomological observations to collect Anopheles larvae in three major towns: Mitzic, Oyem, and Bitam, using the "dipping" method during the transition from rainy to dry season. The collected larvae were then reared in a field laboratory established for the study period. After the Anopheles mosquitoes had emerged, their species were identified using appropriate morphological taxonomic keys. To determine the influence of environmental factors on the breeding of Anopheles mosquitoes, multiple-factor analysis (MFA) and a binomial generalized linear model were used. RESULTS: According to the study, only 33.1% out of the 284 larval habitats examined were found to be positive for Anopheles larvae, which were primarily identified as belonging to the Anopheles gambiae complex. The findings of the research suggested that the presence of An. gambiae complex larvae in larval habitats was associated with various significant factors such as higher urbanization, the size and type of the larval habitats (pools and puddles), co-occurrence with Culex and Aedes larvae, hot spots in ambient temperature, moderate rainfall, and land use patterns. CONCLUSIONS: The results of this research mark the initiation of a focused vector control plan that aims to eradicate or lessen the larval habitats of An. gambiae mosquitoes in Gabon's Woleu Ntem province. This approach deals with the root causes of malaria transmission through larvae and is consistent with the World Health Organization's (WHO) worldwide objective to decrease malaria prevalence in regions where it is endemic.


Asunto(s)
Anopheles , Ecosistema , Larva , Malaria , Mosquitos Vectores , Animales , Anopheles/fisiología , Anopheles/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Gabón , Malaria/transmisión , Mosquitos Vectores/fisiología , Estaciones del Año , Análisis Espacial , Distribución Animal
9.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38771255

RESUMEN

Invasive species may occupy quite different environments in their invaded areas to native ones, which may intensively interfere with predicting potential distribution through ecological niche modeling (ENM). Here, we take the tomato leafminer Tuta absoluta Meyrick (Lepidoptera: Gelechiidae), a tomato pest, as an example to investigate this topic. We analyzed niche expansion, stability, unfilling, and Schoener's D by principal component analysis (PCA) ordination method to examine its realized niche shifts and to explore how ENM approaches are affected by niche shifts. We used 5 datasets: Asian, African, European, South American, and global occurrence records in this study. Results showed that high niche unfilling for the species' invaded areas in Asia (20%), Africa (12%), and Europe (37%), possibly due to T. absoluta being in the early stages of invasion. High niche expansion was observed in Asia (38%) and Europe (19%), implying that some European and Asian populations had reached new climatic areas. African niche had the most niche stability (94%) and was equivalent to the native one in climate space (PCA ordination method), but the n-dimensional climate space framework showed that they were different. When projecting the native model to Asia and Europe, the native model performed poorly, implying that the niche shifts affected the transferability of the native model. ENM based on global data outperformed than other models, and our results suggested that T. absoluta has a large potential distribution in Asia, Mexico, South Europe, the United States, and Australia. Meanwhile, we recommend updating ENMs based on the species' invasion stage.


Asunto(s)
Distribución Animal , Ecosistema , Especies Introducidas , Mariposas Nocturnas , Animales , Mariposas Nocturnas/fisiología , Europa (Continente) , Asia
10.
Glob Chang Biol ; 30(5): e17299, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38700905

RESUMEN

While climate change has been shown to impact several life-history traits of wild-living animal populations, little is known about its effects on dispersal and connectivity. Here, we capitalize on the highly variable flooding regime of the Okavango Delta to investigate the impacts of changing environmental conditions on the dispersal and connectivity of the endangered African wild dog (Lycaon pictus). Based on remote sensed flood extents observed over 20 years, we derive two extreme flood scenarios: a minimum and a maximum flood extent, representative of very dry and very wet environmental periods. These conditions are akin to those anticipated under increased climatic variability, as it is expected under climate change. Using a movement model parameterized with GPS data from dispersing individuals, we simulate 12,000 individual dispersal trajectories across the ecosystem under both scenarios and investigate patterns of connectivity. Across the entire ecosystem, surface water coverage during maximum flood extent reduces dispersal success (i.e., the propensity of individuals to disperse between adjacent subpopulations) by 12% and increases dispersal durations by 17%. Locally, however, dispersal success diminishes by as much as 78%. Depending on the flood extent, alternative dispersal corridors emerge, some of which in the immediate vicinity of human-dominated landscapes. Notably, under maximum flood extent, the number of dispersing trajectories moving into human-dominated landscapes decreases by 41% at the Okavango Delta's inflow, but increases by 126% at the Delta's distal end. This may drive the amplification of human-wildlife conflict. While predicting the impacts of climate change on environmental conditions on the ground remains challenging, our results highlight that environmental change may have significant consequences for dispersal patterns and connectivity, and ultimately, population viability. Acknowledging and anticipating such impacts will be key to effective conservation strategies and to preserve vital dispersal corridors in light of climate change and other human-related landscape alterations.


