Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.189
Filtrar
1.
Sci Rep ; 14(1): 14757, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926599

RESUMEN

Muscular dystrophy is a group of genetic disorders that lead to muscle wasting and loss of muscle function. Identifying genetic modifiers that alleviate symptoms or enhance the severity of a primary disease helps to understand mechanisms behind disease pathology and facilitates discovery of molecular targets for therapy. Several muscular dystrophies are caused by genetic defects in the components of the dystrophin-glycoprotein adhesion complex (DGC). Thrombospondin-4 overexpression has been shown to mitigate dystrophic disease in mouse models for Duchenne muscular dystrophy (dystrophin deficiency) and limb-girdle muscular dystrophy type 2F (LGMD2F, δ-sarcoglycan deficiency), while deletion of the thrombospondin-4 gene exacerbated the diseases. Hence, thrombospondin-4 has been considered a candidate molecule for therapy of muscular dystrophies involving the DGC. We have investigated whether thrombospondin-4 could act as a genetic modifier for other DGC-associated diseases: limb-girdle muscular dystrophy type 2E (LGMD2E, ß-sarcoglycan deficiency) and laminin α2 chain-deficient muscular dystrophy (LAMA2-RD). Deletion of the thrombospondin-4 gene in mouse models for LGMD2E and LAMA2-RD, respectively, did not result in worsening of the dystrophic phenotype. Loss of thrombospondin-4 did not enhance sarcolemma damage and did not impair trafficking of transmembrane receptors integrin α7ß1 and dystroglycan in double knockout muscles. Our results suggest that thrombospondin-4 might not be a relevant therapeutic target for all muscular dystrophies involving the DGC. This data also demonstrates that molecular pathology between very similar diseases like LGMD2E and 2F can differ significantly.


Asunto(s)
Laminina , Ratones Noqueados , Sarcoglicanos , Trombospondinas , Animales , Laminina/metabolismo , Laminina/genética , Laminina/deficiencia , Sarcoglicanos/genética , Sarcoglicanos/deficiencia , Sarcoglicanos/metabolismo , Ratones , Trombospondinas/genética , Trombospondinas/metabolismo , Trombospondinas/deficiencia , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Eliminación de Gen , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología
2.
Dis Model Mech ; 17(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38770680

RESUMEN

Absence of dystrophin results in muscular weakness, chronic inflammation and cardiomyopathy in Duchenne muscular dystrophy (DMD). Pharmacological corticosteroids are the DMD standard of care; however, they have harsh side effects and unclear molecular benefits. It is uncertain whether signaling by physiological corticosteroids and their receptors plays a modifying role in the natural etiology of DMD. Here, we knocked out the glucocorticoid receptor (GR, encoded by Nr3c1) specifically in myofibers and cardiomyocytes within wild-type and mdx52 mice to dissect its role in muscular dystrophy. Double-knockout mice showed significantly worse phenotypes than mdx52 littermate controls in measures of grip strength, hang time, inflammatory pathology and gene expression. In the heart, GR deletion acted additively with dystrophin loss to exacerbate cardiomyopathy, resulting in enlarged hearts, pathological gene expression and systolic dysfunction, consistent with imbalanced mineralocorticoid signaling. The results show that physiological GR functions provide a protective role during muscular dystrophy, directly contrasting its degenerative role in other disease states. These data provide new insights into corticosteroids in disease pathophysiology and establish a new model to investigate cell-autonomous roles of nuclear receptors and mechanisms of pharmacological corticosteroids.


Asunto(s)
Cardiomiopatías , Distrofia Muscular de Duchenne , Receptores de Glucocorticoides , Animales , Ratones , Cardiomiopatías/patología , Cardiomiopatías/metabolismo , Distrofina/metabolismo , Distrofina/genética , Distrofina/deficiencia , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/metabolismo , Miocardio/patología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Fenotipo , Receptores de Glucocorticoides/metabolismo
3.
J Genet Genomics ; 51(10): 1066-1078, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38777118

