Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.196
Filtrar
1.
Biochem J ; 481(20): 1411-1435, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39392452

RESUMEN

Adaptor proteins play central roles in the assembly of molecular complexes and co-ordinated activation of specific pathways. Through their modular domain structure, the NCK family of adaptor proteins (NCK1 and NCK2) link protein targets via their single SRC Homology (SH) 2 and three SH3 domains. Classically, their SH2 domain binds to phosphotyrosine motif-containing receptors (e.g. receptor tyrosine kinases), while their SH3 domains bind polyproline motif-containing cytoplasmic effectors. Due to these functions being established for both NCK1 and NCK2, their roles were inaccurately assumed to be redundant. However, in contrast with this previously held view, NCK1 and NCK2 now have a growing list of paralog-specific functions, which underscores the need to further explore their differences. Here we review current evidence detailing how these two paralogs are unique, including differences in their gene/protein regulation, binding partners and overall contributions to cellular functions. To help explain these contrasting characteristics, we then discuss SH2/SH3 structural features, disordered interdomain linker regions and post-translational modifications. Together, this review seeks to highlight the importance of distinguishing NCK1 and NCK2 in research and to pave the way for investigations into the origins of their interaction specificity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Oncogénicas , Dominios Homologos src , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/química , Proteínas Oncogénicas/genética , Animales , Procesamiento Proteico-Postraduccional , Unión Proteica
2.
J Phys Chem Lett ; 15(40): 10252-10257, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39360979

RESUMEN

Peptide-based drugs are powerful inhibitors of therapeutically relevant protein-protein interactions. Their affinity and selectivity for target proteins are commonly assessed using fluorescence-based assays such as anisotropy/polarization or quantitative microarrays. This study reveals that labeling can perturb peptide/protein binding by more than 1 order of magnitude. We have recently developed inhibitors targeted to the N-terminal Src homology 2 (SH2) domain of oncogenic phosphatase SHP2. Despite their high activity and selectivity, these molecules demonstrated an undesired interaction with the SH2 domain of another protein, known as APS, in a fluorescence microarray assay. Fluorescence anisotropy measurement in solution showed that the dissociation constant was significantly influenced by labeling (∼10 times), and the effect depended on the specific fluorophore and SH2 domain. Notably, displacement assays performed with unlabeled peptides were successfully used to eliminate these artifacts, demonstrating that the inhibitors' affinity for their target is over 1,000 times higher than for APS.


Asunto(s)
Polarización de Fluorescencia , Colorantes Fluorescentes , Péptidos , Unión Proteica , Dominios Homologos src , Péptidos/química , Péptidos/metabolismo , Colorantes Fluorescentes/química
3.
Biomolecules ; 14(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39199427

RESUMEN

Src homology 3 (SH3) domains play a critical role in mediating protein-protein interactions (PPIs) involved in cell proliferation, migration, and the cytoskeleton. Despite their abundance in the human proteome, the functions and molecular interactions of many SH3 domains remain unknown, and this is in part due to the lack of SH3-domain-specific reagents available for their study. Affimer proteins have been developed as affinity reagents targeting a diverse range of targets, including those involved in PPIs. In this study, Affimer proteins were isolated against both the N- and C-terminal SH3 domains (NSH3 and CSH3) of growth-factor-receptor-bound protein 2 (Grb2), an adapter protein that provides a critical link between cell surface receptors and Ras signalling pathways. Targeting the CSH3 alone for the inhibition of PPIs appeared sufficient for curtailing Ras signalling in mammalian cell lines stimulated with human epidermal growth factor (EGF), which conflicts with the notion that the predominant interactions with Ras activating Son of sevenless (SOS) occur via the NSH3 domain. This result supports a model in which allosteric mechanisms involved in Grb2-SOS1 interaction modulate Ras activation.


Asunto(s)
Proteína Adaptadora GRB2 , Transducción de Señal , Proteínas ras , Dominios Homologos src , Proteína Adaptadora GRB2/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Proteínas ras/metabolismo , Unión Proteica , Proteína SOS1/metabolismo , Proteína SOS1/química , Proteína SOS1/genética , Factor de Crecimiento Epidérmico/metabolismo
4.
Infect Immun ; 92(10): e0013624, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39133017

RESUMEN

The food-borne pathogen Listeria monocytogenes uses actin-based motility to generate plasma membrane protrusions that mediate the spread of bacteria between host cells. In polarized epithelial cells, efficient protrusion formation by L. monocytogenes requires the secreted bacterial protein InlC, which binds to a carboxyl-terminal Src homology 3 (SH3) domain in the human scaffolding protein Tuba. This interaction antagonizes Tuba, thereby diminishing cortical tension at the apical junctional complex and enhancing L. monocytogenes protrusion formation and spread. Tuba contains five SH3 domains apart from the domain that interacts with InlC. Here, we show that human GTPase Dynamin 2 associates with two SH3 domains in the amino-terminus of Tuba and acts together with this scaffolding protein to control the spread of L. monocytogenes. Genetic or pharmacological inhibition of Dynamin 2 or knockdown of Tuba each restored normal protrusion formation and spread to a bacterial strain deleted for the inlC gene (∆inlC). Dynamin 2 localized to apical junctions in uninfected human cells and protrusions in cells infected with L. monocytogenes. Localization of Dynamin 2 to junctions and protrusions depended on Tuba. Knockdown of Dynamin 2 or Tuba diminished junctional linearity, indicating a role for these proteins in controlling cortical tension. Infection with L. monocytogenes induced InlC-dependent displacement of Dynamin 2 from junctions, suggesting a possible mechanism of antagonism of this GTPase. Collectively, our results show that Dynamin 2 cooperates with Tuba to promote intercellular tension that restricts the spread of ∆inlC Listeria. By expressing InlC, wild-type L. monocytogenes overcomes this restriction.


Asunto(s)
Proteínas Bacterianas , Dinamina II , Listeria monocytogenes , Listeria monocytogenes/metabolismo , Listeria monocytogenes/genética , Humanos , Dinamina II/metabolismo , Dinamina II/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Listeriosis/microbiología , Listeriosis/metabolismo , Interacciones Huésped-Patógeno , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Uniones Intercelulares/metabolismo , Uniones Intercelulares/microbiología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Dominios Homologos src
5.
J Biosci Bioeng ; 138(5): 375-381, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39122620

RESUMEN

Protein-based therapeutics, including antibodies and antibody-like-proteins, have increasingly attracted attention due to their high specificity compared to small-molecular drugs. The Gγ recruitment system, one of the in vivo yeast two-hybrid systems for detecting protein-protein interactions, has been previously developed using yeast signal transduction machinery. In this study, we modified the Gγ recruitment system to screen the protein mutants that efficiently bind to the intracellular domain of the epidermal growth factor receptor L858R mutant (cytoEGFRL858R). Using the modified platform, we performed in vivo directed evolution for growth factor receptor-bound protein 2 (Grb2) and its truncated variant containing only the Src-homology 2 (SH2) domain, successfully identifying several mutants that more strongly bound to cytoEGFRL858R than their parental proteins. Some of them contained novel beneficial mutations (F108Y and Q144H) and specifically bound to the recombinant cytosolic phosphorylated EGFR in vitro, highlighting the utility of the evolutionary platform.


Asunto(s)
Evolución Molecular Dirigida , Receptores ErbB , Receptores ErbB/metabolismo , Receptores ErbB/genética , Humanos , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Mutación , Técnicas del Sistema de Dos Híbridos , Dominios Homologos src , Fosforilación , Dominios Proteicos
6.
Sci Rep ; 14(1): 17767, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090233

RESUMEN

The germinal centers (GCs) are structure found within secondary lymphoid organs and are important for the antibody-producing response against foreign antigens. In GCs, antigen-specific B cells proliferate intensely, inducing immunoglobulin class switching. Recent studies have shown that GCs are also an important site for class switching to IgE, which is implicated in allergy. However, the mechanisms by which IgE production is regulated in GCs remain unclear. Here, we found impairment in IgE-specific production and a reduction of GC B cells after immunization in mice deficient in the Aps/Sh2b2 gene encoding the Lnk/Sh2b family adaptor protein Aps. GC B cells express higher levels of the Aps gene than non-GC B cells, and cell death of Aps-/- GC B cells is enhanced compared to wild-type GC B cells. An in vitro culture system with purified Aps-/- B cells induced the same level of IgE production and frequencies of IgE+ B cells as wild-type B cells. We found that Aps deficiency in B cells resulted in augmented depletion of IgE+ blasts by B cell receptor crosslinking with anti-CD79b antibodies compared to wild-type IgE+ cells. These results suggest that Aps regulates IgE production by controlling the survival of GC B cells and IgE+ plasma cells and may serve as a potential therapeutic target to control IgE production.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Linfocitos B , Supervivencia Celular , Centro Germinal , Inmunoglobulina E , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Linfocitos B/inmunología , Linfocitos B/metabolismo , Centro Germinal/inmunología , Centro Germinal/metabolismo , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Dominios Homologos src
7.
Cell Syst ; 15(8): 725-737.e7, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39106868

RESUMEN

Evolution-based deep generative models represent an exciting direction in understanding and designing proteins. An open question is whether such models can learn specialized functional constraints that control fitness in specific biological contexts. Here, we examine the ability of generative models to produce synthetic versions of Src-homology 3 (SH3) domains that mediate signaling in the Sho1 osmotic stress response pathway of yeast. We show that a variational autoencoder (VAE) model produces artificial sequences that experimentally recapitulate the function of natural SH3 domains. More generally, the model organizes all fungal SH3 domains such that locality in the model latent space (but not simply locality in sequence space) enriches the design of synthetic orthologs and exposes non-obvious amino acid constraints distributed near and far from the SH3 ligand-binding site. The ability of generative models to design ortholog-like functions in vivo opens new avenues for engineering protein function in specific cellular contexts and environments.


Asunto(s)
Aprendizaje Profundo , Transducción de Señal , Dominios Homologos src , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Biochem Biophys Res Commun ; 728: 150325, 2024 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-38959529

RESUMEN

RHOV and RHOU are considered atypical Rho-family small GTPases because of the existence of N- and C-terminal extension regions, abnormal GDP/GTP cycling, and post-translational modification. Particularly, RHOV and RHOU both have a proline-rich (PR) motif in the N-terminal region. It has been reported that the PR motif of RHOU interacts with GRB2, a SH3 domain-containing adaptor protein, and regulates its activity through EGF receptor signaling. However, it is unknown whether RHOV, like RHOU, interacts with SH3 domain-containing adaptor proteins. In this study, we investigated the interactions between RHOV and SH3 domain-containing adaptor proteins, including GRB2 and NCK2. The RHOV-induced serum response factor (SRF)-dependent gene transcriptional activity was attenuated in cells co-expressing either GRB2 or NCK2 compared to cells expressing RHOV alone. From the results of experiments using various gene mutants of RHOV and GRB2, it appears that the PR motif of the N-terminal region of RHOV is the crucial binding site for the SH3 domain-containing proteins. Furthermore, we found that Ser25 in the N-terminal region of RHOV is phosphorylated by PKA and that its phosphorylation is suppressed by interaction with NCK2 but not GRB2. We have found a novel regulatory mechanism for the phosphorylation of RHOV and its interaction with SH3 domain-containing adaptor proteins.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Quinasas Dependientes de AMP Cíclico , Proteína Adaptadora GRB2 , Transducción de Señal , Dominios Homologos src , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB2/genética , Células HEK293 , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/química , Proteínas Oncogénicas/genética , Fosforilación , Unión Proteica
10.
Elife ; 132024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995680

