Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.120
Filtrar
1.
Fly (Austin) ; 18(1): 2352938, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38741287

RESUMEN

To identify genes required for brain growth, we took an RNAi knockdown reverse genetic approach in Drosophila. One potential candidate isolated from this effort is the anti-lipogenic gene adipose (adp). Adp has an established role in the negative regulation of lipogenesis in the fat body of the fly and adipose tissue in mammals. While fat is key to proper development in general, adp has not been investigated during brain development. Here, we found that RNAi knockdown of adp in neuronal stem cells and neurons results in reduced brain lobe volume and sought to replicate this with a mutant fly. We generated a novel adp mutant that acts as a loss-of-function mutant based on buoyancy assay results. We found that despite a change in fat content in the body overall and a decrease in the number of larger (>5 µm) brain lipid droplets, there was no change in the brain lobe volume of mutant larvae. Overall, our work describes a novel adp mutant that can functionally replace the long-standing adp60 mutant and shows that the adp gene has no obvious involvement in brain growth.


Asunto(s)
Encéfalo , Proteínas de Drosophila , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Mutación con Pérdida de Función , Interferencia de ARN , Neuronas/metabolismo , Larva/crecimiento & desarrollo , Larva/genética , Larva/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Drosophila/genética , Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Tejido Adiposo/metabolismo , Mutación
2.
Mol Biol Rep ; 51(1): 685, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796672

RESUMEN

BACKGROUND: In today's world, appearance is an important factor in almost all areas of our lives. Therefore, it has become common to use dyes to color foods to make them look appetizing and visually appealing. However, food additives have negative effects on biochemical processes in cells at both high and low doses. METHODS AND RESULTS: This study investigated the effect of carmoisine, a commonly used food coloring, on oxidative stress and damage parameters in Drosophila melanogaster in terms of both enzymatic and gene expression. The change in mitochondrial DNA copy number (mtDNA-CN), a marker of oxidative stress, was also examined. When the data obtained were analyzed, it was observed that carmoisine caused a significant decrease in GSH levels depending on the increase in dose. SOD, CAT, GPx, and AChE enzyme activities and gene expression levels were also found to be significantly decreased. All groups also showed a significant decrease in mtDNA-CN. The effect of carmoisine on Drosophila melanogaster morphology was also investigated in our study. However, no significant change was observed in terms of morphological development in any group. CONCLUSIONS: When all the findings were evaluated together, it was observed that carmoisin triggered oxidative stress and these effects became more risky at high doses. Therefore, we believe that the consumer should be made more aware of the side effects of azo dyes in food and that the type and concentration of each substance added to food should be specified.


Asunto(s)
ADN Mitocondrial , Drosophila melanogaster , Mitocondrias , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/metabolismo , Carmín/metabolismo , Carmín/efectos adversos , Glutatión/metabolismo , Daño del ADN/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Colorantes de Alimentos/efectos adversos , Colorantes de Alimentos/toxicidad , Catalasa/metabolismo , Catalasa/genética
3.
Development ; 151(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38819456

RESUMEN

Drosophila nervous system development progresses through a series of well-characterized steps in which homeodomain transcription factors (HDTFs) play key roles during most, if not all, phases. Strikingly, although some HDTFs have only one role, many others are involved in multiple steps of the developmental process. Most Drosophila HDTFs engaged in nervous system development are conserved in vertebrates and often play similar roles during vertebrate development. In this Spotlight, we focus on the role of HDTFs during embryogenesis, where they were first characterized.


Asunto(s)
Proteínas de Drosophila , Proteínas de Homeodominio , Sistema Nervioso , Factores de Transcripción , Animales , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Sistema Nervioso/metabolismo , Sistema Nervioso/embriología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Drosophila/genética , Drosophila/metabolismo , Drosophila/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
4.
Cell Rep ; 43(5): 114228, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38735045

