RESUMEN
Allosteric signaling in proteins has been known for some half a century, yet how the signal traverses the protein remains an active area of research. Recently, the importance of electrostatics to achieve long-range signaling has become increasingly appreciated. Our laboratory has been working on developing network approaches to capture such interactions. In this study, we turn our attention to the well-studied allosteric model protein, PDZ. We study the allosteric dynamics on a per-residue basis in key constructs involving the PDZ domain, its allosteric effector, and its peptide ligand. We utilize molecular dynamics trajectories to create the networks for the constructs to explore the allosteric effect by plotting the heat kernel results onto axes defined by principal components. We introduce a new metric to quantitate the volume sampled by a residue in the latent space. We relate our findings to PDZ and the greater field of allostery.
Asunto(s)
Dominios PDZ , Proteínas , Transducción de Señal , Regulación Alostérica , Simulación de Dinámica Molecular , Dominios PDZ/fisiología , Unión Proteica , Proteínas/química , Transducción de Señal/fisiología , Electricidad EstáticaRESUMEN
Scribble is a highly conserved regulator of cell polarity, a process that enables the generation of asymmetry at the cellular and tissue level in higher organisms. Scribble acts in concert with Disc-large (Dlg) and Lethal-2-giant larvae (Lgl) to form the Scribble polarity complex, and its functional dysregulation is associated with poor prognosis during viral infections. Viruses have been shown to interfere with Scribble by targeting Scribble PDZ domains to subvert the network of interactions that enable normal control of cell polarity via Scribble, as well as the localisation of the Scribble module within the cell. The influenza A virus NS1 protein was shown to bind to human Scribble (SCRIB) via its C-terminal PDZ binding motif (PBM). It was reported that the PBM sequence ESEV is a virulence determinant for influenza A virus H5N1 whilst other sequences, such as ESKV, KSEV and RSKV, demonstrated no affinity towards Scribble. We now show, using isothermal titration calorimetry (ITC), that ESKV and KSEV bind to SCRIB PDZ domains and that ESEV unexpectedly displayed an affinity towards all four PDZs and not just a selected few. We then define the structural basis for the interactions of SCRIB PDZ1 domain with ESEV and ESKV PBM motifs, as well as SCRIB PDZ3 with the ESKV PBM motif. These findings will serve as a platform for understanding the role of Scribble PDZ domains and their interactions with different NS1 PBMs and the mechanisms that mediate cell polarity within the context of the pathogenesis of influenza A virus.
Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Polaridad Celular , Humanos , Dominios PDZ/fisiología , Unión ProteicaRESUMEN
Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 2 (MAGI2) is a neuronal scaffold protein that plays critical roles at synaptic junctions by assembling neurotransmitter receptors and cell adhesion proteins through its multiple protein-protein interaction domains, including six PDZ domains, two phosphoserine-phosphothreonine binding WW domains, and a guanylate kinase GK domain. Previous studies showed that MAGI2 participates in formation of tetrameric complexes with PDZ-GEF1, TrkA receptor, and ankyrin repeat-rich membrane spanning (ARMS) protein at late endosomes and is crucial for neurite outgrowth. However, the molecular mechanism governing the assembly of these complexes remains unknown. Here, we characterize the direct interaction between MAGI2 and ARMS through multiple biochemical assays. Moreover, our solved crystal structure of the truncated PDZ4/PBM (PDZ binding motifs) complex of MAGI2 and ARMS proteins (MAGI2-PDZ4/ARMS-PBM) reveals that the binding interface lies between the αB/ßB groove from the PDZ4 of MAGI2 and the C-terminal PBM from ARMS. The structure reveals high similarity to others in this protein family where canonical PDZ/PBM interactions are observed. However, the conserved "GLGF" motif in the PSD-95-PDZ3 changes to "GFGF" in the MAGI2-PDZ4/ARMS-PBM complex. We further validated our crystal structure through serial mutagenesis assays. Taken together, our study provides the biochemical details and binding mechanisms that underpin the stabilization of the MAGI2-PDZ4/ARMS-PBM complex, thereby offering a biochemical and structural basis for further understanding of the functional roles of MAGI2, ARMS, PDZ-GEF1, and TrkA in forming the tetrameric receptor complex in neuronal signaling.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cristalografía por Rayos X , Proteínas de Unión al ADN/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanilato-Quinasas/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Dominios PDZ/fisiología , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Guanilato-Quinasas/química , Guanilato-Quinasas/genética , Células HEK293 , Humanos , Proteínas con Dominio LIM/química , Proteínas con Dominio LIM/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , RatasRESUMEN