Asunto(s)
Distribución Animal , Cambio Climático , Ecosistema , Inundaciones , Animales , Canidae/fisiología , Especies en Peligro de Extinción
11.
PeerJ ; 12: e17242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699180

RESUMEN

Kiekie Polotow & Brescovit, 2018 is a Neotropical genus of Ctenidae, with most of its species occuring in Central America. In this study, we review the systematics of Kiekie and describe five new species and the unknown females of K. barrocolorado Polotow & Brescovit, 2018 and K. garifuna Polotow & Brescovit, 2018, and the unknown male of K. verbena Polotow & Brescovit, 2018. In addition, we described the female of K. montanense which was wrongly assigned as K. griswoldi Polotow & Brescovit, 2018 (both species are sympatric). We provided a modified diagnosis for previously described species based on the morphology of the newly discovered species and in situ photographs of living specimens. We inferred a molecular phylogeny using four nuclear (histone H3, 28S rRNA, 18S rRNA and ITS-2) and three mitochondrial genes (cytochrome c oxidase subunit I or COI, 12S rRNA and 16S rRNA) to test the monophyly of the genus and the evolutionary relationships of its species. Lastly, we reconstruct the historical biogeography and map diversity and endemism distributional patterns of the different species. This study increased the number of known species of Kiekie from 13 to 18, and we describe a new genus, Eldivo which is sister lineage of Kiekie. Most of the diversity and endemism of the genus Kiekie is located in the montane ecosystems of Costa Rica followed by the lowland rainforest of the Pacific side (Limon Basin). Kiekie originated in the North America Tropical region, this genus started diversifying in the Late Miocene and spread to Lower Central America and South America. In that region, Kiekie colonized independently several times the montane ecosystems corresponding to periods of uplifting of Talamanca and Central Cordilleras.


Asunto(s)
Filogenia , Arañas , Animales , Arañas/clasificación , Arañas/genética , América Central , Femenino , Masculino , Distribución Animal , Filogeografía
12.
Biol Lett ; 20(5): 20240002, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38689558

RESUMEN

Group living may entail local resource competition (LRC) which can be reduced if the birth sex ratio (BSR) is biased towards members of the dispersing sex who leave the group and no longer compete locally with kin. In primates, the predicted relationship between dispersal and BSR is generally supported although data for female dispersal species are rare and primarily available from captivity. Here, we present BSR data for Phayre's leaf monkeys (Trachypithecus phayrei crepusculus) at the Phu Khieo Wildlife Sanctuary, Thailand (N = 104). In this population, nearly all natal females dispersed, while natal males stayed or formed new groups nearby. The slower reproductive rate in larger groups suggests that food can be a limiting resource. In accordance with LRC, significantly more females than males were born (BSR 0.404 males/all births) thus reducing future competition with kin. This bias was similar in 2-year-olds (no sex-differential mortality). It became stronger in adults, supporting our impression of particularly fierce competition among males. To better evaluate the importance of BSR, more studies should report sex ratios throughout the life span, and more data for female dispersal primates need to be collected, ideally for multiple groups of different sizes and for several years.