RESUMEN

Inter-regulation between related genes, such as ribosomal protein (RP) paralogs, has been observed to be important for genetic compensation and paralog-specific functions. However, how paralogs communicate to modulate their expression levels is unknown. Here, we report a circular RNA involved in the inter-regulation between RP paralogs RpL22 and RpL22-like during Drosophila spermatogenesis. Both paralogs are mutually regulated by the circular stable intronic sequence RNA (sisRNA) circRpL22(NE,3S) produced from the RpL22 locus. RpL22 represses itself and RpL22-like. Interestingly, circRpL22 binds to RpL22 to repress RpL22-like, but not RpL22, suggesting that circRpL22 modulates RpL22's function. circRpL22 is in turn controlled by RpL22-like, which regulates RpL22 binding to circRpL22 to indirectly modulate RpL22. This circRpL22-centric inter-regulatory circuit enables the loss of RpL22-like to be genetically compensated by RpL22 upregulation to ensure robust male germline development. Thus, our study identifies sisRNA as a possible mechanism of genetic crosstalk between paralogous genes.


Asunto(s)
Proteínas de Drosophila , ARN Circular , Proteínas Ribosómicas , Animales , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Masculino , ARN Circular/metabolismo , ARN Circular/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Espermatogénesis/genética
5.
PLoS Comput Biol ; 20(5): e1012095, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38753877

RESUMEN

Dictionary learning (DL), implemented via matrix factorization (MF), is commonly used in computational biology to tackle ubiquitous clustering problems. The method is favored due to its conceptual simplicity and relatively low computational complexity. However, DL algorithms produce results that lack interpretability in terms of real biological data. Additionally, they are not optimized for graph-structured data and hence often fail to handle them in a scalable manner. In order to address these limitations, we propose a novel DL algorithm called online convex network dictionary learning (online cvxNDL). Unlike classical DL algorithms, online cvxNDL is implemented via MF and designed to handle extremely large datasets by virtue of its online nature. Importantly, it enables the interpretation of dictionary elements, which serve as cluster representatives, through convex combinations of real measurements. Moreover, the algorithm can be applied to data with a network structure by incorporating specialized subnetwork sampling techniques. To demonstrate the utility of our approach, we apply cvxNDL on 3D-genome RNAPII ChIA-Drop data with the goal of identifying important long-range interaction patterns (long-range dictionary elements). ChIA-Drop probes higher-order interactions, and produces data in the form of hypergraphs whose nodes represent genomic fragments. The hyperedges represent observed physical contacts. Our hypergraph model analysis has the objective of creating an interpretable dictionary of long-range interaction patterns that accurately represent global chromatin physical contact maps. Through the use of dictionary information, one can also associate the contact maps with RNA transcripts and infer cellular functions. To accomplish the task at hand, we focus on RNAPII-enriched ChIA-Drop data from Drosophila Melanogaster S2 cell lines. Our results offer two key insights. First, we demonstrate that online cvxNDL retains the accuracy of classical DL (MF) methods while simultaneously ensuring unique interpretability and scalability. Second, we identify distinct collections of proximal and distal interaction patterns involving chromatin elements shared by related processes across different chromosomes, as well as patterns unique to specific chromosomes. To associate the dictionary elements with biological properties of the corresponding chromatin regions, we employ Gene Ontology (GO) enrichment analysis and perform multiple RNA coexpression studies.


Asunto(s)
Algoritmos , Cromatina , Biología Computacional , Drosophila melanogaster , Cromatina/genética , Cromatina/química , Cromatina/metabolismo , Biología Computacional/métodos , Drosophila melanogaster/genética , Animales , Aprendizaje Automático
6.
PLoS Genet ; 20(5): e1011136, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38758955

RESUMEN

Ribosomal DNA (rDNA), which encodes ribosomal RNA, is an essential but unstable genomic element due to its tandemly repeated nature. rDNA's repetitive nature causes spontaneous intrachromatid recombination, leading to copy number (CN) reduction, which must be counteracted by a mechanism that recovers CN to sustain cells' viability. Akin to telomere maintenance, rDNA maintenance is particularly important in cell types that proliferate for an extended time period, most notably in the germline that passes the genome through generations. In Drosophila, the process of rDNA CN recovery, known as 'rDNA magnification', has been studied extensively. rDNA magnification is mediated by unequal sister chromatid exchange (USCE), which generates a sister chromatid that gains the rDNA CN by stealing copies from its sister. However, much remains elusive regarding how germ cells sense rDNA CN to decide when to initiate magnification, and how germ cells balance between the need to generate DNA double-strand breaks (DSBs) to trigger USCE vs. avoiding harmful DSBs. Recently, we identified an rDNA-binding Zinc-finger protein Indra as a factor required for rDNA magnification, however, the underlying mechanism of action remains unknown. Here we show that Indra is a negative regulator of rDNA magnification, balancing the need of rDNA magnification and repression of dangerous DSBs. Mechanistically, we show that Indra is a repressor of RNA polymerase II (Pol II)-dependent transcription of rDNA: Under low rDNA CN conditions, Indra protein amount is downregulated, leading to Pol II-mediated transcription of rDNA. This results in the expression of rDNA-specific retrotransposon, R2, which we have shown to facilitate rDNA magnification via generation of DBSs at rDNA. We propose that differential use of Pol I and Pol II plays a critical role in regulating rDNA CN expansion only when it is necessary.


Asunto(s)
ADN Ribosómico , ARN Polimerasa II , Transcripción Genética , Animales , ADN Ribosómico/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Roturas del ADN de Doble Cadena , Drosophila melanogaster/genética , Intercambio de Cromátides Hermanas/genética , Células Germinativas/metabolismo , Variaciones en el Número de Copia de ADN
7.
Sci Adv ; 10(18): eadn5861, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701218

RESUMEN

Enzymes of the ten-eleven translocation (TET) family play a key role in the regulation of gene expression by oxidizing 5-methylcytosine (5mC), a prominent epigenetic mark in many species. Yet, TET proteins also have less characterized noncanonical modes of action, notably in Drosophila, whose genome is devoid of 5mC. Here, we show that Drosophila TET activates the expression of genes required for larval central nervous system (CNS) development mainly in a catalytic-independent manner. Genome-wide profiling shows that TET is recruited to enhancer and promoter regions bound by Polycomb group complex (PcG) proteins. We found that TET interacts and colocalizes on chromatin preferentially with Polycomb repressor complex 1 (PRC1) rather than PRC2. Furthermore, PRC1 but not PRC2 is required for the activation of TET target genes. Last, our results suggest that TET and PRC1 binding to activated genes is interdependent. These data highlight the importance of TET noncatalytic function and the role of PRC1 for gene activation in the Drosophila larval CNS.


Asunto(s)
Proteínas de Drosophila , Complejo Represivo Polycomb 1 , Animales , Sistema Nervioso Central/metabolismo , Cromatina/metabolismo , Cromatina/genética , Drosophila/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Larva/metabolismo , Larva/genética , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 1/genética , Regiones Promotoras Genéticas , Unión Proteica
8.
Nat Commun ; 15(1): 3685, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693116

RESUMEN

Sleep, locomotor and social activities are essential animal behaviors, but their reciprocal relationships and underlying mechanisms remain poorly understood. Here, we elicit information from a cutting-edge large-language model (LLM), generative pre-trained transformer (GPT) 3.5, which interprets 10.2-13.8% of Drosophila genes known to regulate the 3 behaviors. We develop an instrument for simultaneous video tracking of multiple moving objects, and conduct a genome-wide screen. We have identified 758 fly genes that regulate sleep and activities, including mre11 which regulates sleep only in the presence of conspecifics, and NELF-B which regulates sleep regardless of whether conspecifics are present. Based on LLM-reasoning, an educated signal web is modeled for understanding of potential relationships between its components, presenting comprehensive molecular signatures that control sleep, locomotor and social activities. This LLM-aided strategy may also be helpful for addressing other complex scientific questions.