RESUMEN

LAMA2-related congenital muscular dystrophy (LAMA2-CMD), characterized by laminin-α2 deficiency, is debilitating and ultimately fatal. To date, no effective therapy has been clinically available. Laminin-α1, which shares significant similarities with laminin-α2, has been proven as a viable compensatory modifier. To evaluate its clinical applicability, we establish a Lama2 exon-3-deletion mouse model (dyH/dyH). The dyH/dyH mice exhibit early lethality and typical LAMA2-CMD phenotypes, allowing the evaluation of various endpoints. In dyH/dyH mice treated with synergistic activation mediator-based CRISPRa-mediated Lama1 upregulation, a nearly doubled median survival is observed, as well as improvements in weight and grip. Significant therapeutical effects are revealed by MRI, serum biochemical indices, and muscle pathology studies. Treating LAMA2-CMD with LAMA1 upregulation is feasible, and early intervention can alleviate symptoms and extend lifespan. Additionally, we reveal the limitations of LAMA1 upregulation, including high-dose mortality and non-sustained expression, which require further optimization in future studies.


Asunto(s)
Modelos Animales de Enfermedad , Laminina , Longevidad , Distrofias Musculares , Regulación hacia Arriba , Animales , Laminina/genética , Laminina/metabolismo , Ratones , Regulación hacia Arriba/genética , Distrofias Musculares/genética , Distrofias Musculares/patología , Distrofias Musculares/metabolismo , Longevidad/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Fenotipo
4.
J Am Anim Hosp Assoc ; 58(6): 292-296, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36315862

RESUMEN

A 6 mo old and a 7 mo old male intact Brittany were presented for progressive exercise intolerance, failure to grow, and dysphagia. Creatine kinase activity was markedly and persistently elevated in both dogs. Based on the neurological examination, clinical signs localized to the neuromuscular system. Electromyography revealed complex repetitive discharges in multiple muscle groups. Immunofluorescence of biopsies confirmed dystrophin-deficient muscular dystrophy. This is the first report describing dystrophin-deficient muscular dystrophy in the Brittany breed. Currently, no specific therapies are available for this form of myopathy. The presence of dystrophin deficiency in the two dogs suggests an inherited myopathy rather than a spontaneous mutation. The location of the dogs in the United States and Japan suggests a wide distribution of this dystrophy and should alert clinicians to the existence of this myopathy in the Brittany breed. A mutation in the DMD gene has not yet been identified.


Asunto(s)
Enfermedades de los Perros , Distrofias Musculares , Distrofia Muscular Animal , Masculino , Perros , Animales , Distrofina/genética , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/diagnóstico , Distrofia Muscular Animal/patología , Músculo Esquelético , Enfermedades de los Perros/diagnóstico , Distrofias Musculares/patología
5.
JCI Insight ; 7(13)2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35639486

RESUMEN

LAMA2 deficiency, resulting from a defective or absent laminin α2 subunit, is a common cause of congenital muscular dystrophy. It is characterized by muscle weakness from myofiber degeneration and neuropathy from Schwann cell amyelination. Previously it was shown that transgenic muscle-specific expression of αLNNd, a laminin γ1-binding linker protein that enables polymerization in defective laminins, selectively ameliorates the muscle abnormality in mouse disease models. Here, adeno-associated virus was used to deliver linker mini-genes to dystrophic dy2J/dy2J mice for expression of αLNNd in muscle, or αLNNdΔG2', a shortened linker, in muscle, nerve, and other tissues. Linker and laminin α2 levels were higher in αLNNdΔG2'-treated mice. Both αLNNd- and αLNNdΔG2'-treated mice exhibited increased forelimb grip strength. Further, αLNNdΔG2'-treated mice achieved hind limb and all-limb grip strength levels approaching those of WT mice as well as ablation of hind limb paresis and contractures. This was accompanied by restoration of sciatic nerve axonal envelopment and myelination. Improvement of muscle histology was evident in the muscle-specific αLNNd-expressing mice but more extensive in the αLNNdΔG2'-expressing mice. The results reveal that an αLN linker mini-gene, driven by a ubiquitous promoter, is superior to muscle-specific delivery because of its higher expression that extends to the peripheral nerve. These studies support a potentially novel approach of somatic gene therapy.