Asunto(s)
Conducta Competitiva , Razón de Masculinidad , Animales , Femenino , Masculino , Tailandia , Conducta Competitiva/fisiología , Distribución Animal , Reproducción/fisiología
13.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230123, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38705177

RESUMEN

Arthropods contribute importantly to ecosystem functioning but remain understudied. This undermines the validity of conservation decisions. Modern methods are now making arthropods easier to study, since arthropods can be mass-trapped, mass-identified, and semi-mass-quantified into 'many-row (observation), many-column (species)' datasets, with homogeneous error, high resolution, and copious environmental-covariate information. These 'novel community datasets' let us efficiently generate information on arthropod species distributions, conservation values, uncertainty, and the magnitude and direction of human impacts. We use a DNA-based method (barcode mapping) to produce an arthropod-community dataset from 121 Malaise-trap samples, and combine it with 29 remote-imagery layers using a deep neural net in a joint species distribution model. With this approach, we generate distribution maps for 76 arthropod species across a 225 km2 temperate-zone forested landscape. We combine the maps to visualize the fine-scale spatial distributions of species richness, community composition, and site irreplaceability. Old-growth forests show distinct community composition and higher species richness, and stream courses have the highest site-irreplaceability values. With this 'sideways biodiversity modelling' method, we demonstrate the feasibility of biodiversity mapping at sufficient spatial resolution to inform local management choices, while also being efficient enough to scale up to thousands of square kilometres. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Asunto(s)
Artrópodos , Biodiversidad , ADN Ambiental , Tecnología de Sensores Remotos , Artrópodos/clasificación , Animales , ADN Ambiental/análisis , Tecnología de Sensores Remotos/métodos , Bosques , Distribución Animal , Código de Barras del ADN Taxonómico/métodos
14.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703100

RESUMEN

Synanthropic silverfish are the best-known and most widely distributed insects of the order Zygentoma. However, there is a great gap in the knowledge and confusion about the geographic distribution and the diagnostic characteristics that allow their identification. In this work, we provide an exhaustive and deep analysis of the most common 9 synanthropic silverfish of the world, combining previously published and newly derived morphological and molecular data. Updated descriptions of Ctenolepisma calvum (Ritter, 1910) and Ctenolepisma (Sceletolepisma) villosum (Fabricius, 1775) are included, and morphological remarks, illustrations, and photographs of the remaining synanthropic species are provided to clarify their diagnosis and differentiation among them and from other free-living species. In addition, Ctenolepisma targionii (Grassi and Rovelli, 1889) is synonymized with C. villosum. A molecular phylogeny is presented based on the COI sequences of all the synanthropic species deposited in BOLD and GenBank, with 15 new sequences provided by this study. This has allowed us to detect and correct a series of identification errors based on the lack of morphological knowledge of several species. Moreover, 2 different lineages of Ctenolepisma longicaudatumEscherich, 1905 have also been detected. To help future studies, we also provide a taxonomic interpretation guide for the most important diagnostic characters of the order Zygentoma, as well as an identification key for all the Synanthropic studied species. Finally, an approximation of the global distribution of synanthropic silverfish is discussed. Several new records indicate that the expansion of these species, generally associated with the transport of goods and people, is still far from over.


Asunto(s)
Insectos , Filogenia , Animales , Insectos/genética , Insectos/anatomía & histología , Insectos/clasificación , Femenino , Masculino , Distribución Animal
15.
PLoS One ; 19(5): e0303864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758759

RESUMEN

Nematodes disperse passively and are amongst the smallest invertebrates on Earth. Free-living nematodes in mountain lakes are highly tolerant of environmental variations and are thus excellent model organisms in dispersal studies, since species-environment relationships are unlikely to interfere. In this study, we investigated how population or organism traits influence the stochastic physical nature of passive dispersal in a topologically complex environment. Specifically, we analyzed the influence of female proportion and body size on the geographical distribution of nematode species in the mountain lakes of the Pyrenees. We hypothesized that dispersal is facilitated by (i) a smaller body size, which would increase the rate of wind transport, and (ii) a higher female proportion within a population, which could increase colonization success because many nematode species are capable of parthenogenetic reproduction. The results showed that nematode species with a low proportion of females tend to have clustered spatial distributions that are not associated with patchy environmental conditions, suggesting greater barriers to dispersal. When all species were pooled, the overall proportion of females tended to increase at the highest elevations, where dispersal between lakes is arguably more difficult. The influence of body size was barely relevant for nematode distributions. Our study highlights the relevance of female proportion as a mechanism that enhances the dispersal success of parthenogenetic species, and that female sex is a determining factor in metacommunity connectivity.