Asunto(s)
Conducta Animal , Drosophila melanogaster , Locomoción , Sueño , Animales , Sueño/fisiología , Sueño/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Locomoción/fisiología , Locomoción/genética , Conducta Animal/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Conducta Social , Masculino
9.
J Mol Neurosci ; 74(2): 50, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693434

RESUMEN

Aneuploidy, having an aberrant genome, is gaining increasing attention in neurodegenerative diseases. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift which makes these cells sensitive to internal and environmental stresses. A growing body of research from numerous laboratories suggests that many neurodegenerative disorders, especially Alzheimer's disease and frontotemporal dementia, are characterised by neuronal aneuploidy and the ensuing apoptosis, which may contribute to neuronal loss. Using Drosophila as a model, we investigated the effect of induced aneuploidy in GABAergic neurons. We found an increased proportion of aneuploidy due to Mad2 depletion in the third-instar larval brain and increased cell death. Depletion of Mad2 in GABAergic neurons also gave a defective climbing and seizure phenotype. Feeding animals an antioxidant rescued the climbing and seizure phenotype. These findings suggest that increased aneuploidy leads to higher oxidative stress in GABAergic neurons which causes cell death, climbing defects, and seizure phenotype. Antioxidant feeding represents a potential therapy to reduce the aneuploidy-driven neurological phenotype.


Asunto(s)
Aneuploidia , Neuronas GABAérgicas , Estrés Oxidativo , Fenotipo , Animales , Neuronas GABAérgicas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Convulsiones/genética , Convulsiones/metabolismo , Drosophila melanogaster/genética , Encéfalo/metabolismo , Drosophila/genética
10.
Elife ; 132024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690995

RESUMEN

PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.


Asunto(s)
Cromatina , Proteínas de Drosophila , Histonas , Poli(ADP-Ribosa) Polimerasa-1 , Transcripción Genética , Animales , Cromatina/metabolismo , Cromatina/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Histonas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Metilación , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Respuesta al Choque Térmico
11.
Elife ; 122024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700995

RESUMEN

Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch-Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.


Asunto(s)
Drosophila melanogaster , Síndrome de Lesch-Nyhan , Animales , Drosophila melanogaster/fisiología , Drosophila melanogaster/genética , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/metabolismo , Purinas/metabolismo , Modelos Animales de Enfermedad , Conducta Animal , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Hipoxantina Fosforribosiltransferasa/deficiencia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Locomoción
12.
Nat Commun ; 15(1): 3806, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714658

RESUMEN

Unlike coding genes, the number of lncRNA genes in organism genomes is relatively proportional to organism complexity. From plants to humans, the tissues with highest numbers and levels of lncRNA gene expression are the male reproductive organs. To learn why, we initiated a genome-wide analysis of Drosophila lncRNA spatial expression patterns in these tissues. The numbers of genes and levels of expression observed greatly exceed those previously reported, due largely to a preponderance of non-polyadenylated transcripts. In stark contrast to coding genes, the highest numbers of lncRNAs expressed are in post-meiotic spermatids. Correlations between expression levels, localization and previously performed genetic analyses indicate high levels of function and requirement. More focused analyses indicate that lncRNAs play major roles in evolution by controlling transposable element activities, Y chromosome gene expression and sperm construction. A new type of lncRNA-based particle found in seminal fluid may also contribute to reproductive outcomes.


Asunto(s)
ARN Largo no Codificante , Espermatogénesis , Cromosoma Y , Animales , Masculino , Espermatogénesis/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cromosoma Y/genética , Drosophila melanogaster/genética , Evolución Molecular , Elementos Transponibles de ADN/genética , Drosophila/genética , Espermátides/metabolismo
13.
Sci Rep ; 14(1): 10078, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698030