RESUMEN

Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Miopatías Estructurales Congénitas , Proteínas Nucleares , Proteínas Supresoras de Tumor , Dominios Homologos src , Miopatías Estructurales Congénitas/metabolismo , Miopatías Estructurales Congénitas/genética , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Unión Proteica , Dinamina II/metabolismo , Dinamina II/genética , Mutación
11.
J Biol Chem ; 300(8): 107551, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002671

RESUMEN

Isoforms of microtubule-associated protein 2 (MAP2) differ from their homolog Tau in the sequence and interactions of the N-terminal region. Binding of the N-terminal region of MAP2c (N-MAP2c) to the dimerization/docking domains of the regulatory subunit RIIα of cAMP-dependent protein kinase (RIIDD2) and to the Src-homology domain 2 (SH2) of growth factor receptor-bound protein 2 (Grb2) have been described long time ago. However, the structural features of the complexes remained unknown due to the disordered nature of MAP2. Here, we provide structural description of the complexes. We have solved solution structure of N-MAP2c in complex with RIIDD2, confirming formation of an amphiphilic α-helix of MAP2c upon binding, defining orientation of the α-helix in the complex and showing that its binding register differs from previous predictions. Using chemical shift mapping, we characterized the binding interface of SH2-Grb2 and rat MAP2c phosphorylated by the tyrosine kinase Fyn in their complex and proposed a model explaining differences between SH2-Grb2 complexes with rat MAP2c and phosphopeptides with a Grb2-specific sequence. The results provide the structural basis of a potential role of MAP2 in regulating cAMP-dependent phosphorylation cascade via interactions with RIIDD2 and Ras signaling pathway via interactions with SH2-Grb2.


Asunto(s)
Proteína Adaptadora GRB2 , Proteínas Asociadas a Microtúbulos , Unión Proteica , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB2/química , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Humanos , Transducción de Señal , Animales , Dominios Homologos src , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Proteínas Proto-Oncogénicas c-fyn/química , Proteínas Proto-Oncogénicas c-fyn/genética , Dominios Proteicos
12.
Proc Natl Acad Sci U S A ; 121(30): e2407159121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012820

RESUMEN

Mutations in the tyrosine phosphatase Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) are associated with a variety of human diseases. Most mutations in SHP2 increase its basal catalytic activity by disrupting autoinhibitory interactions between its phosphatase domain and N-terminal SH2 (phosphotyrosine recognition) domain. By contrast, some disease-associated mutations located in the ligand-binding pockets of the N- or C-terminal SH2 domains do not increase basal activity and likely exert their pathogenicity through alternative mechanisms. We lack a molecular understanding of how these SH2 mutations impact SHP2 structure, activity, and signaling. Here, we characterize five SHP2 SH2 domain ligand-binding pocket mutants through a combination of high-throughput biochemical screens, biophysical and biochemical measurements, and molecular dynamics simulations. We show that while some of these mutations alter binding affinity to phosphorylation sites, the T42A mutation in the N-SH2 domain is unique in that it also substantially alters ligand-binding specificity, despite being 8 to 10 Å from the specificity-determining region of the SH2 domain. This mutation exerts its effect on sequence specificity by remodeling the phosphotyrosine-binding pocket, altering the mode of engagement of both the phosphotyrosine and surrounding residues on the ligand. The functional consequence of this altered specificity is that the T42A mutant has biased sensitivity toward a subset of activating ligands and enhances downstream signaling. Our study highlights an example of a nuanced mechanism of action for a disease-associated mutation, characterized by a change in protein-protein interaction specificity that alters enzyme activation.


Asunto(s)
Simulación de Dinámica Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Dominios Homologos src , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Humanos , Dominios Homologos src/genética , Unión Proteica , Mutación , Fosforilación , Sitios de Unión/genética , Fosfotirosina/metabolismo , Ligandos
13.
Front Immunol ; 15: 1398955, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994355

RESUMEN

Introduction: STAT1a is an essential signal transduction protein involved in the interferon pathway, playing a vital role in IFN-alpha/beta and gamma signaling. Limited information is available about the STAT protein in fish, particularly in Indian major carps (IMC). This study aimed to identify and characterize the STAT1a protein in Labeo rohita (LrSTAT1a). Methods: The full-length CDS of LrSTAT1a transcript was identified and sequenced. Phylogenetic analyses were performed based on the nucleotide sequences. The in-vivo immune stimulant poly I: C was used to treat various tissues, and the expression of LrSTAT1a was determined using quantitative real-time polymerase chain reaction (qRT-PCR). A 3D model of the STAT1a protein was generated using close structure homologs available in the database and checked using molecular dynamics (MD) simulations. Results: The full-length CDS of Labeo rohita STAT1a (LrSTAT1a) transcript consisted of 3238 bp that encoded a polypeptide of 721 amino acids sequence was identified. Phylogenetic analyses were performed based on the nucleotide sequences. Based on our findings, other vertebrates share a high degree of conservation with STAT1a. Additionally, we report that the in vivo immune stimulant poly I: C treatment of various tissues resulted in the expression of LrSTAT1a as determined by quantitative real-time polymerase chain reaction (qRT-PCR). In the current investigation, treatment with poly I: C dramatically increased the expression of LrSTAT1a in nearly every organ and tissue, with the brain, muscle, kidney, and intestine showing the highest levels of expression compared to the control. We made a 3D model of the STAT1a protein by using close structure homologs that were already available in the database. The model was then checked using molecular dynamics (MD) simulations. Consistent with previous research, the MD study highlighted the significance of the STAT1a protein, which is responsible for Src homology 2 (SH2) recognition. An important H-bonding that successfully retains SH2 inside the STAT1a binding cavity was determined to be formed by the conserved residues SER107, GLN530, SER583, LYS584, MET103, and ALA106. Discussion: This study provides molecular insights into the STAT1a protein in Rohu (Labeo rohita) and highlights the potential role of STAT1a in the innate immune response in fish. The high degree of conservation of STAT1a among other vertebrates suggests its crucial role in the immune response. The in-vivo immune stimulation results indicate that STAT1a is involved in the immune response in various tissues, with the brain, muscle, kidney, and intestine being the most responsive. The 3D model and MD study provide further evidence of the significance of STAT1a in the immune response, specifically in SH2 recognition. Further research is necessary to understand the specific mechanisms involved in the IFN pathway and the role of STAT1a in the immune response of IMC.


Asunto(s)
Proteínas de Peces , Filogenia , Poli I-C , Factor de Transcripción STAT1 , Animales , Poli I-C/inmunología , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Dominios Homologos src , Unión Proteica , Secuencia de Aminoácidos , Simulación de Dinámica Molecular , Carpas/inmunología , Carpas/genética , Carpas/metabolismo , Perfilación de la Expresión Génica , Cyprinidae/inmunología , Cyprinidae/genética , Cyprinidae/metabolismo
14.
Methods Enzymol ; 698: 301-342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38886037