Asunto(s)
Distrofias Musculares , Distrofia Muscular Animal , Animales , Laminina/genética , Laminina/metabolismo , Ratones , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Nervios Periféricos/metabolismo
6.
Genes (Basel) ; 12(11)2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34828429

RESUMEN

A 4-month-old, male Italian Greyhound with clinical signs of a neuromuscular disease was investigated. The affected dog presented with an abnormal short-strided gait, generalized muscle atrophy, and poor growth since 2-months of age. Serum biochemistry revealed a marked elevation in creatine kinase activity. Electrodiagnostic testing supported a myopathy. Histopathology of muscle biopsies confirmed a dystrophic phenotype with excessive variability in myofiber size, degenerating fibers, and endomysial fibrosis. A heritable form of congenital muscular dystrophy (CMD) was suspected, and a genetic analysis initiated. We sequenced the genome of the affected dog and compared the data to that of 795 control genomes. This search revealed a private homozygous nonsense variant in LAMA2, XM_022419950.1:c.3285G>A, predicted to truncate 65% of the open reading frame of the wild type laminin α2 protein, XP_022275658.1:p.(Trp1095*). Immunofluorescent staining performed on muscle cryosections from the affected dog confirmed the complete absence of laminin α2 in skeletal muscle. LAMA2 loss of function variants were shown to cause severe laminin α2-related CMD in humans, mouse models, and in one previously described dog. Our data together with current knowledge on other species suggest the LAMA2 nonsense variant as cause for the CMD phenotype in the investigated dog.


Asunto(s)
Enfermedades de los Perros/genética , Laminina/genética , Distrofia Muscular Animal/genética , Animales , Codón sin Sentido , Enfermedades de los Perros/patología , Perros , Homocigoto , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/patología
7.
FASEB J ; 35(12): e22034, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34780665

RESUMEN

Mutation to the gene encoding dystrophin can cause Duchenne muscular dystrophy (DMD) and increase the sensitivity to stress in vertebrate species, including the mdx mouse model of DMD. Behavioral stressors can exacerbate some dystrophinopathy phenotypes of mdx skeletal muscle and cause hypotension-induced death. However, we have discovered that a subpopulation of mdx mice present with a wildtype-like response to mild (forced downhill treadmill exercise) and moderate (scruff restraint) behavioral stressors. These "stress-resistant" mdx mice are more physically active, capable of super-activating the hypothalamic-pituitary-adrenal and renin-angiotensin-aldosterone pathways following behavioral stress and they express greater levels of mineralocorticoid and glucocorticoid receptors in striated muscle relative to "stress-sensitive" mdx mice. Stress-resistant mdx mice also presented with a less severe striated muscle histopathology and greater exercise and skeletal muscle oxidative capacity at rest. Most interestingly, female mdx mice were more physically active following behavioral stressors compared to male mdx mice; a response abolished after ovariectomy and rescued with estradiol. We demonstrate that the response to behavioral stress greatly impacts disease severity in mdx mice suggesting the management of stress in patients with DMD be considered as a therapeutic approach to ameliorate disease progression.


Asunto(s)
Conducta Animal , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/patología , Condicionamiento Físico Animal , Estrés Psicológico/complicaciones , Animales , Modelos Animales de Enfermedad , Distrofina/deficiencia , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Distrofia Muscular Animal/etiología , Distrofia Muscular Animal/psicología , Distrofia Muscular de Duchenne/etiología , Distrofia Muscular de Duchenne/psicología , Factores Sexuales
8.
Exp Cell Res ; 406(2): 112766, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34364881

RESUMEN

Duchene muscular dystrophy leads to progressive muscle structural and functional decline due to chronic degenerative-regenerative cycles. Enhancing the regenerative capacity of dystrophic muscle provides potential therapeutic options. We previously demonstrated that the circadian clock repressor Rev-erbα inhibited myogenesis and Rev-erbα ablation enhanced muscle regeneration. Here we show that Rev-erbα deficiency in the dystrophin-deficient mdx mice promotes regenerative myogenic response to ameliorate muscle damage. Loss of Rev-erbα in mdx mice improved dystrophic pathology and muscle wasting. Rev-erbα-deficient dystrophic muscle exhibit augmented myogenic response, enhanced neo-myofiber formation and attenuated inflammatory response. In mdx myoblasts devoid of Rev-erbα, myogenic differentiation was augmented together with up-regulation of Wnt signaling and proliferative pathways, suggesting that loss of Rev-erbα inhibition of these processes contributed to the improvement in regenerative myogenesis. Collectively, our findings revealed that the loss of Rev-erbα function protects dystrophic muscle from injury by promoting myogenic repair, and inhibition of its activity may have therapeutic utilities for muscular dystrophy.


Asunto(s)
Diferenciación Celular , Músculo Esquelético/citología , Distrofia Muscular Animal/prevención & control , Distrofia Muscular de Duchenne/prevención & control , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Regeneración , Animales , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/etiología , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/etiología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Vía de Señalización Wnt
9.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34298968

RESUMEN

Mitochondrial dysfunction is considered the major contributor to skeletal muscle wasting in different conditions. Genetically determined neuromuscular disorders occur as a result of mutations in the structural proteins of striated muscle cells and therefore are often combined with cardiac phenotype, which most often manifests as a cardiomyopathy. The specific roles played by mitochondria and mitochondrial energetic metabolism in skeletal muscle under muscle-wasting conditions in cardiomyopathies have not yet been investigated in detail, and this aspect of genetic muscle diseases remains poorly characterized. This review will highlight dysregulation of mitochondrial representation and bioenergetics in specific skeletal muscle disorders caused by mutations that disrupt the structural and functional integrity of muscle cells.


Asunto(s)
Cardiomiopatías/genética , Corazón/fisiopatología , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Neuromusculares/genética , Animales , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Modelos Animales de Enfermedad , Metabolismo Energético , Humanos , Ratones , Mitocondrias Cardíacas/metabolismo , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Proteínas Musculares/fisiología , Músculo Esquelético/ultraestructura , Atrofia Muscular/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Enfermedades Neuromusculares/metabolismo , Enfermedades Neuromusculares/patología , Fenotipo
10.
Sci Rep ; 11(1): 13197, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162956

RESUMEN

A combinatorial code of identity transcription factors (iTFs) specifies the diversity of muscle types in Drosophila. We previously showed that two iTFs, Lms and Ap, play critical role in the identity of a subset of larval body wall muscles, the lateral transverse (LT) muscles. Intriguingly, a small portion of ap and lms mutants displays an increased number of LT muscles, a phenotype that recalls pathological split muscle fibers in human. However, genes acting downstream of Ap and Lms to prevent these aberrant muscle feature are not known. Here, we applied a cell type specific translational profiling (TRAP) to identify gene expression signatures underlying identity of muscle subsets including the LT muscles. We found that Gelsolin (Gel) and dCryAB, both encoding actin-interacting proteins, displayed LT muscle prevailing expression positively regulated by, the LT iTFs. Loss of dCryAB function resulted in LTs with irregular shape and occasional branched ends also observed in ap and lms mutant contexts. In contrast, enlarged and then split LTs with a greater number of myonuclei formed in Gel mutants while Gel gain of function resulted in unfused myoblasts, collectively indicating that Gel regulates LTs size and prevents splitting by limiting myoblast fusion. Thus, dCryAB and Gel act downstream of Lms and Ap and contribute to preventing LT muscle branching and splitting. Our findings offer first clues to still unknown mechanisms of pathological muscle splitting commonly detected in human dystrophic muscles and causing muscle weakness.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Gelsolina/fisiología , Regulación de la Expresión Génica , Genes de Insecto , Músculos/ultraestructura , Distrofia Muscular Animal/genética , Cadena B de alfa-Cristalina/fisiología , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Fusión Celular , Forma de la Célula , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Gelsolina/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Larva , Mutación con Pérdida de Función , Familia de Multigenes , Células Musculares/metabolismo , Músculos/metabolismo , Distrofia Muscular Animal/patología , Mioblastos/metabolismo , Mioblastos/ultraestructura , ARN Mensajero/metabolismo , Factores de Transcripción/fisiología , Transcripción Genética , Cadena B de alfa-Cristalina/genética
11.
FASEB J ; 35(6): e21628, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33982338

RESUMEN

Duchenne muscular dystrophy (DMD) is a lethal genetic muscle disorder caused by recessive mutations in dystrophin gene, affecting 1/3000 males. Gene therapy has been proven to ameliorate dystrophic pathology. To investigate therapeutic benefits from long-term effect of human mini-dystrophin and functional outcomes, transgenic mdx mice (Tg-mdx) containing a single copy of human mini-dystrophin (∆hDys3849) gene, five rods (Rods1-2, Rods22-24), and two hinges (H1 and H4) driven by a truncated creatine-kinase promoter (dMCK) in a recombinant adeno-associated viral vector (rAAV) backbone, were generated and used to determine gene expression and improvement of muscle function. Human mini-dystrophin gene expression was found in a majority of the skeletal muscles, but no expression in cardiac muscle. Dystrophin-associated glycoproteins (DAGs) such as sarcoglycans and nNOS were restored at the sarcolemma and coincided with human mini-dystrophin gene expression at the ages of 6, 10, and 20 months; Morphology of dystrophic muscle expressing the human mini-dystrophin gene was improved and central nuclei were reduced. Myofiber membrane integrity was improved by Evans blue dye test. Improvement in treadmill running and grip force was observed in transgenic mice at 6 months. Tetanic force and specific force of tibialis anterior (TA) muscle were significantly increased at the ages of 6, 10, and 20 months. Pseudohypertrophy was not found in TA muscle at 10 and 20 months when compared with wild-type C57 (WT) group. This study demonstrated that the long-term effects of human mini-dystrophin effectively ameliorated pathology and improved the functions of the dystrophic muscles in the transgenic DMD mouse model.


Asunto(s)
Distrofina/metabolismo , Terapia Genética , Músculo Esquelético/fisiología , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Animales , Distrofina/genética , Humanos , Ratones , Ratones Endogámicos mdx , Ratones Transgénicos , Músculo Esquelético/citología , Distrofia Muscular Animal/etiología , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/etiología , Distrofia Muscular de Duchenne/patología
12.
Am J Physiol Cell Physiol ; 321(1): C94-C103, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33979211

RESUMEN

Cellular senescence is the irreversible arrest of normally dividing cells and is driven by cell cycle inhibitory proteins such as p16, p21, and p53. When cells enter senescence, they secrete a host of proinflammatory factors known as the senescence-associated secretory phenotype, which has deleterious effects on surrounding cells and tissues. Little is known of the role of senescence in Duchenne muscular dystrophy (DMD), the fatal X-linked neuromuscular disorder typified by chronic inflammation, extracellular matrix remodeling, and a progressive loss in muscle mass and function. Here, we demonstrate using C57-mdx (8-wk-old) and D2-mdx (4-wk-old and 8-wk-old) mice, two mouse models of DMD, that cells displaying canonical markers of senescence are found within the skeletal muscle. Eight-week-old D2-mdx mice, which display severe muscle pathology, had greater numbers of senescent cells associated with areas of inflammation, which were mostly Cdkn1a-positive macrophages, whereas in C57-mdx muscle, senescent populations were endothelial cells and macrophages localized to newly regenerated myofibers. Interestingly, this pattern was similar to cardiotoxin (CTX)-injured wild-type (WT) muscle, which experienced a transient senescent response. Dystrophic muscle demonstrated significant upregulations in senescence pathway genes [Cdkn1a (p21), Cdkn2a (p16INK4A), and Trp53 (p53)], which correlated with the quantity of senescence-associated ß-galactosidase (SA-ß-Gal)-positive cells. These results highlight an underexplored role for cellular senescence in murine dystrophic muscle.


Asunto(s)
Senescencia Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Células Endoteliales/metabolismo , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Distrofina/deficiencia , Distrofina/genética , Células Endoteliales/patología , Regulación de la Expresión Génica , Humanos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/patología , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Miofibrillas/metabolismo , Miofibrillas/patología , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
13.
Nat Commun ; 12(1): 2951, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34012031

RESUMEN

The muscular dystrophies encompass a broad range of pathologies with varied clinical outcomes. In the case of patients carrying defects in fukutin-related protein (FKRP), these diverse pathologies arise from mutations within the same gene. This is surprising as FKRP is a glycosyltransferase, whose only identified function is to transfer ribitol-5-phosphate to α-dystroglycan (α-DG). Although this modification is critical for extracellular matrix attachment, α-DG's glycosylation status relates poorly to disease severity, suggesting the existence of unidentified FKRP targets. Here we reveal that FKRP directs sialylation of fibronectin, a process essential for collagen recruitment to the muscle basement membrane. Thus, our results reveal that FKRP simultaneously regulates the two major muscle-ECM linkages essential for fibre survival, and establishes a new disease axis for the muscular dystrophies.


Asunto(s)
Fibronectinas/metabolismo , Glicosiltransferasas/metabolismo , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Pentosiltransferasa/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Membrana Basal/metabolismo , Membrana Basal/patología , Línea Celular , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Glicosilación , Glicosiltransferasas/deficiencia , Glicosiltransferasas/genética , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/genética , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Distrofia Muscular Animal/genética , Mutación , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Pentosiltransferasa/deficiencia , Pentosiltransferasa/genética , Fenotipo , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
14.
J Neuromuscul Dis ; 8(4): 513-524, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33843691

RESUMEN

BACKGROUND: The mdx-C57/B6 mouse model does not show the clinical signs of Duchenne muscular dystrophy (DMD), although muscles exhibit hallmarks of permanent regeneration and alterations in muscle function. The DMDmdx4Cv strain exhibits very few revertant dystrophin positive myofibers, making that model suitable for studies on gene and cell therapies. OBJECTIVE: The study appraises the histological evolution of the Tibialis Anterior muscle of WT and DMD mdx4Cv mutant from 1 to 24 months. METHODS: Histological analysis included a series of immunostainings of muscle sections for assessing tissue features (fibrosis, lipid deposition, necrosis) and cellular characteristics (size of myofibers, number and distribution of myonuclei, number of satellite cells, vessels, macrophages). RESULTS: None of the investigated cell types (satellite cells, endothelial cells, macrophages) showed variations in their density within the tissue in both WT and DMD mdx4Cv muscle. However, analyzing their number per myofiber showed that in DMD mdx4Cv, myofiber capillarization was increased from 1 to 6 months as compared with WT muscle, then dropped from 12 months. Macrophage number did not vary in WT muscle and peaked at 6 months in DMD mdx4Cv muscle. The number of satellite cells per myofiber did not vary in WT muscle while it remained high in DMD mdx4Cv muscle, starting to decrease from 12 months and being significantly lower at 24 months of age. Myofiber size was not different in DMD mdx4Cv from WT except at 24 months, when it strongly decreased in DMD mdx4Cv muscle. Necrosis and lipid deposition were rare in DMD mdx4Cv muscle. Fibrosis did not increase with age in DMD mdx4Cv muscle and was higher than in WT at 6 and 12 months of age. CONCLUSIONS: As a whole, the results show a strong decrease of the myofiber size at 24 months, and an increased capillarization until 6 months of age in DMD mdx4Cv as compared with the WT. Thus, DMD mdx4Cv mice poorly recapitulates histological DMD features, and its use should take into account the age of the animals according to the purpose of the investigation.


Asunto(s)
Músculo Esquelético/patología , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/patología , Animales , Modelos Animales de Enfermedad , Células Endoteliales/patología , Fibrosis/patología , Ratones , Ratones Endogámicos mdx
15.
Nat Commun ; 12(1): 2099, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33833239

RESUMEN

In Duchenne muscular dystrophy (DMD), sarcolemma fragility and myofiber necrosis produce cellular debris that attract inflammatory cells. Macrophages and T-lymphocytes infiltrate muscles in response to damage-associated molecular pattern signalling and the release of TNF-α, TGF-ß and interleukins prevent skeletal muscle improvement from the inflammation. This immunological scenario was extended by the discovery of a specific response to muscle antigens and a role for regulatory T cells (Tregs) in muscle regeneration. Normally, autoimmunity is avoided by autoreactive T-lymphocyte deletion within thymus, while in the periphery Tregs monitor effector T-cells escaping from central regulatory control. Here, we report impairment of thymus architecture of mdx mice together with decreased expression of ghrelin, autophagy dysfunction and AIRE down-regulation. Transplantation of dystrophic thymus in recipient nude mice determine the up-regulation of inflammatory/fibrotic markers, marked metabolic breakdown that leads to muscle atrophy and loss of force. These results indicate that involution of dystrophic thymus exacerbates muscular dystrophy by altering central immune tolerance.


Asunto(s)
Tolerancia Inmunológica/inmunología , Músculo Esquelético/patología , Atrofia Muscular/patología , Distrofia Muscular Animal/patología , Timo/patología , Animales , Autofagia/fisiología , Ghrelina/biosíntesis , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Desnudos , Distrofia Muscular de Duchenne/patología , Linfocitos T/trasplante , Linfocitos T Reguladores/inmunología , Timo/trasplante , Factores de Transcripción/biosíntesis , Proteína AIRE
16.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33627403

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Distrofina/genética , Sulfuro de Hidrógeno/farmacología , Mitocondrias Musculares/efectos de los fármacos , Morfolinas/farmacología , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular Animal/tratamiento farmacológico , Compuestos Organofosforados/farmacología , Compuestos Organotiofosforados/farmacología , Tionas/farmacología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Distrofina/deficiencia , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Humanos , Sulfuro de Hidrógeno/metabolismo , Locomoción/efectos de los fármacos , Locomoción/genética , Masculino , Ratones , Ratones Endogámicos mdx , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Morfolinas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Compuestos Organofosforados/metabolismo , Compuestos Organotiofosforados/metabolismo , Prednisona/farmacología , Sirtuinas/genética , Sirtuinas/metabolismo , Tionas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Utrofina/deficiencia , Utrofina/genética
17.
Am J Pathol ; 191(4): 730-747, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33497702

RESUMEN

Duchenne muscular dystrophy (DMD) is a genetic, degenerative, striated muscle disease exacerbated by chronic inflammation. Mdx mice in the genotypic DMD model poorly represent immune-mediated pathology observed in patients. Improved understanding of innate immunity in dystrophic muscles is required to develop specific anti-inflammatory treatments. Here, inflammation in mdx mice and the more fibrotic utrn+/-;mdx Het model was comprehensively investigated. Unbiased analysis showed that mdx and Het mice contain increased levels of numerous chemokines and cytokines, with further increased in Het mice. Chemokine and chemokine receptor gene expression levels were dramatically increased in 4-week-old dystrophic quadriceps muscles, and to a lesser extent in diaphragm during the early injury phase, and had a small but consistent increase at 8 and 20 weeks. An optimized direct immune cell isolation method prevented loss of up to 90% of macrophages with density-dependent centrifugation previously used for mdx flow cytometry. Het quadriceps contain higher proportions of neutrophils and infiltrating monocytes than mdx, and higher percentages of F4/80Hi, but lower percentages of F4/80Lo cells and patrolling monocytes compared with Het diaphragms. These differences may restrict regenerative potential of dystrophic diaphragms, increasing pathologic severity. Fibrotic and inflammatory gene expression levels are higher in myeloid cells isolated from Het compared with mdx quadriceps, supporting Het mice may represent an improved model for testing therapeutic manipulation of inflammation in DMD.


Asunto(s)
Distrofina/metabolismo , Inflamación/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/patología , Animales , Inflamación/patología , Macrófagos/metabolismo , Ratones Transgénicos , Monocitos/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Músculos Respiratorios/metabolismo , Músculos Respiratorios/patología
18.
Mol Ther ; 29(4): 1459-1470, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33333294

RESUMEN

Duchenne muscular dystrophy (DMD) is a devastating genetic disorder that leads to compromised cellular membranes, caused by the absence of membrane-bound dystrophin protein. Muscle membrane leakage results in disrupted intracellular homeostasis, protein degradation, and muscle wasting. Improving muscle membrane integrity may delay disease progression and extend the lifespan of DMD patients. Here, we demonstrate that exosomes, membranous extracellular vesicles, can elicit functional improvements in dystrophic mice by improving muscle membrane integrity. Systemic administration of exosomes from different sources induced phenotypic rescue and mitigated pathological progression in dystrophic mice without detectable toxicity. Improved membrane integrity conferred by exosomes inhibited intracellular calcium influx and calcium-dependent activation of calpain proteases, preventing the degradation of the destabilized dystrophin-associated protein complex. We show that exosomes, particularly myotube-derived exosomes, induced functional improvements and alleviated muscle deterioration by stabilizing damaged muscle membrane in dystrophic mice. Our findings suggest that exosomes may have therapeutic implications for DMD and other diseases with compromised membranes.


Asunto(s)
Calpaína/genética , Membrana Celular/genética , Distrofina/genética , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , Animales , Calcio/metabolismo , Membrana Celular/patología , Modelos Animales de Enfermedad , Exosomas/genética , Exosomas/metabolismo , Humanos , Ratones , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/patología , Péptido Hidrolasas/genética
19.
Mol Ther ; 29(3): 1086-1101, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33221436

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe genetic disorder caused by mutations in the DMD gene. Absence of dystrophin protein leads to progressive degradation of skeletal and cardiac function and leads to premature death. Over the years, zebrafish have been increasingly used for studying DMD and are a powerful tool for drug discovery and therapeutic development. In our study, a birefringence screening assay led to identification of phosphodiesterase 10A (PDE10A) inhibitors that reduced the manifestation of dystrophic muscle phenotype in dystrophin-deficient sapje-like zebrafish larvae. PDE10A has been validated as a therapeutic target by pde10a morpholino-mediated reduction in muscle pathology and improvement in locomotion, muscle, and vascular function as well as long-term survival in sapje-like larvae. PDE10A inhibition in zebrafish and DMD patient-derived myoblasts were also associated with reduction of PITPNA expression that has been previously identified as a protective genetic modifier in two exceptional dystrophin-deficient golden retriever muscular dystrophy (GRMD) dogs that escaped the dystrophic phenotype. The combination of a phenotypic assay and relevant functional assessments in the sapje-like zebrafish enhances the potential for the prospective discovery of DMD therapeutics. Indeed, our results suggest a new application for a PDE10A inhibitor as a potential DMD therapeutic to be investigated in a mouse model of DMD.


Asunto(s)
Distrofina/metabolismo , Distrofia Muscular Animal/prevención & control , Distrofia Muscular de Duchenne/prevención & control , Mioblastos/efectos de los fármacos , Proteínas de Transferencia de Fosfolípidos/antagonistas & inhibidores , Hidrolasas Diéster Fosfóricas/química , Pirazoles/farmacología , Quinolinas/farmacología , Animales , Perros , Distrofina/genética , Humanos , Larva/efectos de los fármacos , Larva/genética , Larva/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Mioblastos/metabolismo , Mioblastos/patología , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Pez Cebra
20.
Mol Ther ; 29(3): 1070-1085, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33160075

RESUMEN

Gene editing is often touted as a permanent method for correcting mutations, but its long-term benefits in Duchenne muscular dystrophy (DMD) may depend on sufficiently high editing efficiencies to halt muscle degeneration. Here, we explored the persistence of dystrophin expression following recombinant adeno-associated virus serotype 6 (rAAV6):CRISPR-Cas9-mediated multi-exon deletion/reframing in systemically injected 2- and 11-week-old dystrophic mice and show that induction of low dystrophin levels persists for several months in cardiomyocytes but not in skeletal muscles, where myofibers remain susceptible to necrosis and regeneration. Whereas gene-correction efficiency in both muscle types was enhanced with increased ratios of guide RNA (gRNA)-to-nuclease vectors, obtaining high dystrophin levels in skeletal muscles via multi-exon deletion remained challenging. In contrast, when AAV-microdystrophin was codelivered with editing components, long-term gene-edited dystrophins persisted in both muscle types. These results suggest that the high rate of necrosis and regeneration in skeletal muscles, compared with the relative stability of dystrophic cardiomyocytes, caused the rapid loss of edited genomes. Consequently, stable dystrophin expression in DMD skeletal muscles will require either highly efficient gene editing or the use of cotreatments that decrease skeletal muscle degeneration.


Asunto(s)
Distrofina/genética , Edición Génica , Vectores Genéticos/administración & dosificación , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/prevención & control , Distrofia Muscular de Duchenne/prevención & control , Miocardio/metabolismo , Animales , Sistemas CRISPR-Cas , Dependovirus/genética , Modelos Animales de Enfermedad , Distrofina/metabolismo , Terapia Genética/métodos , Vectores Genéticos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Mutación , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , ARN Guía de Kinetoplastida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...