Asunto(s)
Tamaño Corporal , Lagos , Nematodos , Animales , Femenino , Tamaño Corporal/fisiología , Nematodos/fisiología , Masculino , Distribución Animal/fisiología , Ecosistema
16.
PLoS Negl Trop Dis ; 18(4): e0012108, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683839

RESUMEN

Ticks are a hematophagous parasite and a vector of pathogens for numerous human and animal diseases of significant importance. The expansion of tick distribution and the increased risk of tick-borne diseases due to global climate change necessitates further study of the spatial distribution trend of ticks and their potential influencing factors. This study constructed a dataset of tick species distribution in Xinjiang for 60 years based on literature database retrieval and historical data collection (January 1963-January 2023). The distribution data were extracted, corrected, and deduplicated. The dominant tick species were selected for analysis using the MaxEnt model to assess their potential distribution in different periods under the current and BCC-CSM2.MR mode scenarios. The results indicated that there are eight genera and 48 species of ticks in 108 cities and counties of Xinjiang, with Hyalomma asiaticum, Rhipicephalus turanicus, Dermacentor marginatus, and Haemaphysalis punctatus being the top four dominant species. The MaxEnt model analysis revealed that the suitability areas of the four dominant ticks were mainly distributed in the north of Xinjiang, in areas such as Altay and Tacheng Prefecture. Over the next four periods, the medium and high suitable areas within the potential distribution range of the four tick species will expand towards the northwest. Additionally, new suitability areas will emerge in Altay, Changji Hui Autonomous Prefecture, and other local areas. The 60-year tick dataset in this study provides a map of preliminary tick distribution in Xinjiang, with a diverse array of tick species and distribution patterns throughout the area. In addition, the MaxEnt model revealed the spatial change characteristics and future distribution trend of ticks in Xinjiang, which can provide an instrumental data reference for tick monitoring and tick-borne disease risk prediction not only in the region but also in other countries participating in the Belt and Road Initiative.


Asunto(s)
Biodiversidad , Cambio Climático , Garrapatas , Animales , China/epidemiología , Garrapatas/clasificación , Distribución Animal , Clima , Enfermedades por Picaduras de Garrapatas/epidemiología , Humanos
17.
J Vector Borne Dis ; 61(1): 29-42, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648404

RESUMEN

BACKGROUND OBJECTIVES: In urban areas, upsurge in population has resulted in more breeding sites for malaria vectors, and hence this scenario potentially undermine malaria elimination and control programs. The change in land use due to urbanization may result in the presence and distribution of malaria vectors. Understanding potential malaria vectors is essential for current and future malaria transmission control strategies. This study investigated the effects of rapid urbanization on malaria vectors An. culicifacies s.l. and An. stephensi L. in Ghaziabad district. METHODS: Ghaziabad district which presents several levels of urbanization was selected for this study. Entomological investigations were conducted seasonally from 2014-2016 in the rural, urban, and peri-urban regions. Vector incrimination study was done using ELISA (confirmation by PCR) on suspected Anopheles vectors viz. An. culicifacies, An. stephensi, An. annularis and An. subpictus. RESULTS: An. culicifacies showed alteration in distribution influenced by rural and agricultural land whereas An. stephensi was found to be influenced by artificial habitats and population growth. INTERPRETATION CONCLUSION: The study also confirms the association between the abundance of malaria vectors and land use change.