RESUMEN

Protein-protein interactions between SH2 domains and segments of proteins that include a post-translationally phosphorylated tyrosine residue (pY) underpin numerous signal transduction cascades that allow cells to respond to their environment. Dysregulation of the writing, erasing, and reading of these posttranslational modifications is a hallmark of human disease, notably cancer. Elucidating the precise role of the SH2 domain-containing adaptor proteins Crk and CrkL in tumor cell migration and invasion is challenging because there are no specific and potent antagonists available. Crk and CrkL SH2s interact with a region of the docking protein p130Cas containing 15 potential pY-containing tetrapeptide motifs. This chapter summarizes recent efforts toward peptide antagonists for this Crk/CrkL-p130Cas interaction. We describe our protocol for recombinant expression and purification of Crk and CrkL SH2s for functional assays and our procedure to determine the consensus binding motif from the p130Cas sequence. To develop a more potent antagonist, we employ methods often associated with structure-based drug design. Computational docking using Rosetta FlexPepDock, which accounts for peptides having a greater number of conformational degrees of freedom than small organic molecules that typically constitute libraries, provides quantitative docking metrics to prioritize candidate peptides for experimental testing. A battery of biophysical assays, including fluorescence polarization, differential scanning fluorimetry and saturation transfer difference nuclear magnetic resonance spectroscopy, were employed to assess the candidates. In parallel, GST pulldown competition assays characterized protein-protein binding in vitro. Taken together, our methodology yields peptide antagonists of the Crk/CrkL-p130Cas axis that will be used to validate targets, assess druggability, foster in vitro assay development, and potentially serve as lead compounds for therapeutic intervention.


Asunto(s)
Proteína Sustrato Asociada a CrK , Péptidos , Fosfotirosina , Proteínas Proto-Oncogénicas c-crk , Dominios Homologos src , Proteína Sustrato Asociada a CrK/metabolismo , Proteína Sustrato Asociada a CrK/química , Proteínas Proto-Oncogénicas c-crk/metabolismo , Proteínas Proto-Oncogénicas c-crk/química , Humanos , Fosfotirosina/metabolismo , Fosfotirosina/química , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Unión Proteica , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Simulación del Acoplamiento Molecular/métodos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/química
15.
Int J Mol Sci ; 25(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38928093

RESUMEN

The Drosophila downstream receptor kinase (Drk), a homologue of human GRB2, participates in the signal transduction from the extracellular to the intracellular environment. Drk receives signals through the interaction of its Src homology 2 (SH2) domain with the phosphorylated tyrosine residue in the receptor tyrosine kinases (RTKs). Here, we present the solution NMR structure of the SH2 domain of Drk (Drk-SH2), which was determined in the presence of a phosphotyrosine (pY)-containing peptide derived from a receptor tyrosine kinase, Sevenless (Sev). The solution structure of Drk-SH2 possess a common SH2 domain architecture, consisting of three ß strands imposed between two α helices. Additionally, we interpret the site-specific interactions of the Drk-SH2 domain with the pY-containing peptide through NMR titration experiments. The dynamics of Drk-SH2 were also analysed through NMR-relaxation experiments as well as the molecular dynamic simulation. The docking simulations of the pY-containing peptide onto the protein surface of Drk-SH2 provided the orientation of the peptide, which showed a good agreement with the analysis of the SH2 domain of GRB2.


Asunto(s)
Proteínas de Drosophila , Simulación de Dinámica Molecular , Unión Proteica , Dominios Homologos src , Animales , Humanos , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB2/química , Espectroscopía de Resonancia Magnética , Simulación del Acoplamiento Molecular , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/metabolismo , Drosophila melanogaster
16.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928272

RESUMEN

The SH2 domains of SHP2 play a crucial role in determining the function of the SHP2 protein. While the folding and binding properties of the isolated NSH2 and CSH2 domains have been extensively studied, there is limited information about the tandem SH2 domains. This study aims to elucidate the folding and binding kinetics of the NSH2-CSH2 tandem domains of SHP2 through rapid kinetic experiments, complementing existing data on the isolated domains. The results indicate that while the domains generally fold and unfold independently, acidic pH conditions induce complex scenarios involving the formation of a misfolded intermediate. Furthermore, a comparison of the binding kinetics of isolated NSH2 and CSH2 domains with the NSH2-CSH2 tandem domains, using peptides that mimic specific portions of Gab2, suggests a dynamic interplay between NSH2 and CSH2 in binding Gab2 that modulate the microscopic association rate constant of the binding reaction. These findings, discussed in the context of previous research on the NSH2 and CSH2 domains, enhance our understanding of the function of the SH2 domain tandem of SHP2.


Asunto(s)
Unión Proteica , Pliegue de Proteína , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Dominios Homologos src , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Concentración de Iones de Hidrógeno , Cinética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química
18.
Mol Cell Biol ; 44(7): 261-272, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828991

RESUMEN

The protein tyrosine phosphatase Src homology region 2 domain-containing phosphatase-1 (SHP-1) plays an important role in modulating glucose and lipid homeostasis. We previously suggested a potential role of SHP-1 in the regulation of peroxisome proliferator-activated receptor γ2 (PPARγ2) expression and activity but the mechanisms were unexplored. PPARγ2 is the master regulator of adipogenesis, but how its activity is regulated by tyrosine phosphorylation is largely unknown. Here, we found that SHP-1 binds to PPARγ2 primarily via its N-terminal SH2-domain. We confirmed the phosphorylation of PPARγ2 on tyrosine-residue 78 (Y78), which was reduced by SHP-1 in vitro resulting in decreased PPARγ2 stability. Loss of SHP-1 led to elevated, agonist-induced expression of the classical PPARγ2 targets FABP4 and CD36, concomitant with increased lipid content in cells expressing PPARγ2, an effect blunted by abrogation of PPARγ2 phosphorylation. Collectively, we discovered that SHP-1 affects the stability of PPARγ2 through dephosphorylation thereby influencing adipogenesis.


Asunto(s)
Adipogénesis , PPAR gamma , Proteína Tirosina Fosfatasa no Receptora Tipo 6 , PPAR gamma/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Fosforilación , Humanos , Animales , Ratones , Antígenos CD36/metabolismo , Antígenos CD36/genética , Células HEK293 , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Estabilidad Proteica , Células 3T3-L1 , Dominios Homologos src , Unión Proteica
19.
Nature ; 629(8014): 1174-1181, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720073

RESUMEN

Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution.


Asunto(s)
Fosfotirosina , Proteínas Tirosina Quinasas , Especificidad por Sustrato , Tirosina , Animales , Humanos , Secuencias de Aminoácidos , Evolución Molecular , Espectrometría de Masas , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilación , Fosfotirosina/metabolismo , Proteínas Tirosina Quinasas/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Proteoma/química , Proteoma/metabolismo , Proteómica , Transducción de Señal , Dominios Homologos src , Tirosina/metabolismo , Tirosina/química
20.
Cell Rep ; 43(5): 114195, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38717900

RESUMEN

Clathrin-mediated endocytosis (CME) is an essential process of cargo uptake operating in all eukaryotes. In animals and yeast, BAR-SH3 domain proteins, endophilins and amphiphysins, function at the conclusion of CME to recruit factors for vesicle scission and uncoating. Arabidopsis thaliana contains the BAR-SH3 domain proteins SH3P1-SH3P3, but their role is poorly understood. Here, we identify SH3Ps as functional homologs of endophilin/amphiphysin. SH3P1-SH3P3 bind to discrete foci at the plasma membrane (PM), and SH3P2 recruits late to a subset of clathrin-coated pits. The SH3P2 PM recruitment pattern is nearly identical to its interactor, a putative uncoating factor, AUXILIN-LIKE1. Notably, SH3P1-SH3P3 are required for most of AUXILIN-LIKE1 recruitment to the PM. This indicates a plant-specific modification of CME, where BAR-SH3 proteins recruit auxilin-like uncoating factors rather than the uncoating phosphatases, synaptojanins. SH3P1-SH3P3 act redundantly in overall CME with the plant-specific endocytic adaptor TPLATE complex but not due to an SH3 domain in its TASH3 subunit.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Clatrina , Endocitosis , Clatrina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Auxilinas/metabolismo , Membrana Celular/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Dominios Homologos src , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...