Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000102

RESUMEN

Aberrant expression of the double homeobox 4 (DUX4) gene in skeletal muscle predominantly drives the pathogenesis of facioscapulohumeral muscular dystrophy (FSHD). We recently demonstrated that berberine, an herbal extract known for its ability to stabilize guanine-quadruplex structures, effectively downregulates DUX4 expression in FSHD patient-derived myoblasts and in mice overexpressing exogenous DUX4 after viral vector-based treatment. Here, we sought to confirm berberine's inhibitory efficacy on DUX4 in the widely used FSHD-like transgenic mouse model, ACTA1-MCM/FLExDUX4, where DUX4 is induced at pathogenic levels using tamoxifen. Animals repeatedly treated with berberine via intraperitoneal injections for 4 weeks exhibited significant reductions in both mRNA and protein levels of DUX4, and in mRNA expression of murine DUX4-related genes. This inhibition translated into improved forelimb muscle strength and positive alterations in important FSHD-relevant cellular pathways, although its impact on muscle mass and histopathology was less pronounced. Collectively, our data confirm the efficacy of berberine in downregulating DUX4 expression in the most relevant FSHD mouse model. However, further optimization of dosing regimens and new studies to enhance the bioavailability of berberine in skeletal muscle are warranted to fully leverage its therapeutic potential for FSHD treatment.


Asunto(s)
Berberina , Modelos Animales de Enfermedad , Proteínas de Homeodominio , Ratones Transgénicos , Músculo Esquelético , Distrofia Muscular Facioescapulohumeral , Animales , Distrofia Muscular Facioescapulohumeral/tratamiento farmacológico , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Berberina/farmacología , Actinas/metabolismo , Actinas/genética , Humanos
2.
Sci Rep ; 14(1): 15462, 2024 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965267

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) affects roughly 1 in 7500 individuals. While at the population level there is a general pattern of affected muscles, there is substantial heterogeneity in muscle expression across- and within-patients. There can also be substantial variation in the pattern of fat and water signal intensity within a single muscle. While quantifying individual muscles across their full length using magnetic resonance imaging (MRI) represents the optimal approach to follow disease progression and evaluate therapeutic response, the ability to automate this process has been limited. The goal of this work was to develop and optimize an artificial intelligence-based image segmentation approach to comprehensively measure muscle volume, fat fraction, fat fraction distribution, and elevated short-tau inversion recovery signal in the musculature of patients with FSHD. Intra-rater, inter-rater, and scan-rescan analyses demonstrated that the developed methods are robust and precise. Representative cases and derived metrics of volume, cross-sectional area, and 3D pixel-maps demonstrate unique intramuscular patterns of disease. Future work focuses on leveraging these AI methods to include upper body output and aggregating individual muscle data across studies to determine best-fit models for characterizing progression and monitoring therapeutic modulation of MRI biomarkers.


Asunto(s)
Inteligencia Artificial , Progresión de la Enfermedad , Imagen por Resonancia Magnética , Distrofia Muscular Facioescapulohumeral , Humanos , Distrofia Muscular Facioescapulohumeral/diagnóstico por imagen , Distrofia Muscular Facioescapulohumeral/patología , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Procesamiento de Imagen Asistido por Computador/métodos
3.
Muscle Nerve ; 70(2): 248-256, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38873946

RESUMEN

INTRODUCTION/AIMS: Muscle diffusion tensor imaging has not yet been explored in facioscapulohumeral muscular dystrophy (FSHD). We assessed diffusivity parameters in FSHD subjects compared with healthy controls (HCs), with regard to their ability to precede any fat replacement or edema. METHODS: Fat fraction (FF), water T2 (wT2), mean, radial, axial diffusivity (MD, RD, AD), and fractional anisotropy (FA) of thigh muscles were calculated in 10 FSHD subjects and 15 HCs. All parameters were compared between FSHD and controls, also exploring their gradient along the main axis of the muscle. Diffusivity parameters were tested in a subgroup analysis as predictors of disease involvement in muscle compartments with different degrees of FF and wT2 and were also correlated with clinical severity scores. RESULTS: We found that MD, RD, and AD were significantly lower in FSHD subjects than in controls, whereas we failed to find a difference for FA. In contrast, we found a significant positive correlation between FF and FA and a negative correlation between MD, RD, and AD and FF. No correlation was found with wT2. In our subgroup analysis we found that muscle compartments with no significant fat replacement or edema (FF < 10% and wT2 < 41 ms) showed a reduced AD and FA compared with controls. Less involved compartments showed different diffusivity parameters than more involved compartments. DISCUSSION: Our exploratory study was able to demonstrate diffusivity parameter abnormalities even in muscles with no significant fat replacement or edema. Larger cohorts are needed to confirm these preliminary findings.


Asunto(s)
Imagen de Difusión Tensora , Músculo Esquelético , Distrofia Muscular Facioescapulohumeral , Humanos , Distrofia Muscular Facioescapulohumeral/diagnóstico por imagen , Distrofia Muscular Facioescapulohumeral/patología , Masculino , Imagen de Difusión Tensora/métodos , Femenino , Persona de Mediana Edad , Adulto , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Anciano , Anisotropía
4.
Genome Res ; 34(5): 665-679, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38777608

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is linked to abnormal derepression of the transcription activator DUX4. This effect is localized to a low percentage of cells, requiring single-cell analysis. However, single-cell/nucleus RNA-seq cannot fully capture the transcriptome of multinucleated large myotubes. To circumvent these issues, we use multiplexed error-robust fluorescent in situ hybridization (MERFISH) spatial transcriptomics that allows profiling of RNA transcripts at a subcellular resolution. We simultaneously examined spatial distributions of 140 genes, including 24 direct DUX4 targets, in in vitro differentiated myotubes and unfused mononuclear cells (MNCs) of control, isogenic D4Z4 contraction mutant and FSHD patient samples, as well as the individual nuclei within them. We find myocyte nuclei segregate into two clusters defined by the expression of DUX4 target genes, which is exclusively found in patient/mutant nuclei, whereas MNCs cluster based on developmental states. Patient/mutant myotubes are found in "FSHD-hi" and "FSHD-lo" states with the former signified by high DUX4 target expression and decreased muscle gene expression. Pseudotime analyses reveal a clear bifurcation of myoblast differentiation into control and FSHD-hi myotube branches, with variable numbers of DUX4 target-expressing nuclei found in multinucleated FSHD-hi myotubes. Gene coexpression modules related to extracellular matrix and stress gene ontologies are significantly altered in patient/mutant myotubes compared with the control. We also identify distinct subpathways within the DUX4 gene network that may differentially contribute to the disease transcriptomic phenotype. Taken together, our MERFISH-based study provides effective gene network profiling of multinucleated cells and identifies FSHD-induced transcriptomic alterations during myoblast differentiation.


Asunto(s)
Fibras Musculares Esqueléticas , Distrofia Muscular Facioescapulohumeral , Mioblastos , Análisis de la Célula Individual , Transcriptoma , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología , Distrofia Muscular Facioescapulohumeral/metabolismo , Humanos , Mioblastos/metabolismo , Análisis de la Célula Individual/métodos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Diferenciación Celular/genética , Hibridación Fluorescente in Situ , Perfilación de la Expresión Génica/métodos
5.
Sci Adv ; 10(22): eadn7732, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38809976

RESUMEN

Structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1) is a noncanonical SMC protein and an epigenetic regulator. Mutations in SMCHD1 cause facioscapulohumeral muscular dystrophy (FSHD), by overexpressing DUX4 in muscle cells. Here, we demonstrate that SMCHD1 is a key regulator of alternative splicing in various cell types. We show how SMCHD1 loss causes splicing alterations of DNMT3B, which can lead to hypomethylation and DUX4 overexpression. Analyzing RNA sequencing data from muscle biopsies of patients with FSHD and Smchd1 knocked out cells, we found mis-splicing of hundreds of genes upon SMCHD1 loss. We conducted a high-throughput screen of splicing factors, revealing the involvement of the splicing factor RBM5 in the mis-splicing of DNMT3B. Subsequent RNA immunoprecipitation experiments confirmed that SMCHD1 is required for RBM5 recruitment. Last, we show that mis-splicing of DNMT3B leads to hypomethylation of the D4Z4 region and to DUX4 overexpression. These results suggest that DNMT3B mis-splicing due to SMCHD1 loss plays a major role in FSHD pathogenesis.


Asunto(s)
Proteínas Cromosómicas no Histona , ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , ADN Metiltransferasa 3B , Proteínas de Homeodominio , Distrofia Muscular Facioescapulohumeral , Humanos , Empalme Alternativo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
6.
Commun Biol ; 7(1): 640, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796645

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common autosomal dominant muscle disorders, yet no cure or amelioration exists. The clinical presentation is diverse, making it difficult to identify the actual driving pathomechanism among many downstream events. To unravel this complexity, we performed a meta-analysis of 13 original omics datasets (in total 171 FSHD and 129 control samples). Our approach confirmed previous findings about the disease pathology and specified them further. We confirmed increased expression of former proposed DUX4 biomarkers, and furthermore impairment of the respiratory chain. Notably, the meta-analysis provides insights about so far not reported pathways, including misregulation of neuromuscular junction protein encoding genes, downregulation of the spliceosome, and extensive alterations of nuclear envelope protein expression. Finally, we developed a publicly available shiny app to provide a platform for researchers who want to search our analysis for genes of interest in the future.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Unión Neuromuscular , Membrana Nuclear , Empalmosomas , Humanos , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Membrana Nuclear/metabolismo , Membrana Nuclear/genética , Empalmosomas/metabolismo , Empalmosomas/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Regulación de la Expresión Génica
7.
Cell Transplant ; 33: 9636897241242624, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38600801

RESUMEN

Xenografts of human skeletal muscle generated in mice can be used to study muscle pathology and to test drugs designed to treat myopathies and muscular dystrophies for their efficacy and specificity in human tissue. We previously developed methods to generate mature human skeletal muscles in immunocompromised mice starting with human myogenic precursor cells (hMPCs) from healthy individuals and individuals with facioscapulohumeral muscular dystrophy (FSHD). Here, we examine a series of alternative treatments at each stage in order to optimize engraftment. We show that (i) X-irradiation at 25Gy is optimal in preventing regeneration of murine muscle while supporting robust engraftment and the formation of human fibers without significant murine contamination; (ii) hMPC lines differ in their capacity to engraft; (iii) some hMPC lines yield grafts that respond better to intermittent neuromuscular electrical stimulation (iNMES) than others; (iv) some lines engraft better in male than in female mice; (v) coinjection of hMPCs with laminin, gelatin, Matrigel, or Growdex does not improve engraftment; (vi) BaCl2 is an acceptable replacement for cardiotoxin, but other snake venom preparations and toxins, including the major component of cardiotoxin, cytotoxin 5, are not; and (vii) generating grafts in both hindlimbs followed by iNMES of each limb yields more robust grafts than housing mice in cages with running wheels. Our results suggest that replacing cardiotoxin with BaCl2 and engrafting both tibialis anterior muscles generates robust grafts of adult human muscle tissue in mice.


Asunto(s)
Cardiotoxinas , Distrofia Muscular Facioescapulohumeral , Adulto , Humanos , Masculino , Ratones , Femenino , Animales , Xenoinjertos , Trasplante Heterólogo , Músculo Esquelético/patología , Distrofia Muscular Facioescapulohumeral/patología
8.
Free Radic Biol Med ; 219: 112-126, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38574978

RESUMEN

The purpose of this study was to identify causes of quadriceps muscle weakness in facioscapulohumeral muscular dystrophy (FSHD). To this aim, we evaluated quadriceps muscle and fat volumes by magnetic resonance imaging and their relationships with muscle strength and oxidative stress markers in adult patients with FSHD (n = 32) and healthy controls (n = 7), and the effect of antioxidant supplementation in 20 of the 32 patients with FSHD (n = 10 supplementation and n = 10 placebo) (NCT01596803). Compared with healthy controls, the dominant quadriceps strength and quality (muscle strength per unit of muscle volume) were decreased in patients with FSHD. In addition, fat volume was increased, without changes in total muscle volume. Moreover, in patients with FSHD, the lower strength of the non-dominant quadriceps was associated with lower muscle quality compared with the dominant muscle. Antioxidant supplementation significantly changed muscle and fat volumes in the non-dominant quadriceps, and muscle quality in the dominant quadriceps. This was associated with improved muscle strength (both quadriceps) and antioxidant response. These findings suggest that quadriceps muscle strength decline may not be simply explained by atrophy and may be influenced also by the muscle intrinsic characteristics. As FSHD is associated with increased oxidative stress, supplementation might reduce oxidative stress and increase antioxidant defenses, promoting changes in muscle function.


Asunto(s)
Antioxidantes , Suplementos Dietéticos , Fuerza Muscular , Distrofia Muscular Facioescapulohumeral , Estrés Oxidativo , Músculo Cuádriceps , Humanos , Distrofia Muscular Facioescapulohumeral/tratamiento farmacológico , Distrofia Muscular Facioescapulohumeral/fisiopatología , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/dietoterapia , Distrofia Muscular Facioescapulohumeral/patología , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/administración & dosificación , Antioxidantes/metabolismo , Antioxidantes/uso terapéutico , Masculino , Femenino , Fuerza Muscular/efectos de los fármacos , Adulto , Persona de Mediana Edad , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/patología , Músculo Cuádriceps/fisiopatología , Músculo Cuádriceps/efectos de los fármacos , Imagen por Resonancia Magnética , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos
9.
Hum Mol Genet ; 33(10): 872-883, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38340007

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is a progressive myopathy caused by the aberrant increased expression of the DUX4 retrogene in skeletal muscle cells. The DUX4 gene encodes a transcription factor that functions in zygotic genome activation and then is silenced in most adult somatic tissues. DUX4 expression in FSHD disrupts normal muscle cell function; however, the downstream pathogenic mechanisms are still unclear. Histologically, FSHD affected muscles show a characteristic dystrophic phenotype that is often accompanied by a pronounced immune cell infiltration, but the role of the immune system in FSHD is not understood. Previously, we used ACTA1;FLExDUX4 FSHD-like mouse models varying in severity as discovery tools to identify increased Interleukin 6 and microRNA-206 levels as serum biomarkers for FSHD disease severity. In this study, we use the ACTA1;FLExDUX4 chronic FSHD-like mouse model to provide insight into the immune response to DUX4 expression in skeletal muscles. We demonstrate that these FSHD-like muscles are enriched with the chemoattractant eotaxin and the cytotoxic eosinophil peroxidase, and exhibit muscle eosinophilia. We further identified muscle fibers with positive staining for eosinophil peroxidase in human FSHD muscle. Our data supports that skeletal muscle eosinophilia is a hallmark of FSHD pathology.


Asunto(s)
Modelos Animales de Enfermedad , Eosinofilia , Proteínas de Homeodominio , Músculo Esquelético , Distrofia Muscular Facioescapulohumeral , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Animales , Ratones , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Humanos , Eosinofilia/genética , Eosinofilia/patología , Eosinofilia/inmunología , Quimiocina CCL11/genética , Quimiocina CCL11/metabolismo , Enfermedad Crónica , MicroARNs/genética , MicroARNs/metabolismo
10.
J Neuromuscul Dis ; 11(2): 327-347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250782

RESUMEN

Background: FSHD is a highly prevalent inherited myopathy with a still poorly understood pathology. Objective: To investigate whether proinflammatory cytokines are associated with FSHD and which specific innate immune cells are involved in its pathology. Methods: First, we measured circulating cytokines in serum samples: IL-6 (FSHD, n = 150; HC, n = 98); TNF (FSHD, n = 150; HC, n = 59); IL-1α (FSHD, n = 150; HC, n = 66); IL-1ß (FSHD, n = 150; HC, n = 98); MCP-1 (FSHD, n = 14; HC, n = 14); VEGF-A (FSHD, n = 14; HC, n = 14). Second, we tested trained immunity in monocytes (FSHD, n = 15; HC, n = 15) and NK cells (FSHD, n = 11; HC, n = 11). Next, we explored the cytokine production capacity of NK cells in response to different stimuli (FSHD, n = 39; HC, n = 22). Lastly, we evaluated the cytokine production of ex vivo stimulated MRI guided inflamed (TIRM+) and paired MRI guided non inflamed (TIRM-) muscle biopsies of 21 patients and of 8 HC muscle biopsies. Results: We included a total of 190 FSHD patients (N = 190, 48±14 years, 49% men) and of 135 HC (N = 135, 44±15 years, 47% men). We found that FSHD patients had higher concentrations of IL-6 and TNF measured (a) in the circulation, (b) after ex-vivo stimulation of NK cells, and (c) in muscle specimens. Besides, IL-6 circulating concentrations, as well as its production by NK cells and IL-6 content of FSHD muscle specimens, showed a mild correlation with disease duration, disease severity, and muscle weakness. Conclusion: These results show that IL-6 and TNF may contribute to FSHD pathology and suggest novel therapeutic targets. Additionally, the activation of NK cells in FSHD may be a novel pathway contributing to FSHD pathology.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Femenino , Humanos , Masculino , Biomarcadores , Biopsia , Interleucina-6 , Debilidad Muscular , Distrofia Muscular Facioescapulohumeral/patología
11.
Brain ; 147(2): 414-426, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703328

RESUMEN

Facioscapulohumeral dystrophy (FSHD) has a unique genetic aetiology resulting in partial chromatin relaxation of the D4Z4 macrosatellite repeat array on 4qter. This D4Z4 chromatin relaxation facilitates inappropriate expression of the transcription factor DUX4 in skeletal muscle. DUX4 is encoded by a retrogene that is embedded within the distal region of the D4Z4 repeat array. In the European population, the D4Z4 repeat array is usually organized in a single array that ranges between 8 and 100 units. D4Z4 chromatin relaxation and DUX4 derepression in FSHD is most often caused by repeat array contraction to 1-10 units (FSHD1) or by a digenic mechanism requiring pathogenic variants in a D4Z4 chromatin repressor like SMCHD1, combined with a repeat array between 8 and 20 units (FSHD2). With a prevalence of 1.5% in the European population, in cis duplications of the D4Z4 repeat array, where two adjacent D4Z4 arrays are interrupted by a spacer sequence, are relatively common but their relationship to FSHD is not well understood. In cis duplication alleles were shown to be pathogenic in FSHD2 patients; however, there is inconsistent evidence for the necessity of an SMCHD1 mutation for disease development. To explore the pathogenic nature of these alleles we compared in cis duplication alleles in FSHD patients with or without pathogenic SMCHD1 variant. For both groups we showed duplication-allele-specific DUX4 expression. We studied these alleles in detail using pulsed-field gel electrophoresis-based Southern blotting and molecular combing, emphasizing the challenges in the characterization of these rearrangements. Nanopore sequencing was instrumental to study the composition and methylation of the duplicated D4Z4 repeat arrays and to identify the breakpoints and the spacer sequence between the arrays. By comparing the composition of the D4Z4 repeat array of in cis duplication alleles in both groups, we found that specific combinations of proximal and distal repeat array sizes determine their pathogenicity. Supported by our algorithm to predict pathogenicity, diagnostic laboratories should now be furnished to accurately interpret these in cis D4Z4 repeat array duplications, alleles that can easily be missed in routine settings.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Alelos , Proteínas Cromosómicas no Histona/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Cromatina
12.
Hum Mol Genet ; 33(2): 182-197, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-37856562

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable myopathy. FSHD is highly heterogeneous, with patients following a variety of clinical trajectories, complicating clinical trials. Skeletal muscle in FSHD undergoes fibrosis and fatty replacement that can be accelerated by inflammation, adding to heterogeneity. Well controlled molecular studies are thus essential to both categorize FSHD patients into distinct subtypes and understand pathomechanisms. Here, we further analyzed RNA-sequencing data from 24 FSHD patients, each of whom donated a biopsy from both a non-inflamed (TIRM-) and inflamed (TIRM+) muscle, and 15 FSHD patients who donated peripheral blood mononucleated cells (PBMCs), alongside non-affected control individuals. Differential gene expression analysis identified suppression of mitochondrial biogenesis and up-regulation of fibroadipogenic progenitor (FAP) gene expression in FSHD muscle, which was particularly marked on inflamed samples. PBMCs demonstrated suppression of antigen presentation in FSHD. Gene expression deconvolution revealed FAP expansion as a consistent feature of FSHD muscle, via meta-analysis of 7 independent transcriptomic datasets. Clustering of muscle biopsies separated patients in an unbiased manner into clinically mild and severe subtypes, independently of known disease modifiers (age, sex, D4Z4 repeat length). Lastly, the first genome-wide analysis of alternative splicing in FSHD muscle revealed perturbation of autophagy, BMP2 and HMGB1 signalling. Overall, our findings reveal molecular subtypes of FSHD with clinical relevance and identify novel pathomechanisms for this highly heterogeneous condition.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Empalme Alternativo/genética , Inflamación/patología , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Células Madre/metabolismo
13.
Acta Neuropathol Commun ; 11(1): 165, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37849014