RESUMEN

Comparative analyses between traditional model organisms, such as the fruit fly Drosophila melanogaster, and more recent model organisms, such as the red flour beetle Tribolium castaneum, have provided a wealth of insight into conserved and diverged aspects of gene regulation. While the study of trans-regulatory components is relatively straightforward, the study of cis-regulatory elements (CREs, or enhancers) remains challenging outside of Drosophila. A central component of this challenge has been finding a core promoter suitable for enhancer-reporter assays in diverse insect species. Previously, we demonstrated that a Drosophila Synthetic Core Promoter (DSCP) functions in a cross-species manner in Drosophila and Tribolium. Given the over 300 million years of divergence between the Diptera and Coleoptera, we reasoned that DSCP-based reporter constructs will be useful when studying cis-regulation in a variety of insect models across the holometabola and possibly beyond. To this end, we sought to create a suite of new DSCP-based reporter vectors, leveraging dual compatibility with piggyBac and PhiC31-integration, the 3xP3 universal eye marker, GATEWAY cloning, different colors of reporters and markers, as well as Gal4-UAS binary expression. While all constructs functioned properly with a Tc-nub enhancer in Drosophila, complications arose with tissue-specific Gal4-UAS binary expression in Tribolium. Nevertheless, the functionality of these constructs across multiple holometabolous orders suggests a high potential compatibility with a variety of other insects. In addition, we present the piggyLANDR (piggyBac-LoxP AttP Neutralizable Destination Reporter) platform for the establishment of proper PhiC31 landing sites free from position effects. As a proof-of-principle, we demonstrated the workflow for piggyLANDR in Drosophila. The potential utility of these tools ranges from molecular biology research to pest and disease-vector management, and will help advance the study of gene regulation beyond traditional insect models.


Asunto(s)
Drosophila melanogaster , Genes Reporteros , Vectores Genéticos , Regiones Promotoras Genéticas , Tribolium , Animales , Vectores Genéticos/genética , Tribolium/genética , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , Secuencias Reguladoras de Ácidos Nucleicos/genética , Insectos/genética , Animales Modificados Genéticamente
14.
Elife ; 122024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727722

RESUMEN

Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.


To correctly give rise to future tissues, cells in an embryo must receive and respond to the right signals, at the right time, in the right way. This involves genes being switched on quickly, with cells often ensuring that a range of molecular actors physically come together at 'transcription hubs' in the nucleus ­ the compartment that houses genetic information. These hubs are thought to foster a microenvironment that facilitates the assembly of the machinery that will activate and copy the required genes into messenger RNA molecules. The resulting 'mRNAs' act as templates for producing the corresponding proteins, allowing cells to adequately respond to signals. For example, the activation at the cell surface of a molecule called Notch triggers a series of events that lead to important developmental genes being transcribed within minutes. This process involves a dedicated group of proteins, known as Notch nuclear complexes, quickly getting together in the nucleus and interacting with the transcriptional machinery. How they do this efficiently at the right gene locations is, however, still poorly understood. In particular, it remained unclear whether Notch nuclear complexes participate in the formation of transcription hubs, as well as how these influence mRNA production and the way cells 'remember' having been exposed to Notch activity. To investigate these questions, DeHaro-Arbona et al. genetically engineered fruit flies so that their Notch nuclear complexes and Notch target genes both carried visible tags that could be tracked in living cells in real time. Microscopy imaging of fly tissues revealed that, due to their characteristics, Notch complexes clustered with the transcription machinery and formed transcription hubs near their target genes. All cells exposed to Notch exhibited these hubs, but only a third produced the mRNAs associated with Notch target genes; adding a second signal (an insect hormone) significantly increased the proportion. This illustrates how 'chance' and collaboration influence the way the organism responds to Notch signalling. Finally, the experiments revealed that the hubs persisted for at least a day after removing the Notch signal. This 'molecular memory' led to cells responding faster when presented with Notch activity again. The work by DeHaro-Arbona sheds light on how individual cells respond to Notch signalling, and the factors that influence the activation of its target genes. This knowledge may prove useful when trying to better understand diseases in which this pathway is implicated, such as cancer.


Asunto(s)
Receptores Notch , Receptores Notch/metabolismo , Receptores Notch/genética , Animales , Transcripción Genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Transducción de Señal , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Procesos Estocásticos , Núcleo Celular/metabolismo
15.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731837