Most of the structural proteins known today are composed of domains that carry their own functions while keeping their structural properties. It is supposed that such domains, when taken out of the context of the whole protein, can retain their original structure and function to a certain extent. Information on the specific functional and structural characteristics of individual domains in a new context of artificial fusion proteins may help to reveal the rules of internal and external domain communication. Moreover, this could also help explain the mechanism of such communication and address how the mutual allosteric effect plays a role in a such multi-domain protein system. The simple model system of the two-domain fusion protein investigated in this work consisted of a well-folded PDZ3 domain and an artificially designed small protein domain called Tryptophan Cage (TrpCage). Two fusion proteins with swapped domain order were designed to study their structural and functional features as well as their biophysical properties. The proteins composed of PDZ3 and TrpCage, both identical in amino acid sequence but different in composition (PDZ3-TrpCage, TrpCage-PDZ3), were studied using circualr dichroism (CD) spectrometry, analytical ultracentrifugation, and molecular dynamic simulations. The biophysical analysis uncovered different structural and denaturation properties of both studied proteins, revealing their different unfolding pathways and dynamics.
Asunto(s)
Dominios PDZ , Proteínas Recombinantes de Fusión , Triptófano , Secuencia de Aminoácidos , Simulación de Dinámica Molecular , Dominios PDZ/genética , Dominios PDZ/fisiología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Triptófano/química , Triptófano/genéticaRESUMEN
Interactions between the hepatitis B virus core protein (HBc) and host cell proteins are poorly understood, although they may be essential for the propagation of the virus and its pathogenicity. HBc has a C-terminal PDZ (PSD-95, Dlg1, ZO-1)-binding motif (PBM) that is responsible for interactions with host PDZ domain-containing proteins. In this work, we focused on the human protein tyrosine phosphatase non-receptor type 3 (PTPN3) and its interaction with HBc. We solved the crystal structure of the PDZ domain of PTPN3 in complex with the PBM of HBc, revealing a network of interactions specific to class I PDZ domains despite the presence of a C-terminal cysteine in this atypical PBM. We further showed that PTPN3 binds the HBc protein within capsids or as a homodimer. We demonstrate that overexpression of PTPN3 significantly affects HBV infection in HepG2 NTCP cells. Finally, we performed proteomics studies on both sides by pull-down assays and screening of a human PDZ domain library. We identified a pool of human PBM-containing proteins that might interact with PTPN3 in cells and that could be in competition with the HBc PBM during infection, and we also identified potential cellular partners of HBc through PDZ-PBM interactions. This study opens up many avenues of future investigations into the pathophysiology of HBV.
Asunto(s)
Antígenos del Núcleo de la Hepatitis B/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 3/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 3/ultraestructura , Cápside/metabolismo , Hepatitis B/metabolismo , Hepatitis B/virología , Antígenos del Núcleo de la Hepatitis B/ultraestructura , Virus de la Hepatitis B/metabolismo , Virus de la Hepatitis B/patogenicidad , Virus de la Hepatitis B/fisiología , Humanos , Dominios PDZ/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 3/química , Proteína Tirosina Fosfatasa no Receptora Tipo 3/fisiología , Proteínas Tirosina Fosfatasas/metabolismo , Tirosina/metabolismo , Proteínas del Núcleo Viral/metabolismoRESUMEN
Claudin 6 (CLDN6) was found to be a breast cancer suppressor gene, which is lowly expressed in breast cancer and inhibits breast cancer cell proliferation upon overexpression. However, the mechanism by which CLDN6 inhibits breast cancer proliferation is unclear. Here, we investigated this issue and elucidated the molecular mechanisms by which CLDN6 inhibits breast cancer proliferation. First, we verified that CLDN6 was lowly expressed in breast cancer tissues and that patients with lower CLDN6 expression had a worse prognosis. Next, we confirmed that CLDN6 inhibited breast cancer proliferation through in vitro and in vivo experiments. As for the mechanism, we found that CLDN6 inhibited c-MYC-mediated aerobic glycolysis based on a metabolomic analysis of CLDN6 affecting cellular lactate levels. CLDN6 interacted with a transcriptional co-activator with PDZ-binding motif (TAZ) and reduced the level of TAZ, thereby suppressing c-MYC transcription, which led to a reduction in glucose uptake and lactate production. Considered together, our results suggested that CLDN6 suppressed c-MYC-mediated aerobic glycolysis to inhibit the proliferation of breast cancer by TAZ, which indicated that CLDN6 acted as a novel regulator of aerobic glycolysis and provided a theoretical basis for CLDN6 as a biomarker of progression in breast cancer.