Asunto(s)
Anopheles , Malaria , Mosquitos Vectores , Urbanización , Anopheles/fisiología , Anopheles/crecimiento & desarrollo , India/epidemiología , Animales , Mosquitos Vectores/fisiología , Mosquitos Vectores/crecimiento & desarrollo , Malaria/transmisión , Malaria/epidemiología , Estaciones del Año , Ecosistema , Humanos , Población Rural , Distribución Animal
18.
Sci Total Environ ; 931: 172523, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38657804

RESUMEN

Landscape features can impede dispersal, gene flow, and population demography, resulting in the formation of several meta-populations within a continuous landscape. Understanding a species' ability to overcome these barriers is critical for predicting genetic connectivity and population persistence, and implementing effective conservation strategies. In the present study, we conducted a fine-scale spatial genetic analysis to understand the contemporary gene flow within red panda populations in the Eastern Himalayas. Employing geometric aspects of reserve design, we delineated the critical core habitats for red pandas, which comprise 14.5 % of the landscape (12,189.75 Km2), with only a mere 443 Km2 falling within the protected areas. We identified corridors among the core habitats, which may be vital for the species' long-term genetic viability. Furthermore, we identified substantial landscape barriers, including Sela Pass in the western region, Siang river in the central region, and the Dibang river, Lohit river, along with Dihang, Dipher, and Kumjawng passes in the eastern region, which hinder gene flow. We suggest managing red panda populations through the creation of Community Conservation Reserves in the identified core habitats, following landscape-level management planning based on the core principles of geometric reserve design. This includes a specific emphasis on identified core habitats of red panda (CH-RP 5 and CH-RP 8) to facilitate corridors and implement meta-population dynamics. We propose the development of a comprehensive, long-term conservation and management plan for red pandas in the transboundary landscape, covering China, Nepal, and Bhutan.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Flujo Génico , Ursidae , Animales , Ursidae/genética , China , Distribución Animal , Himalayas
19.
Neotrop Entomol ; 53(3): 647-668, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38656589

RESUMEN

Currently, according to the most recent Simuliidae World Inventory, there are 97 valid species of blackflies recorded in Brazil, some of which act as vectors for zoonoses such as human onchocerciasis and mansonellosis in the northern and central-western regions of the country. Meanwhile, other species can cause serious socioeconomic problems due to the nuisance of female bites. Therefore, accurate knowledge of their distribution is crucial for the development and implementation of successful preventive strategies. With this aim, this study reviewed and updated the geographical distribution of the blackfly fauna throughout the Brazilian states. The data were compiled from three main sources: geographic information of material deposited at the Simuliidae Collection of the Instituto Oswaldo Cruz (CSIOC-IOC), a comprehensive review of scientific literature, and online biodiversity databases. We present a total of 71 new distribution records of 38 different Simuliidae species for 24 Brazilian states. Neither of these sets of records has been included in the Simuliidae World Inventory. Consequently, an updated Brazilian Simuliidae checklist, comprising a total of 98 valid species, is presented, highlighting these new distribution records. We also discuss six dubious records for the country and the implications of this updated data for the Simuliidae species richness of Brazil, its states, and biomes. This information is essential for future studies in the taxonomy, systematics, and biogeography of this family in Brazil.


Asunto(s)
Distribución Animal , Biodiversidad , Simuliidae , Animales , Brasil , Simuliidae/clasificación , Lista de Verificación , Femenino
20.
Neotrop Entomol ; 53(3): 608-616, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38598071

RESUMEN

Insects of economic importance such as Leucoptera coffeella can cause high defoliation in plants and reduce crop yields. We aimed to identify changes in the ecological niche and potential zones of the invasion. Occurrence records were obtained from databases and bibliography. WorldClim V2.0 bioclimatic layers were used. For the modeling of the potential distribution, the kuenm R package was used by executing the Maxent algorithm. The potential distribution models suggested greatest environmental suitability extends from Europe, South Asia, and Central and South Africa, showing the "tropical and subtropical moist broadleaf forests" as the ecoregion that presents the greatest probability of the presence of L. coffeella. The potential distribution model projected in the invaded area agrees with the known distribution in the region (America), although the results show that it is occupying environmental spaces not present in the area of origin. This species presented a large proportion of the invaded niche that overlaps the native niche and is colonizing new environmental conditions in the invaded area relative to its native distribution (Africa). This information could be used in the planning of coffee crops on the American continent.


Asunto(s)
Ecosistema , Especies Introducidas , Animales , Distribución Animal , Lepidópteros , Coffea , Mariposas Nocturnas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA