RESUMEN
BACKGROUND: Ullrich congenital muscular dystrophy (UCMD) is caused by a deficiency in type 6 collagen (COL6) due to mutations in COL6A1, COL6A2, or COL6A3. COL6 deficiency alters the extracellular matrix structure and biomechanical properties, leading to mitochondrial defects and impaired muscle regeneration. Therefore, mesenchymal stromal cells (MSCs) that secrete COL6 have attracted attention as potential therapeutic targets. Various tissue-derived MSCs exert therapeutic effects in various diseases. However, no reports have compared the effects of MSCs of different origins on UCMD pathology. METHODS: To evaluate which MSC population has the highest therapeutic efficacy for UCMD, in vivo (transplantation of MSCs to Col6a1-KO/NSG mice) and in vitro experiments (muscle stem cell [MuSCs] co-culture with MSCs) were conducted using adipose tissue-derived MSCs, bone marrow-derived MSCs, and xeno-free-induced iPSC-derived MSCs (XF-iMSCs). RESULTS: In transplantation experiments on Col6a1-KO/NSG mice, the group transplanted with XF-iMSCs showed significantly enhanced muscle fiber regeneration compared to the other groups 1 week after transplantation. At 12 weeks after transplantation, only the XF-iMSCs transplantation group showed a significantly larger muscle fiber diameter than the other groups without inducing fibrosis, which was observed in the other transplantation groups. Similarly, in co-culture experiments, XF-iMSCs were found to more effectively promote the fusion and differentiation of MuSCs derived from Col6a1-KO/NSG mice than the other primary MSCs investigated in this study. Additionally, in vitro knockdown and supplementation experiments suggested that the IGF2 secreted by XF-iMSCs promoted MuSC differentiation. CONCLUSION: XF-iMSCs are promising candidates for promoting muscle regeneration while avoiding fibrosis, offering a safer and more effective therapeutic approach for UCMD than other potential therapies.
Asunto(s)
Colágeno Tipo VI , Modelos Animales de Enfermedad , Células Madre Pluripotentes Inducidas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Regeneración , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Colágeno Tipo VI/metabolismo , Colágeno Tipo VI/genética , Distrofias Musculares/terapia , Distrofias Musculares/patología , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Diferenciación Celular , Músculo Esquelético/metabolismo , Ratones Noqueados , EsclerosisRESUMEN
LAMA2, coding for the laminin-α2 chain, is a crucial ECM component, particularly abundant in skeletal muscle. Mutations in LAMA2 trigger the often-lethal LAMA2-congenital muscular dystrophy (LAMA2-CMD). Various phenotypes have been linked to LAMA2-CMD; nevertheless, the precise mechanisms that malfunction during disease onset in utero remain unknown. We generated Lama2-deficient C2C12 cells and found that Lama2-deficient myoblasts display proliferation, differentiation, and fusion defects, DNA damage, oxidative stress, and mitochondrial dysfunction. Moreover, fetal myoblasts isolated from the dy W mouse model of LAMA2-CMD display impaired differentiation and fusion in vitro. We also showed that disease onset during fetal development is characterized by a significant down-regulation of gene expression in muscle fibers, causing pronounced effects on cytoskeletal organization, muscle differentiation, and altered DNA repair and oxidative stress responses. Together, our findings provide unique insights into the critical importance of the laminin-α2 chain for muscle differentiation and muscle cell homeostasis.
Asunto(s)
Diferenciación Celular , Laminina , Músculo Esquelético , Mioblastos , Estrés Oxidativo , Animales , Laminina/metabolismo , Laminina/genética , Laminina/deficiencia , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Diferenciación Celular/genética , Mioblastos/metabolismo , Estrés Oxidativo/genética , Daño del ADN , Distrofias Musculares/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/patología , Proliferación Celular/genética , Línea Celular , Desarrollo de Músculos/genética , Modelos Animales de Enfermedad , Mutación , Fibras Musculares Esqueléticas/metabolismoRESUMEN
Muscular dystrophies (MDs) are genetically heterogeneous diseases characterized by primary skeletal muscle atrophy. The collapse of muscle structure and irreversible degeneration of tissues promote the occurrence of comorbidities, including cardiomyopathy and respiratory failure. Mitochondrial dysfunction leads to inflammation, fibrosis, and adipogenic cellular infiltrates that exacerbate the symptomatology of MD patients. Gastrointestinal disorders and metabolic anomalies are common in MD patients and may be determined by the interaction between the intestine and its microbiota. Therefore, the gut-muscle axis is one of the actors involved in the spread of inflammatory signals to all muscles. In this review, we aim to examine in depth how intestinal dysbiosis can modulate the metabolic state, the immune response, and mitochondrial biogenesis in the course and progression of the most investigated MDs such as Duchenne Muscular Dystrophy (DMD) and Myotonic Dystrophy (MD1), to better identify gut microbiota metabolites working as therapeutic adjuvants to improve symptoms of MD.
Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Humanos , Disbiosis/microbiología , Animales , Distrofias Musculares/microbiología , Distrofias Musculares/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/patología , Distrofia Muscular de Duchenne/microbiología , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Músculo Esquelético/microbiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patologíaRESUMEN
BACKGROUND: The phenotypic spectrum of ANO5 muscle disease ranges widely from elevated creatine kinase (CK) levels in the serum of asymptomatic individuals to progressive muscular dystrophy. Due to overlapping clinical features among muscular dystrophies, the diagnosis of ANO5 muscle disease is established by molecular genetic tests. Early diagnosis is crucial for the clinical management of symptoms and to mitigate cardiac and musculoskeletal complications. METHODS: Quad-joint analysis was performed on whole genome sequencing (WGS) data obtained from an 18-year-old female with mild myalgia and elevated CK and her unaffected parents and sister. The phenotype-driven analysis was performed to prioritize genomic alterations related to the phenotype. The zygosity-based analysis investigated compound heterozygous and de novo status for all variants. RESULTS: The quad-joint WGS analysis revealed a novel pathogenic heterozygous variant, ANO5:c.1770_1773del (p.Phe593Metfs*15), that was paternally inherited. A second and known pathogenic heterozygous variant, ANO5:c.148C>T (p.Arg50*), was also present that was maternally inherited. The genome finding led to the diagnosis of autosomal recessive ANO5 muscle disease and an early personalized clinical management for the patient regarding her cardiac and musculoskeletal health. CONCLUSIONS: This is the first report of the ANO5:c.1770_1773del variant in the literature. This report highlights the spectrum of ANO5 muscle disease and describes the role of quad-joint WGS in the early diagnosis and preventive clinical management of ANO5 muscle disease.
Asunto(s)
Anoctaminas , Secuenciación Completa del Genoma , Humanos , Femenino , Anoctaminas/genética , Adolescente , Secuenciación Completa del Genoma/métodos , Distrofias Musculares/genética , Distrofias Musculares/diagnóstico , Distrofias Musculares/patología , Mutación , Fenotipo , Linaje , HeterocigotoRESUMEN
Nuclear lamins, a type V intermediate filament, are crucial components of the nuclear envelope's inner layer, maintaining nuclear integrity and mediating interactions between the nucleus and cytoplasm. Research on human iPSC-derived cells and animal models has demonstrated the importance of lamins in cardiac and skeletal muscle development and function. Mutations in lamins result in laminopathies, a group of diseases including muscular dystrophies, Hutchison-Gilford progeria syndrome, and cardiomyopathies with conduction defects. These conditions have been linked to disrupted autophagy, mTOR, Nrf2-Keap, and proteostasis signaling pathways, indicating complex interactions between the nucleus and cytoplasm. Despite progress in understanding these pathways, many questions remain about the mechanisms driving lamin-induced pathologies, leading to limited therapeutic options. This review examines the current literature on dysregulated pathways in cardiac and skeletal muscle laminopathies and explores potential therapeutic strategies for these conditions.
Asunto(s)
Laminopatías , Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Laminopatías/genética , Laminopatías/patología , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Mutación , Transducción de Señal/genética , Laminas/genética , Laminas/metabolismoRESUMEN
Skeletal muscle fibrosis is defined as the excessive accumulation of extracellular matrix (ECM) components and is a hallmark of muscular dystrophies. Fibro-adipogenic progenitors (FAPs) are the main source of ECM, and thus have been strongly implicated in fibrogenesis. In skeletal muscle fibrotic models, including muscular dystrophies, FAPs undergo dysregulations in terms of proliferation, differentiation, and apoptosis, however few studies have explored the impact of FAPs migration. Here, we studied fibroblast and FAPs migration and identified lysophosphatidic acid (LPA), a signaling lipid central to skeletal muscle fibrogenesis, as a significant migration inductor. We identified LPA receptor 1 (LPA1) mediated signaling as crucial for this effect through a mechanism dependent on the Hippo pathway, another pathway implicated in fibrosis across diverse tissues. This cross-talk favors the activation of the Yes-associated protein 1 (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ), leading to increased expression of fibrosis-associated genes. This study reveals the role of YAP in LPA-mediated fibrotic responses as inhibition of YAP transcriptional coactivator activity hinders LPA-induced migration in fibroblasts and FAPs. Moreover, we found that FAPs derived from the mdx4cv mice, a murine model of Duchenne muscular dystrophy, display a heightened migratory phenotype due to enhanced LPA signaling compared to wild-type FAPs. Remarkably, we found that the inhibition of LPA1 or YAP transcriptional coactivator activity in mdx4cv FAPs reverts this phenotype. In summary, the identified LPA-LPA1-YAP pathway emerges as a critical driver of skeletal muscle FAPs migration and provides insights into potential novel targets to mitigate fibrosis in muscular dystrophies.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Movimiento Celular , Fibroblastos , Fibrosis , Lisofosfolípidos , Músculo Esquelético , Receptores del Ácido Lisofosfatídico , Transducción de Señal , Proteínas Señalizadoras YAP , Lisofosfolípidos/metabolismo , Animales , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Ratones , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Humanos , Vía de Señalización Hippo , Ratones Endogámicos mdx , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Adipogénesis/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/patologíaRESUMEN
Caveolin is a structural protein within caveolae that may be involved in transmembrane molecular transport and/or various intercellular interactions within cells. Specific mutations of caveolin-3 in muscle fibers are well known to cause limb-girdle muscular dystrophy. Altered expression of caveolin-3 has also been detected in Duchenne muscular dystrophy, which may be a part of the pathological process leading to muscle weakness. Interestingly, it has been shown that the renovation of nitric oxide synthase (NOS) in sarcolemma with muscular dystrophy could improve muscle health, suggesting that NOS may be involved in the pathology of muscular dystrophy. Here, we summarize the notable function of caveolin and/or NOS in skeletal muscle fibers and discuss their involvement in the pathology as well as possible tactics for the innovative treatment of muscular dystrophies.
Asunto(s)
Caveolina 3 , Distrofias Musculares , Óxido Nítrico Sintasa , Animales , Humanos , Caveolas/metabolismo , Caveolina 3/metabolismo , Caveolina 3/genética , Caveolinas/metabolismo , Distrofias Musculares/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Mutación , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa/genéticaRESUMEN
BACKGROUND: Transport protein particle (TRAPP) is a multiprotein complex that functions in localising proteins to the Golgi compartment. The TRAPPC11 subunit has been implicated in diseases affecting muscle, brain, eye and to some extent liver. We present three patients who are compound heterozygotes for a missense variant and a structural variant in the TRAPPC11 gene. TRAPPC11 structural variants have not yet been described in association with a disease. In order to reveal the estimated genesis of identified structural variants, we performed sequencing of individual breakpoint junctions and analysed the extent of homology and the presence of repetitive elements in and around the breakpoints. METHODS: Biochemical methods including isoelectric focusing on serum transferrin and apolipoprotein C-III, as well as mitochondrial respiratory chain complex activity measurements, were used. Muscle biopsy samples underwent histochemical analysis. Next-generation sequencing was employed for identifying sequence variants associated with neuromuscular disorders, and Sanger sequencing was used to confirm findings. RESULTS: We suppose that non-homologous end joining is a possible mechanism of deletion origin in two patients and non-allelic homologous recombination in one patient. Analyses of mitochondrial function performed in patients' skeletal muscles revealed an imbalance of mitochondrial metabolism, which worsens with age and disease progression. CONCLUSION: Our results contribute to further knowledge in the field of neuromuscular diseases and mutational mechanisms. This knowledge is important for understanding the molecular nature of human diseases and allows us to improve strategies for identifying disease-causing mutations.
Asunto(s)
Distrofias Musculares , Adulto , Niño , Femenino , Humanos , Masculino , Eliminación de Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/patología , Mutación Missense/genéticaRESUMEN
INTRODUCTION/AIMS: Oculopharyngodistal myopathy type 4 (OPDM4) arises from a CGG repeat expansion in the 5' UTR of the RILPL1 gene. Reported cases of OPDM4 have been limited. The aim of this study was to investigate the clinical and myopathological characteristics of OPDM4 patients with advanced disease. METHODS: We assessed a total of 8 affected and 12 unaffected individuals in an OPDM4 family with autosomal dominant inheritance. Muscle biopsy tissue from the proband underwent histological, enzyme histochemical, and immunohistochemical stains, and electron microscopy analysis. Whole exome sequencing and repeat primer PCR (RP-PCR) were conducted to investigate underlying variants. RESULTS: OPDM4 patients displayed a progressive disease course. Most experienced lower limb weakness and diminished walking ability in their 20s and 30s, followed by ptosis, ophthalmoplegia, swallowing difficulties, and dysarthria in their 30s to 50s, By their 50s to 70s, they became non-ambulatory. Muscle magnetic resonance imaging (MRI) of the proband in advanced disease revealed severe fatty infiltration of pelvic girdle and lower limb muscles. Biopsied muscle tissue exhibited advanced changes typified by adipose connective tissue replacement and the presence of multiple eosinophilic and p62-positive intranuclear inclusions. Immunopositivity for the intranuclear inclusions was observed with anti-glycine antibody and laboratory-made polyA-R1 antibody. RP-PCR unveiled an abnormal CGG repeat expansion in the 5' UTR of the RILPL1 gene. DISCUSSION: The clinical and radiological features in this family broaden the phenotypic spectrum of OPDM4. The presence of intranuclear inclusions in the proliferative adipose connective tissues of muscle biopsy specimens holds diagnostic significance for OPDM4 in advanced disease.
Asunto(s)
Músculo Esquelético , Distrofias Musculares , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Adaptadoras Transductoras de Señales/genética , Progresión de la Enfermedad , Imagen por Resonancia Magnética , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Linaje , Distrofias Musculares/patologíaRESUMEN
Muscular dystrophy is a group of genetic disorders that lead to muscle wasting and loss of muscle function. Identifying genetic modifiers that alleviate symptoms or enhance the severity of a primary disease helps to understand mechanisms behind disease pathology and facilitates discovery of molecular targets for therapy. Several muscular dystrophies are caused by genetic defects in the components of the dystrophin-glycoprotein adhesion complex (DGC). Thrombospondin-4 overexpression has been shown to mitigate dystrophic disease in mouse models for Duchenne muscular dystrophy (dystrophin deficiency) and limb-girdle muscular dystrophy type 2F (LGMD2F, δ-sarcoglycan deficiency), while deletion of the thrombospondin-4 gene exacerbated the diseases. Hence, thrombospondin-4 has been considered a candidate molecule for therapy of muscular dystrophies involving the DGC. We have investigated whether thrombospondin-4 could act as a genetic modifier for other DGC-associated diseases: limb-girdle muscular dystrophy type 2E (LGMD2E, ß-sarcoglycan deficiency) and laminin α2 chain-deficient muscular dystrophy (LAMA2-RD). Deletion of the thrombospondin-4 gene in mouse models for LGMD2E and LAMA2-RD, respectively, did not result in worsening of the dystrophic phenotype. Loss of thrombospondin-4 did not enhance sarcolemma damage and did not impair trafficking of transmembrane receptors integrin α7ß1 and dystroglycan in double knockout muscles. Our results suggest that thrombospondin-4 might not be a relevant therapeutic target for all muscular dystrophies involving the DGC. This data also demonstrates that molecular pathology between very similar diseases like LGMD2E and 2F can differ significantly.
Asunto(s)
Laminina , Ratones Noqueados , Sarcoglicanos , Trombospondinas , Animales , Laminina/metabolismo , Laminina/genética , Laminina/deficiencia , Sarcoglicanos/genética , Sarcoglicanos/deficiencia , Sarcoglicanos/metabolismo , Ratones , Trombospondinas/genética , Trombospondinas/metabolismo , Trombospondinas/deficiencia , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Eliminación de Gen , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologíaRESUMEN
LAMA2-related congenital muscular dystrophy (LAMA2-CMD), characterized by laminin-α2 deficiency, is debilitating and ultimately fatal. To date, no effective therapy has been clinically available. Laminin-α1, which shares significant similarities with laminin-α2, has been proven as a viable compensatory modifier. To evaluate its clinical applicability, we establish a Lama2 exon-3-deletion mouse model (dyH/dyH). The dyH/dyH mice exhibit early lethality and typical LAMA2-CMD phenotypes, allowing the evaluation of various endpoints. In dyH/dyH mice treated with synergistic activation mediator-based CRISPRa-mediated Lama1 upregulation, a nearly doubled median survival is observed, as well as improvements in weight and grip. Significant therapeutical effects are revealed by MRI, serum biochemical indices, and muscle pathology studies. Treating LAMA2-CMD with LAMA1 upregulation is feasible, and early intervention can alleviate symptoms and extend lifespan. Additionally, we reveal the limitations of LAMA1 upregulation, including high-dose mortality and non-sustained expression, which require further optimization in future studies.
Asunto(s)
Modelos Animales de Enfermedad , Laminina , Longevidad , Distrofias Musculares , Regulación hacia Arriba , Animales , Laminina/genética , Laminina/metabolismo , Ratones , Regulación hacia Arriba/genética , Distrofias Musculares/genética , Distrofias Musculares/patología , Distrofias Musculares/metabolismo , Longevidad/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , FenotipoRESUMEN
LAMA2-related muscular dystrophy is caused by pathogenic variants of the alpha2 subunit of Laminin. This common form of muscular dystrophy is characterized by elevated CK >1000IU/L, dystrophic changes on muscle biopsy, complete or partial absence of merosin staining, and both central and peripheral nervous system involvement. Advancements in genomic testing using NGS and wider application of RNA sequencing has expanded our knowledge of novel non-coding pathogenic variants in LAMA2. RNA sequencing is an increasingly utilized technique to directly analyze the transcriptome, through creation of a complementary DNA (cDNA) from the transcript within a tissue sample. Here we describe a homozygous deep intronic variant that produces a novel splice junction in LAMA2 identified by RNA sequencing analysis in a patient with a clinical phenotype in keeping with LAMA2-related muscular dystrophy. Furthermore, in this case merosin staining was retained suggestive of a functional deficit.
Asunto(s)
Intrones , Laminina , Distrofias Musculares , Análisis de Secuencia de ARN , Humanos , Laminina/genética , Intrones/genética , Distrofias Musculares/genética , Distrofias Musculares/patología , Distrofias Musculares/diagnóstico , Masculino , Fenotipo , Mutación , FemeninoRESUMEN
Desminopathy R350P is a human myopathy that is characterized by the progressive loss of muscle fiber organization. This results in the loss of muscle size, mobility, and strength. In desminopathy, inflammation affects muscle homeostasis and repair, and contributes to progressive muscle deterioration. Mitochondria morphology was also suggested to affect desminopathy progression. Epicatechin (Epi)-a natural compound found in cacao-has been proposed to regulate inflammatory signaling and mitochondria morphology in human and animal models. Hence, we hypothesize chronic Epi consumption to improve inflammatory pathway and mitochondria morphology in the peripheral blood mononuclear cells (PBMCs) of a desminopathy R350P patient. We found that 12 weeks of Epi consumption partially restored TRL4 signaling, indicative of inflammatory signaling and mitochondria morphology in the desminopathy patient. Moreover, Epi consumption improved blood health parameters, including reduced HOMA-IR and IL-6 levels in the desminopathy patient. This indicates that Epi consumption could be a useful tool to slow disease progression in desminopathy patients.
Asunto(s)
Catequina , Leucocitos Mononucleares , Mitocondrias , Humanos , Catequina/farmacología , Catequina/administración & dosificación , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Masculino , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofias Musculares/tratamiento farmacológico , Distrofias Musculares/genética , Adulto , Femenino , Inflamación/metabolismo , Inflamación/patología , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/tratamiento farmacológico , Desmina/metabolismo , Desmina/genéticaRESUMEN
Muscle stem cells (MuSCs) are crucial to the repair and homeostasis of mature skeletal muscle. MuSC dysfunction and dysregulation of the myogenic program can contribute to the development of pathology ranging from cancers like rhabdomyosarcoma (RMS) or muscle degenerative diseases such as Duchenne muscular dystrophy (DMD). Both diseases exhibit dysregulation at nearly all steps of myogenesis. For instance, MuSC self-renewal processes are altered. In RMS, this leads to the creation of tumor propagating cells. In DMD, impaired asymmetric stem cell division creates a bias towards producing self-renewing stem cells instead of committing to differentiation. Hyperproliferation of these cells contribute to tumorigenesis in RMS and symmetric expansion of the self-renewing MuSC population in DMD. Both diseases also exhibit a repression of factors involved in terminal differentiation, halting RMS cells in the proliferative stage and thus driving tumor growth. Conversely, the MuSCs in DMD exhibit impaired differentiation and fuse prematurely, affecting myonuclei maturation and the integrity of the dystrophic muscle fiber. Finally, both disease states cause alterations to the MuSC niche. Various elements of the niche such as inflammatory and migratory signaling that impact MuSC behavior are dysregulated. Here we show how these seemingly distantly related diseases indeed have similarities in MuSC dysfunction, underlying the importance of considering MuSCs when studying the pathophysiology of muscle diseases.
Asunto(s)
Rabdomiosarcoma , Rabdomiosarcoma/patología , Humanos , Animales , Músculo Esquelético/patología , Diferenciación Celular , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Desarrollo de Músculos , Células Madre/citología , Distrofias Musculares/patologíaRESUMEN
Extracellular matrix (ECM) pathologic remodeling underlies many disorders, including muscular dystrophy. Tissue decellularization removes cellular components while leaving behind ECM components. We generated "on-slide" decellularized tissue slices from genetically distinct dystrophic mouse models. The ECM of dystrophin- and sarcoglycan-deficient muscles had marked thrombospondin 4 deposition, while dysferlin-deficient muscle had excess decorin. Annexins A2 and A6 were present on all dystrophic decellularized ECMs, but annexin matrix deposition was excessive in dysferlin-deficient muscular dystrophy. Muscle-directed viral expression of annexin A6 resulted in annexin A6 in the ECM. C2C12 myoblasts seeded onto decellularized matrices displayed differential myoblast mobility and fusion. Dystrophin-deficient decellularized matrices inhibited myoblast mobility, while dysferlin-deficient decellularized matrices enhanced myoblast movement and differentiation. Myoblasts treated with recombinant annexin A6 increased mobility and fusion like that seen on dysferlin-deficient decellularized matrix and demonstrated upregulation of ECM and muscle cell differentiation genes. These findings demonstrate specific fibrotic signatures elicit effects on myoblast activity.
Asunto(s)
Diferenciación Celular , Movimiento Celular , Disferlina , Matriz Extracelular , Mioblastos , Sarcoglicanos , Animales , Mioblastos/metabolismo , Mioblastos/citología , Matriz Extracelular/metabolismo , Ratones , Sarcoglicanos/genética , Sarcoglicanos/metabolismo , Disferlina/genética , Disferlina/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofina/genética , Distrofina/metabolismo , Anexina A2/genética , Anexina A2/metabolismo , Decorina/genética , Decorina/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismoRESUMEN
Many muscle disease names are mostly based on muscle pathology findings. Naturally, muscle pathology is important in the diagnosis of muscle diseases. Moreover, in recent years, extensive genetic analysis and autoantibody testing for myositis have been applied clinically, although muscle biopsies are less performed. However, muscle pathology should be proactively considered when a single gene presents multiple phenotypes, when variants of unknown pathological significance are detected, or in cases of autoimmune myositis that may be misdiagnosed as muscular dystrophy.
Asunto(s)
Enfermedades Autoinmunes , Enfermedades Musculares , Distrofias Musculares , Miositis , Humanos , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Distrofias Musculares/patología , Músculos/patología , Músculo Esquelético/patologíaRESUMEN
LMNA-related congenital muscular dystrophy (L-CMD) is caused by mutations in the LMNA gene, encoding lamin A/C. To further understand the molecular mechanisms of L-CMD, proteomic profiling using DIA mass spectrometry was conducted on immortalized myoblasts and myotubes from controls and L-CMD donors each harbouring a different LMNA mutation (R249W, del.32 K and L380S). Compared to controls, 124 and 228 differentially abundant proteins were detected in L-CMD myoblasts and myotubes, respectively, and were associated with enriched canonical pathways including synaptogenesis and necroptosis in myoblasts, and Huntington's disease and insulin secretion in myotubes. Abnormal nuclear morphology and reduced lamin A/C and emerin abundance was evident in all L-CMD cell lines compared to controls, while nucleoplasmic aggregation of lamin A/C was restricted to del.32 K cells, and mislocalization of emerin was restricted to R249W cells. Abnormal nuclear morphology indicates loss of nuclear lamina integrity as a common feature of L-CMD, likely rendering muscle cells vulnerable to mechanically induced stress, while differences between L-CMD cell lines in emerin and lamin A localization suggests that some molecular alterations in L-CMD are mutation specific. Nonetheless, identifying common proteomic alterations and molecular pathways across all three L-CMD lines has highlighted potential targets for the development of non-mutation specific therapies.
Asunto(s)
Lamina Tipo A , Distrofias Musculares , Proteómica , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Mutación , Mioblastos/metabolismo , Masculino , Línea Celular , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismoRESUMEN
Lamins are inner nuclear membrane proteins that belong to the intermediate filament family. Lamin A/C lie adjacent to the heterochromatin structure in polymer form, providing skeletal to the nucleus. Based on the localization, lamin A/C provides nuclear stability and cytoskeleton to the nucleus and modulates chromatin organization and gene expression. Besides being the structural protein making the inner nuclear membrane in polymer form, lamin A/C functions as a signalling molecule involved in gene expression as an enhancer inside the nucleus. Lamin A/C regulates various cellular pathways like autophagy and energy balance in the cytoplasm. Its expression is highly variable in differentiated tissues, higher in hard tissues like bone and muscle cells, and lower in soft tissues like the liver and brain. In muscle cells, including the heart, lamin A/C must be expressed in a balanced state. Lamin A/C mutation is linked with various diseases, such as muscular dystrophy, lipodystrophy, and cardiomyopathies. It has been observed that a good number of mutations in the LMNA gene impact cardiac activity and its function. Although several works have been published, there are still several unexplored areas left regarding the lamin A/C function and structure in the cardiovascular system and its pathological state. In this review, we focus on the structural organization, expression pattern, and function of lamin A/C, its interacting partners, and the pathophysiology associated with mutations in the lamin A/C gene, with special emphasis on cardiovascular diseases. With the recent finding on lamin A/C, we have summarized the possible therapeutic interventions to treat cardiovascular symptoms and reverse the molecular changes.
Asunto(s)
Cardiomiopatías , Distrofias Musculares , Humanos , Lamina Tipo A/genética , Lamina Tipo A/química , Lamina Tipo A/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/terapia , Distrofias Musculares/genética , Distrofias Musculares/patología , Mutación , PolímerosRESUMEN
LMNA-related muscular dystrophy is a major disease phenotype causing mortality and morbidity in laminopathies, but its pathogenesis is still unclear. To explore the molecular pathogenesis, a knock-in mouse harbouring the Lmna-W520R mutation was modelled. Morphological and motor functional analyses showed that homozygous mutant mice revealed severe muscular atrophy, profound motor dysfunction, and shortened lifespan, while heterozygotes showed a variant arrangement of muscle bundles and mildly reduced motor capacity. Mechanistically, the FOXO1/GADD45A pathway involving muscle atrophy processes was found to be altered in vitro and in vivo assays. The expression levels of FOXO1 and its downstream regulatory molecule GADD45A significantly increased in atrophic muscle tissue. The elevated expression of FOXO1 was associated with decreased H3K27me3 in its gene promotor region. Overexpression of GADD45A induced apoptosis and cell cycle arrest of myoblasts in vitro, and it could be partially restored by the FOXO1 inhibitor AS1842856, which also slowed the muscle atrophy process with improved motor function and prolonged survival time of homozygous mutant mice in vivo. Notably, the inhibitor also partly rescued the apoptosis and cell cycle arrest of hiPSC-derived myoblasts harbouring the LMNA-W520R mutation. Together, these data suggest that the activation of the FOXO1/GADD45A pathway contributes to the pathogenesis of LMNA-related muscle atrophy, and it might serve as a potential therapeutic target for laminopathies.