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant epigenetic disorder with highly variable muscle involvement and disease progression. Ongoing clinical trials, aimed at counteracting muscle degeneration and disease progression in FSHD patients, increase the need for reliable biomarkers. Muscle magnetic resonance imaging (MRI) studies showed that the appearance of STIR-positive (STIR+) lesions in FSHD muscles represents an initial stage of muscle damage, preceding irreversible adipose changes. Our study aimed to investigate fibrosis, a parameter of muscle degeneration undetectable by MRI, in relation to disease activity and progression of FSHD muscles. We histologically evaluated collagen in FSHD1 patients' (STIR+ n = 27, STIR- n = 28) and healthy volunteers' (n = 12) muscles by picrosirius red staining. All patients (n = 55) performed muscle MRI before biopsy, 45 patients also after 1 year and 36 patients also after 2 years. Fat content (T1 signal) and oedema/inflammation (STIR signal) were evaluated at baseline and at 1- and 2-year MRI follow-up. STIR+ muscles showed significantly higher collagen compared to both STIR- (p = 0.001) and healthy muscles (p < 0.0001). STIR- muscles showed a higher collagen content compared to healthy muscles (p = 0.0194). FSHD muscles with a worsening in fatty infiltration during 1- (P = 0.007) and 2-year (P < 0.0001) MRI follow-up showed a collagen content of 3.6- and 3.7-fold higher compared to FSHD muscles with no sign of progression. Moreover, the fibrosis was significantly higher in STIR+ muscles who showed a worsening in fatty infiltration in a timeframe of 2 years compared to both STIR- (P = 0.0006) and STIR+ muscles with no sign of progression (P = 0.02). Fibrosis is a sign of muscle degeneration undetectable at MRI never deeply investigated in FSHD patients. Our data show that 23/27 of STIR+ and 12/28 STIR- muscles have a higher amount of collagen deposition compared to healthy muscles. Fibrosis is higher in FSHD muscles with a worsening in fatty infiltration thus suggesting that its evaluation with innovative non-invasive techniques could be a candidate prognostic biomarker for FSHD, to be used to stratify patients and to evaluate the efficacy of therapeutic treatments.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Distrofia Muscular Facioescapulohumeral/diagnóstico , Distrofia Muscular Facioescapulohumeral/patología , Músculo Esquelético/patología , Pronóstico , Estudios Retrospectivos , Biomarcadores , Imagen por Resonancia Magnética/métodos , Progresión de la Enfermedad , Colágeno
14.
Mol Cell Proteomics ; 22(8): 100605, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37353005

RESUMEN

Proteomic studies in facioscapulohumeral muscular dystrophy (FSHD) could offer new insight into disease mechanisms underpinned by post-transcriptional processes. We used stable isotope (deuterium oxide; D2O) labeling and peptide mass spectrometry to investigate the abundance and turnover rates of proteins in cultured muscle cells from two individuals affected by FSHD and their unaffected siblings (UASb). We measured the abundance of 4420 proteins and the turnover rate of 2324 proteins in each (n = 4) myoblast sample. FSHD myoblasts exhibited a greater abundance but slower turnover rate of subunits of mitochondrial respiratory complexes and mitochondrial ribosomal proteins, which may indicate an accumulation of "older" less viable mitochondrial proteins in myoblasts from individuals affected by FSHD. Treatment with a 2'-O-methoxyethyl modified antisense oligonucleotide targeting exon 3 of the double homeobox 4 (DUX4) transcript tended to reverse mitochondrial protein dysregulation in FSHD myoblasts, indicating the effect on mitochondrial proteins may be a DUX4-dependent mechanism. Our results highlight the importance of post-transcriptional processes and protein turnover in FSHD pathology and provide a resource for the FSHD research community to explore this burgeoning aspect of FSHD.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Proteoma/metabolismo , Proteómica , Proteínas de Homeodominio/metabolismo , Mioblastos/metabolismo , Músculo Esquelético/metabolismo
15.
J Neuromuscul Dis ; 10(3): 411-425, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36872787

RESUMEN

 Facioscapulohumeral muscular dystrophy (FSHD) is an exclusively human neuromuscular disease. In the last decades the cause of FSHD was identified: the loss of epigenetic repression of the D4Z4 repeat on chromosome 4q35 resulting in inappropriate transcription of DUX4. This is a consequence of a reduction of the array below 11 units (FSHD1) or of a mutation in methylating enzymes (FSHD2). Both require the presence of a 4qA allele and a specific centromeric SSLP haplotype. Muscles become involved in a rostro-caudally order with an extremely variable progression rate. Mild disease and non-penetrance in families with affected individuals is common. Furthermore, 2% of the Caucasian population carries the pathological haplotype without clinical features of FSHD.In order to explain the various features of FSHD we applied Ockham's Razor to all possible scenarios and removed unnecessary complexities. We postulate that early in embryogenesis a few cells escape epigenetic silencing of the D4Z4 repeat. Their number is assumed to be roughly inversely related to the residual D4Z4 repeat size. By asymmetric cell division, they produce a rostro-caudal and medio-lateral decreasing gradient of weakly D4Z4-repressed mesenchymal stem cells. The gradient tapers towards an end as each cell-division allows renewed epigenetic silencing. Over time, this spatial gradient translates into a temporal gradient based on a decreasing number of weakly silenced stem cells. These cells contribute to a mildly abnormal myofibrillar structure of the fetal muscles. They also form a downward tapering gradient of epigenetically weakly repressed satellite cells. When activated by mechanical trauma, these satellite cells de-differentiate and express DUX4. When fused to myofibrils they contribute to muscle cell death in various ways. Over time and dependent on how far the gradient reaches the FSHD phenotype becomes progressively manifest. We thus hypothesize FSHD to be a myodevelopmental disease with a lifelong attempt to restore DUX4 repression.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología , Epigénesis Genética , Mutación , Fenotipo
16.
Brain ; 146(4): 1388-1402, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36100962

RESUMEN

Genetic diagnosis of facioscapulohumeral muscular dystrophy (FSHD) remains a challenge in clinical practice as it cannot be detected by standard sequencing methods despite being the third most common muscular dystrophy. The conventional diagnostic strategy addresses the known genetic parameters of FSHD: the required presence of a permissive haplotype, a size reduction of the D4Z4 repeat of chromosome 4q35 (defining FSHD1) or a pathogenic variant in an epigenetic suppressor gene (consistent with FSHD2). Incomplete penetrance and epistatic effects of the underlying genetic parameters as well as epigenetic parameters (D4Z4 methylation) pose challenges to diagnostic accuracy and hinder prediction of clinical severity. In order to circumvent the known limitations of conventional diagnostics and to complement genetic parameters with epigenetic ones, we developed and validated a multistage diagnostic workflow that consists of a haplotype analysis and a high-throughput methylation profile analysis (FSHD-MPA). FSHD-MPA determines the average global methylation level of the D4Z4 repeat array as well as the regional methylation of the most distal repeat unit by combining bisulphite conversion with next-generation sequencing and a bioinformatics pipeline and uses these as diagnostic parameters. We applied the diagnostic workflow to a cohort of 148 patients and compared the epigenetic parameters based on FSHD-MPA to genetic parameters of conventional genetic testing. In addition, we studied the correlation of repeat length and methylation level within the most distal repeat unit with age-corrected clinical severity and age at disease onset in FSHD patients. The results of our study show that FSHD-MPA is a powerful tool to accurately determine the epigenetic parameters of FSHD, allowing discrimination between FSHD patients and healthy individuals, while simultaneously distinguishing FSHD1 and FSHD2. The strong correlation between methylation level and clinical severity indicates that the methylation level determined by FSHD-MPA accounts for differences in disease severity among individuals with similar genetic parameters. Thus, our findings further confirm that epigenetic parameters rather than genetic parameters represent FSHD disease status and may serve as a valuable biomarker for disease status.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Distrofia Muscular Facioescapulohumeral/diagnóstico , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología , Metilación de ADN/genética , Haplotipos , Cromosomas Humanos Par 4/genética
17.
Cell Death Dis ; 13(9): 793, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114172

RESUMEN

Muscle-resident non-myogenic mesenchymal cells play key roles that drive successful tissue regeneration within the skeletal muscle stem cell niche. These cells have recently emerged as remarkable therapeutic targets for neuromuscular disorders, although to date they have been poorly investigated in facioscapulohumeral muscular dystrophy (FSHD). In this study, we characterised the non-myogenic mesenchymal stromal cell population in FSHD patients' muscles with signs of disease activity, identified by muscle magnetic resonance imaging (MRI), and compared them with those obtained from apparently normal muscles of FSHD patients and from muscles of healthy, age-matched controls. Our results showed that patient-derived cells displayed a distinctive expression pattern of mesenchymal markers, along with an impaired capacity to differentiate towards mature adipocytes in vitro, compared with control cells. We also demonstrated a significant expansion of non-myogenic mesenchymal cells (identified as CD201- or PDGFRA-expressing cells) in FSHD muscles with signs of disease activity, which correlated with the extent of intramuscular fibrosis. In addition, the accumulation of non-myogenic mesenchymal cells was higher in FSHD muscles that deteriorate more rapidly. Our results prompt a direct association between an accumulation, as well as an altered differentiation, of non-myogenic mesenchymal cells with muscle degeneration in FSHD patients. Elucidating the mechanisms and cellular interactions that are altered in the affected muscles of FSHD patients could be instrumental to clarify disease pathogenesis and identifying reliable novel therapeutic targets.


Asunto(s)
Células Madre Mesenquimatosas , Distrofia Muscular Facioescapulohumeral , Diferenciación Celular/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Células Madre Mesenquimatosas/patología , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología
18.
Redox Biol ; 56: 102450, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030628

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder characterized by progressive muscle weakness. Adenine nucleotide translocator 1 (ANT1), the only 4q35 gene involved in mitochondrial function, is strongly expressed in FSHD skeletal muscle biopsies. However, its role in FSHD is unclear. In this study, we evaluated ANT1 overexpression effects in primary myoblasts from healthy controls and during Xenopus laevis organogenesis. We also compared ANT1 overexpression effects with the phenotype of FSHD muscle cells and biopsies. Here, we report that the ANT1 overexpression-induced phenotype presents some similarities with FSHD muscle cells and biopsies. ANT1-overexpressing muscle cells showed disorganized morphology, altered cytoskeletal arrangement, enhanced mitochondrial respiration/glycolysis, ROS production, oxidative stress, mitochondrial fragmentation and ultrastructure alteration, as observed in FSHD muscle cells. ANT1 overexpression in Xenopus laevis embryos affected skeletal muscle development, impaired skeletal muscle, altered mitochondrial ultrastructure and led to oxidative stress as observed in FSHD muscle biopsies. Moreover, ANT1 overexpression in X. laevis embryos affected heart structure and mitochondrial ultrastructure leading to cardiac arrhythmia, as described in some patients with FSHD. Overall our data suggest that ANT1 could contribute to mitochondria dysfunction and oxidative stress in FSHD muscle cells by modifying their bioenergetic profile associated with ROS production. Such interplay between energy metabolism and ROS production in FSHD will be of significant interest for future prospects.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Translocador 1 del Nucleótido Adenina/genética , Translocador 1 del Nucleótido Adenina/metabolismo , Humanos , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología , Mioblastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
Sci Rep ; 12(1): 7250, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35508609

RESUMEN

Quantitative muscle MRI (water-T2 and fat mapping) is being increasingly used to assess disease involvement in muscle disorders, while imaging techniques for assessment of the dynamic and elastic muscle properties have not yet been translated into clinics. In this exploratory study, we quantitatively characterized muscle deformation (strain) in patients affected by facioscapulohumeral muscular dystrophy (FSHD), a prevalent muscular dystrophy, by applying dynamic MRI synchronized with neuromuscular electrical stimulation (NMES). We evaluated the quadriceps muscles in 34 ambulatory patients and 13 healthy controls, at 6-to 12-month time intervals. While a subgroup of patients behaved similarly to controls, for another subgroup the median strain decreased over time (approximately 57% over 1.5 years). Dynamic MRI parameters did not correlate with quantitative MRI. Our results suggest that the evaluation of muscle contraction by NMES-MRI is feasible and could potentially be used to explore the elastic properties and monitor muscle involvement in FSHD and other neuromuscular disorders.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Imagen por Resonancia Magnética/métodos , Contracción Muscular , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Distrofia Muscular Facioescapulohumeral/diagnóstico por imagen , Distrofia Muscular Facioescapulohumeral/patología , Músculo Cuádriceps
20.
Muscle Nerve ; 66(2): 183-192, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35585766

RESUMEN

INTRODUCTION/AIMS: Functional performance tests are the gold standard to assess disease progression and treatment effects in neuromuscular disorders. These tests can be confounded by motivation, pain, fatigue, and learning effects, increasing variability and decreasing sensitivity to disease progression, limiting efficacy assessment in clinical trials with small sample sizes. We aimed to develop and validate a quantitative and objective method to measure skeletal muscle volume and fat content based on whole-body fat-referenced magnetic resonance imaging (MRI) for use in multisite clinical trials. METHODS: Subjects aged 18 to 65 years, genetically confirmed facioscapulohumeral muscular dystrophy 1 (FSHD1), clinical severity 2 to 4 (Ricci's scale, range 0-5), were enrolled at six sites and imaged twice 4-12 weeks apart with T1-weighted two-point Dixon MRI covering the torso and upper and lower extremities. Thirty-six muscles were volumetrically segmented using semi-automatic multi-atlas-based segmentation. Muscle fat fraction (MFF), muscle fat infiltration (MFI), and lean muscle volume (LMV) were quantified for each muscle using fat-referenced quantification. RESULTS: Seventeen patients (mean age ± SD, 49.4 years ±13.02; 12 men) were enrolled. Within-patient SD ranged from 1.00% to 3.51% for MFF and 0.40% to 1.48% for MFI in individual muscles. For LMV, coefficients of variation ranged from 2.7% to 11.7%. For the composite score average of all muscles, observed SDs were 0.70% and 0.32% for MFF and MFI, respectively; composite LMV coefficient of variation was 2.0%. DISCUSSION: We developed and validated a method for measuring skeletal muscle volume and fat content for use in multisite clinical trials of neuromuscular disorders.


Asunto(s)
Imagen por Resonancia Magnética , Músculo Esquelético , Distrofia Muscular Facioescapulohumeral , Tejido Adiposo/patología , Anciano , Progresión de la Enfermedad , Estudios de Factibilidad , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Estudios Multicéntricos como Asunto , Músculo Esquelético/diagnóstico por imagen , Distrofia Muscular Facioescapulohumeral/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...