Asunto(s)
Neoplasias de la Mama/metabolismo , Proliferación Celular/fisiología , Claudinas/metabolismo , Dominios PDZ/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Femenino , Glucólisis/fisiología , Células HEK293 , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Transducción de Señal/fisiologíaRESUMEN
PDZ domains are abundant interaction hubs found in a number of different proteins and they exhibit characteristic differences in their structure and ligand specificity. Their internal dynamics have been proposed to contribute to their biological activity via changes in conformational entropy upon ligand binding and allosteric modulation. Here we investigate dynamic structural ensembles of PDZ3 of the postsynaptic protein PSD-95, calculated based on previously published backbone and side-chain S2 order parameters. We show that there are distinct but interdependent structural rearrangements in PDZ3 upon ligand binding and the presence of the intramolecular allosteric modulator helix α3. We have also compared these rearrangements in PDZ1-2 of PSD-95 and the conformational diversity of an extended set of PDZ domains available in the PDB database. We conclude that although the opening-closing rearrangement, occurring upon ligand binding, is likely a general feature for all PDZ domains, the conformer redistribution upon ligand binding along this mode is domain-dependent. Our findings suggest that the structural and functional diversity of PDZ domains is accompanied by a diversity of internal motional modes and their interdependence.
Asunto(s)
Homólogo 4 de la Proteína Discs Large/metabolismo , Dominios PDZ/genética , Dominios PDZ/fisiología , Secuencia de Aminoácidos/genética , Animales , Sitios de Unión/genética , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/ultraestructura , Entropía , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligandos , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Conformación Molecular , Simulación de Dinámica Molecular , Unión Proteica/genéticaRESUMEN
Hearing is a mechanical and neurochemical process, which occurs in the hair cells of inner ear that converts the sound vibrations into electrical signals transmitted to the brain. The multi-PDZ scaffolding protein whirlin plays a critical role in the formation and function of stereocilia exposed at the surface of hair cells. In this article, we reported seven stereociliary proteins that encode PDZ binding motifs (PBM) and interact with whirlin PDZ3, where four of them are first reported. We solved the atomic resolution structures of complexes between whirlin PDZ3 and the PBMs of myosin 15a, CASK, harmonin a1 and taperin. Interestingly, the PBM of CASK and taperin are rare non-canonical PBM, which are not localized at the extreme C terminus. This large capacity to accommodate various partners could be related to the distinct functions of whirlin at different stages of the hair cell development.
Asunto(s)
Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Dominios PDZ/fisiología , Unión Proteica , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Guanilato-Quinasas/metabolismo , Humanos , Miosinas/metabolismo , Proteínas , Estereocilios/metabolismoRESUMEN
The tight junction (TJ) is the apical-most intercellular junction complex, serving as a biological barrier of intercellular spaces between epithelial cells. The TJ's integrity is maintained by a key protein-protein interaction between C-terminal motifs of claudins (CLDs) and the postsynaptic density 95 (PSD-95)/discs large/zonula occludens 1 (ZO-1; PDZ) domains of ZO-1. Weak but direct interaction of baicalin and its aglycon, baicalein-which are pharmacologically active components of Chinese skullcap (Radix scutellariae)-with ZO-1(PDZ1) have been observed in NMR experiments. Next, we observed TJ-mitigating activity of these flavonoids against Madin-Darby canine kidney (MDCK) II cells with the downregulation of subcellular localization of CLD-2 at TJs. Meanwhile, baicalein-but not baicalin-induced a slender morphological change of MDCK cells' shape from their normal cobblestone-like shapes. Since baicalin and baicalein did not induce a localization change of occludin (OCLN), a "partial" epithelial-mesenchymal transition (EMT) induced by these flavonoids was considered. SB431542, an ALK-5 inhibitor, reversed the CLD-2 downregulation of both baicalin and baicalein, while SB431542 did not reverse the slender morphology. In contrast, the MEK/ERK inhibitor U0126 reversed the slender shape change. Thus, in addition to inhibition of the ZO-1-CLD interaction, activation of both transforming growth factor-ß (TGF-ß) and MEK/ERK signaling pathways have been suggested to be involved in TJ reduction by these flavonoids. Finally, we demonstrated that baicalin enhanced the permeability of fluorescence-labeled insulin via the paracellular pathway of the Caco-2 cell layer. We propose that baicalin, baicalein, and Radix scutellariae extract are useful as drug absorption enhancers.
Asunto(s)
Flavanonas/administración & dosificación , Flavonoides/administración & dosificación , Dominios PDZ/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos , Proteína de la Zonula Occludens-1/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Células CACO-2 , Perros , Medicamentos Herbarios Chinos/administración & dosificación , Humanos , Células de Riñón Canino Madin Darby , Ratones , Dominios PDZ/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismoRESUMEN
Classical approaches for probing protein phosphorylation events rely on phosphomimicking amino acids or enzymatic phosphorylation of proteins. In many cases, phosphomimicking amino acids inadequately imitate actual protein phosphorylation, whereas the latter method suffers from an inability to control site specificity and stoichiometry. To circumvent these shortcomings, chemical biological approaches have been developed to enable introduction of phosphorylated amino acids into proteins in a reliable and controlled way. Here, we describe methods to make semisynthetic, phosphorylated PDZ domains, covering expressed protein ligation (EPL) strategies involving modifications within the N-terminal or C-terminal regions. We also enclose protocols for the biophysical characterization of the semisynthetic phosphorylated PDZ domains to establish whether the introduced phosphorylation affects protein structure, stability, and function.
Asunto(s)
Clonación Molecular/métodos , Dominios PDZ/fisiología , Fosforilación/fisiología , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/química , Técnicas de Síntesis en Fase Sólida/métodos , Cromatografía Líquida de Alta Presión , Dicroismo Circular/métodos , Cisteína/química , Escherichia coli/genética , Ésteres/química , Polarización de Fluorescencia/métodos , Expresión Génica , Fosfopéptidos/síntesis química , Fosfopéptidos/química , Pliegue de Proteína , Estabilidad Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray , Compuestos de Sulfhidrilo/químicaRESUMEN
BACKGROUND: Synaptic cell adhesion molecule 1 (SynCAM1) also known as cell adhesion molecule 1 (CADM1) is a transmembrane cell adhesion protein that operates in a variety of physiological and pathological cellular contexts, and its interaction with the PDZ signalling protein MUPP1 have been previously implicated in autism spectrum disorder (ASD). METHODS: We used in vitro pull-down systems based on the bacterial and mammalian extracts to study SynCAM1/CADM1 PDZ interactions with MUPP1 at various conditions. RESULTS: So far, the investigated interaction of SynCAM1/CADM1 with MUPP1 has been mostly attributed to an unspecified region of MUPP1 PDZ domains 1-5 or exclusively to domain 2, using a yeast two-hybrid system. We also confirmed the single interaction of native synaptosomal CADM1 with PDZ domain 2. However, in this work, using recombinant proteins overexpressed in bacteria, we found an in vitro pull-down conditions in which all first five domains and, to a much lesser extent, MUPP1 domains 7 and 11 significantly interacted with the whole C-terminal domain of SynCAM1/CADM1. These PDZ interactions were confirmed by a pull-down assay using the last seven amino acids of the SynCAM1/CADM1 PDZ motif and using two fusion partners. Multiple interactions were additionally replicated using the continuous N-terminal MUPP1 protein fragment, which included first five PDZ domains, containing either intact or mutated domain 2. CONCLUSIONS: We hypothesize that multiple interactions might exist in vivo, representing transient low-affinity interactions or alternative binding sites on MUPP1 when domain 2 is occupied or occluded by the interaction with other ligands. This newly identified interactions extend the potential genetic mutations, possibly affecting SynCAM1/CADM1/MUPP1 function. Possible reasons for the absence of some of the identified CADM1 PDZ interactions in mammalian extracts are discussed.
Asunto(s)
Molécula 1 de Adhesión Celular/metabolismo , Proteínas de la Membrana/metabolismo , Dominios PDZ/fisiología , Sinaptosomas/metabolismo , Animales , Bacterias/metabolismoRESUMEN
BACKGROUND: Sorting Nexin 27 (SNX27) is a 62-kDa protein localized to early endosomes and known to regulate the intracellular trafficking of ion channels and receptors. In addition to a PX domain common among all of the sorting nexin family, SNX27 is the only sorting family member that contains a PDZ domain. To identify novel SNX27-PDZ binding partners, we performed a proteomic screen in mouse principal kidney cortical collecting duct cells (mpkCCD) using a GST-SNX27 fusion construct as bait. We found that the C-terminal type I PDZ binding motif (DTDL) of ß-catenin, an adherens junction scaffolding protein and transcriptional co-activator, interacts directly with SNX27. Using biochemical and immunofluorescent techniques, ß-catenin was identified in endosomal compartments where co-localization with SNX27 was observed. Furthermore, E-cadherin, but not Axin, GSK3 or Lef-1 was located in SNX27 protein complexes. While overexpression of wild-type ß-catenin protein increased TCF-LEF dependent transcriptional activity, an enhanced transcriptional activity was not observed in cells expressing ß-Catenin ΔFDTDL or diminished SNX27 expression. These results imply importance of the C-terminal PDZ binding motif for the transcriptional activity of ß-catenin and propose that SNX27 might be involved in the assembly of ß-catenin complexes in the endosome.
Asunto(s)
Nexinas de Clasificación/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Línea Celular , Endosomas/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Células HEK293 , Humanos , Ratones , Dominios PDZ/fisiología , Unión Proteica/fisiología , Transporte de Proteínas/fisiología , Transcripción Genética/fisiologíaRESUMEN
PDZ domains recognize PDZ Binding Motifs (PBMs) at the extreme C-terminus of their partner proteins. The human proteome contains 266 identified PDZ domains, the PDZome, spread over 152 proteins. We previously developed the "holdup" chromatographic assay for high-throughput determination of PDZ-PBM affinities. In that work, we had used an expression library of 241 PDZ constructs (the "PDZome V.1"). Here, we cloned, produced, and characterized a new bacterial expression library ("PDZome V.2"), which comprises all the 266 known human PDZ domains as well as 37 PDZ tandem constructs. To ensure the best expression level, folding, and solubility, all construct boundaries were redesigned using available structural data and all DNA sequences were optimized for Escherichia coli expression. Consequently, all the PDZ constructs are produced in a soluble form. Precise quantification and quality control were carried out. The binding profiles previously published using "PDZome V.1" were reproduced and completed using the novel "PDZome V.2" library. We provide here the detailed description of the high-throughput protocols followed through the PDZ gene synthesis and cloning, PDZ production, holdup assay and data treatment.
Asunto(s)
Péptidos/metabolismo , Sitios de Unión , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Dominios PDZ/genética , Dominios PDZ/fisiología , Biblioteca de Péptidos , Péptidos/química , Unión Proteica , Mapeo de Interacción de ProteínasRESUMEN
Scribble is a crucial adaptor protein that plays a pivotal role during establishment and control of cell polarity, impacting many physiological processes ranging from cell migration to immunity and organization of tissue architecture. Scribble harbours a leucine-rich repeat domain and four PDZ domains that mediate most of Scribble's interactions with other proteins. It has become increasingly clear that post-translational modifications substantially impact Scribble-ligand interactions, with phosphorylation being a major modulator of binding to Scribble. To better understand how Scribble PDZ domains direct cell polarity signalling and how phosphorylation impacts this process, we investigated human Scribble interactions with MCC (Mutated in Colorectal Cancer). We systematically evaluated the ability of all four individual Scribble PDZ domains to bind the PDZ-binding motif (PBM) of MCC as well as MCC phosphorylated at the -1 Ser position. We show that Scribble PDZ1 and PDZ3 are the major interactors with MCC, and that modifications to Ser at the -1 position in the MCC PBM only has a minor effect on binding to Scribble PDZ domains. We then examined the structural basis for these observations by determining the crystal structures of Scribble PDZ1 domain bound to both the unphosphorylated MCC PBM as well as phosphorylated MCC. Our structures indicated that phospho-Ser at the -1 position in MCC is not involved in major contacts with Scribble PDZ1, and in conjunction with our affinity measurements suggest that the impact of phosphorylation at the -1 position of MCC must extend beyond a simple modulation of the affinity for Scribble PDZ domains.
Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Dominios PDZ/fisiología , Péptidos/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Sitios de Unión , Calorimetría , Cristalografía por Rayos X , Humanos , Proteínas de la Membrana/genética , Simulación de Dinámica Molecular , Dominios PDZ/genética , Péptidos/química , Péptidos/genética , Fosforilación , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Supresoras de Tumor/genéticaRESUMEN
Protection of neuronal homeostasis is a major goal in the management of neurodegenerative diseases. Microtubule-associated Ser/Thr kinase 2 (MAST2) inhibits neurite outgrowth, and its inhibition therefore represents a potential therapeutic strategy. We previously reported that a viral protein (G-protein from rabies virus) capable of interfering with protein-protein interactions between the PDZ domain of MAST2 and the C-terminal moieties of its cellular partners counteracts MAST2-mediated suppression of neurite outgrowth. Here, we designed peptides derived from the native viral protein to increase the affinity of these peptides for the MAST2-PDZ domain. Our strategy involved modifying the length and flexibility of the noninteracting sequence linking the two subsites anchoring the peptide to the PDZ domain. Three peptides, Neurovita1 (NV1), NV2, and NV3, were selected, and we found that they all had increased affinities for the MAST2-PDZ domain, with Kd values decreasing from 1300 to 60 nm, while target selectivity was maintained. A parallel biological assay evaluating neurite extension and branching in cell cultures revealed that the NV peptides gradually improved neural activity, with the efficacies of these peptides for stimulating neurite outgrowth mirroring their affinities for MAST2-PDZ. We also show that NVs can be delivered into the cytoplasm of neurons as a gene or peptide. In summary, our findings indicate that virus-derived peptides targeted to MAST2-PDZ stimulate neurite outgrowth in several neuron types, opening up promising avenues for potentially using NVs in the management of neurodegenerative diseases.
Asunto(s)
Neuritas/metabolismo , Proyección Neuronal/efectos de los fármacos , Dominios PDZ/fisiología , Estimulantes del Sistema Nervioso Central/metabolismo , Humanos , Células Madre Pluripotentes Inducidas , Microtúbulos/metabolismo , Neuronas/metabolismo , Péptidos/metabolismo , Péptidos/farmacología , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Virus de la Rabia , Relación Estructura-Actividad , Proteínas Virales/metabolismo , Proteínas Virales/farmacologíaRESUMEN
Targeting mGluR5 has been an attractive strategy to modulate glutamate excitotoxicity for neuroprotection. Although human clinical trials using mGluR5 negative allosteric modulators (NAMs) have included some disappointments, recent investigations have added several more attractive small molecules to this field, providing a promise that the identification of more additional strategies to modulate mGluR5 activity might be potentially beneficial for the advancement of PD treatment. Here, we determined the role of the interacting partner CAL (cystic fibrosis transmembrane conductance regulator-associated ligand) in mGluR5-mediated protection in vitro and in vivo. In astroglial C6 cells, CAL deficiency blocked (S)-3, 5-dihydroxyphenylglycine (DHPG)-elicited p-AKT and p-ERK1/2, subsequently prevented group I mGluRs-mediated anti-apoptotic protection, which was blocked by receptor antagonist 1-aminoindan-1, 5-dicarboxylic acid (AIDA), and PI3K or MEK inhibitor LY294002 or U0126. In rotenone-treated MN9D cells, both CAL and mGluR5 expressions were decreased in a time- and dose-dependent manner, and the correlation between these 2 proteins was confirmed by lentivirus-delivered CAL overexpression and knockdown. Moreover, CAL coupled with mGluR5 upregulated mGluR5 protein expression by inhibition of ubiquitin-proteasome-dependent degradation to suppress mGluR5-mediated p-JNK and to protect against cell apoptosis. Additionally, CAL also inhibited rotenone-induced glutamate release to modulate mGluR5 activity. Furthermore, in the rotenone-induced rat model of PD, AAV-delivered CAL overexpression attenuated behavioral deficits and dopaminergic neuronal death, while CAL deficiency aggravated rotenone toxicity. On the other hand, the protective effect of the mGluR5 antagonist MPEP was weakened by knocking down CAL. In vivo experiments also confirmed that CAL inhibited ubiquitination-proteasome-dependent degradation to modulate mGluR5 expression and JNK phosphorylation. Our findings show that CAL protects against cell apoptosis via modulating mGluR5 activity, and may be a new molecular target for an effective therapeutic strategy for PD.
Asunto(s)
Apoptosis , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Dominios PDZ , Enfermedad de Parkinson/metabolismo , Receptor del Glutamato Metabotropico 5/fisiología , Animales , Astrocitos/metabolismo , Western Blotting , Línea Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Dominios PDZ/fisiología , Ratas , Ratas Sprague-Dawley , Receptor del Glutamato Metabotropico 5/metabolismoRESUMEN
Dishevelled (DVL) is the key component of the Wnt signaling pathway. Currently, DVL conformational dynamics under native conditions is unknown. To overcome this limitation, we develop the Fluorescein Arsenical Hairpin Binder- (FlAsH-) based FRET in vivo approach to study DVL conformation in living cells. Using this single-cell FRET approach, we demonstrate that (i) Wnt ligands induce open DVL conformation, (ii) DVL variants that are predominantly open, show more even subcellular localization and more efficient membrane recruitment by Frizzled (FZD) and (iii) Casein kinase 1 É (CK1É) has a key regulatory function in DVL conformational dynamics. In silico modeling and in vitro biophysical methods explain how CK1É-specific phosphorylation events control DVL conformations via modulation of the PDZ domain and its interaction with DVL C-terminus. In summary, our study describes an experimental tool for DVL conformational sampling in living cells and elucidates the essential regulatory role of CK1É in DVL conformational dynamics.
Asunto(s)
Caseína Cinasa 1 épsilon/metabolismo , Proteínas Dishevelled/metabolismo , Dominios PDZ/fisiología , Vía de Señalización Wnt/fisiología , Animales , Técnicas Biosensibles , Caseína Cinasa 1 épsilon/genética , Proteínas Dishevelled/genética , Pruebas de Enzimas/métodos , Transferencia Resonante de Energía de Fluorescencia , Receptores Frizzled/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Microscopía Fluorescente/métodos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Oocitos , Fosforilación/fisiología , Análisis de la Célula Individual/métodos , Xenopus laevisRESUMEN
Interactions between axons and Schwann cells are essential for the acquisition of Schwann cell radial and longitudinal polarity and myelin sheath assembly. In the internode, the largest of these longitudinal domains, axon-Schwann cell interactions are mediated by the Nectin-like (Necl) cell adhesion proteins, also known as SynCAMs or Cadms. In particular, Necl-1/Cadm3 expressed on the axon surface binds to Necl-4/Cadm4 expressed along the adaxonal membrane of myelinating Schwann cells. Necl-4 promotes myelination in vitro and is required for the timely onset of myelination and the fidelity of the organization of the myelin sheath and the internode in vivo. A key question is the identity of the downstream effectors of Necl-4 that mediate its effects. The cytoplasmic terminal region (CTR) of Necl-4 contains a PDZ-domain binding motif. Accordingly, we used the CTR of Necl-4 in an unbiased proteomic screen of PDZ-domain proteins. We identify Par-3, a multi-PDZ domain containing protein of the Par-aPKC polarity complex previously implicated in myelination, as an interacting protein. Necl-4 and Par-3 are colocalized along the inner Schwann cell membrane and coprecipitate from Schwann cell lysates. The CTR of Necl-4 binds to the first PDZ domain of Par-3 thereby recruiting Par-3 to sites of Necl-4/Necl-1 interaction. Knockdown of Necl-4 perturbs Par-3 localization to the inner membrane of Schwann cells in myelinating co-cultures. These findings implicate interactions of Necl-1/Necl-4 in the recruitment of Par-3 to the Schwann cell adaxonal membrane and the establishment of Schwann cell radial polarity.
Asunto(s)
Axones/metabolismo , Moléculas de Adhesión Celular/metabolismo , Membrana Celular/metabolismo , Inmunoglobulinas/metabolismo , Dominios PDZ/fisiología , Células de Schwann/citología , Proteínas Adaptadoras Transductoras de Señales , Animales , Células CHO , Moléculas de Adhesión Celular/genética , Proteínas de Ciclo Celular , Membrana Celular/genética , Técnicas de Cocultivo , Cricetulus , Embrión de Mamíferos , Ganglios Espinales/citología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunoglobulinas/genética , Inmunoprecipitación , Técnicas In Vitro , Ratones , Neuronas , Dominios PDZ/genética , Ratas , Nervio Ciático/citología , TransfecciónRESUMEN
Cells respond to mechanical stimuli with altered signaling networks. Here, we show that mechanical forces rapidly induce phosphorylation of CD97/ADGRE5 (pCD97) at its intracellular C-terminal PDZ-binding motif (PBM). Biochemically, this phosphorylation disrupts CD97 binding to PDZ domains of the scaffold protein DLG1. In shear-stressed cells, pCD97 appears not only in junctions, retracting fibers, and the attachment area but also in lost membrane patches, demonstrating (intra)cellular detachment at the CD97 PBM. This motif is critical for the CD97-dependent mechanoresponse. Cells expressing CD97 without the PBM are more deformable, and under shear stress, these cells lose cell contacts faster and show changes in the actin cytoskeleton when compared with cells expressing full-length CD97. Our data indicate CD97 linkage to the cytoskeleton. Consistently, CD97 knockout phenocopies CD97 without the PBM, and membranous CD97 is organized in an F-actin-dependent manner. In summary, CD97 shapes the cellular mechanoresponse through signaling modulation via its PBM.
Asunto(s)
Antígenos CD/metabolismo , Dominios PDZ/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Fosforilación , Unión ProteicaRESUMEN
Anxiety disorders are associated with a high social burden worldwide. Recently, increasing evidence suggests that nuclear factor kappa B (NF-κB) has significant implications for psychiatric diseases, including anxiety and depressive disorders. However, the molecular mechanisms underlying the role of NF-κB in stress-induced anxiety behaviors are poorly understood. In this study, we show that chronic mild stress (CMS) and glucocorticoids dramatically increased the expression of NF-κB subunits p50 and p65, phosphorylation and acetylation of p65, and the level of nuclear p65 in vivo and in vitro, implicating activation of NF-κB signaling in chronic stress-induced pathological processes. Using the novelty-suppressed feeding (NSF) and elevated-plus maze (EPM) tests, we found that treatment with pyrrolidine dithiocarbamate (PDTC; intra-hippocampal infusion), an inhibitor of NF-κB, rescued the CMS- or glucocorticoid-induced anxiogenic behaviors in mice. Microinjection of PDTC into the hippocampus reversed CMS-induced up-regulation of neuronal nitric oxide synthase (nNOS), carboxy-terminal PDZ ligand of nNOS (CAPON), and dexamethasone-induced ras protein 1 (Dexras1) and dendritic spine loss of dentate gyrus (DG) granule cells. Moreover, over-expression of CAPON by infusing LV-CAPON-L-GFP into the hippocampus induced nNOS-Dexras1 interaction and anxiety-like behaviors, and inhibition of NF-κB by PDTC reduced the LV-CAPON-L-GFP-induced increases in nNOS-Dexras1 complex and anxiogenic-like effects in mice. These findings indicate that hippocampal NF-κB mediates anxiogenic behaviors, probably via regulating the association of nNOS-CAPON-Dexras1, and uncover a novel approach to the treatment of anxiety disorders.