RESUMEN

Chromatin architecture is critical for the temporal and tissue-specific activation of genes that determine eukaryotic development. The functional interaction between enhancers and promoters is controlled by insulators and tethering elements that support specific long-distance interactions. However, the mechanisms of the formation and maintenance of long-range interactions between genome regulatory elements remain poorly understood, primarily due to the lack of convenient model systems. Drosophila became the first model organism in which architectural proteins that determine the activity of insulators were described. In Drosophila, one of the best-studied DNA-binding architectural proteins, Su(Hw), forms a complex with Mod(mdg4)-67.2 and CP190 proteins. Using a combination of CRISPR/Cas9 genome editing and attP-dependent integration technologies, we created a model system in which the promoters and enhancers of two reporter genes are separated by 28 kb. In this case, enhancers effectively stimulate reporter gene promoters in cis and trans only in the presence of artificial Su(Hw) binding sites (SBS), in both constructs. The expression of the mutant Su(Hw) protein, which cannot interact with CP190, and the mutation inactivating Mod(mdg4)-67.2, lead to the complete loss or significant weakening of enhancer-promoter interactions, respectively. The results indicate that the new model system effectively identifies the role of individual subunits of architectural protein complexes in forming and maintaining specific long-distance interactions in the D. melanogaster model.


Asunto(s)
Proteínas de Drosophila , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Sistemas CRISPR-Cas , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Cromatina/metabolismo , Cromatina/genética , Elementos Aisladores/genética , Sitios de Unión , Unión Proteica , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Edición Génica/métodos , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Proteínas Asociadas a Microtúbulos
16.
BMC Biol ; 22(1): 111, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741075

RESUMEN

BACKGROUND: Juvenile hormones (JH) play crucial role in regulating development and reproduction in insects. The most common form of JH is JH III, derived from MF through epoxidation by CYP15 enzymes. However, in the higher dipterans, such as the fruitfly, Drosophila melanogaster, a bis-epoxide form of JHB3, accounted most of the JH detected. Moreover, these higher dipterans have lost the CYP15 gene from their genomes. As a result, the identity of the P450 epoxidase in the JH biosynthesis pathway in higher dipterans remains unknown. RESULTS: In this study, we show that Cyp6g2 serves as the major JH epoxidase responsible for the biosynthesis of JHB3 and JH III in D. melanogaster. The Cyp6g2 is predominantly expressed in the corpus allatum (CA), concurring with the expression pattern of jhamt, another well-studied gene that is crucial in the last steps of JH biosynthesis. Mutation in Cyp6g2 leads to severe disruptions in larval-pupal metamorphosis and exhibits reproductive deficiencies, exceeding those seen in jhamt mutants. Notably, Cyp6g2-/-::jhamt2 double mutants all died at the pupal stage but could be rescued through the topical application of JH analogs. JH titer analyses revealed that both Cyp6g2-/- mutant and jhamt2 mutant lacking JHB3 and JH III, while overexpression of Cyp6g2 or jhamt caused a significant increase in JHB3 and JH III titer. CONCLUSIONS: These findings collectively established that Cyp6g2 as the major JH epoxidase in the higher dipterans and laid the groundwork for the further understanding of JH biosynthesis. Moreover, these findings pave the way for developing specific Cyp6g2 inhibitors as insect growth regulators or insecticides.


Asunto(s)
Drosophila melanogaster , Hormonas Juveniles , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Hormonas Juveniles/biosíntesis , Hormonas Juveniles/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Larva/crecimiento & desarrollo , Larva/genética , Metamorfosis Biológica/genética , Corpora Allata/metabolismo , Pupa/crecimiento & desarrollo , Pupa/genética , Pupa/metabolismo , Oxidorreductasas
17.
PLoS One ; 19(5): e0303115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38776353

RESUMEN

The detrimental effects of ultraviolet C (UVC) radiation on living organisms, with a specific focus on the fruit fly Drosophila melanogaster, were examined. This study investigated the impact of heightened UVC radiation exposure on D. melanogaster by assessing mortality and fertility rates, studying phenotypic mutations, and investigating the associated molecular mechanisms. The findings of this study revealed that UVC radiation increases mortality rates and decreases fertility rates in D. melanogaster. Additionally, phenotypic wing mutations were observed in the exposed flies. Furthermore, the study demonstrated that UVC radiation downregulates the expression of antioxidant genes, including superoxide dismutase (SOD), manganese-dependent superoxide dismutase (Mn-SOD), zinc-dependent superoxide dismutase (Cu-Zn-SOD), and the G protein-coupled receptor methuselah (MTH) gene. These results suggest that UVC radiation exerts a destructive effect on D. melanogaster by inducing oxidative stress, which is marked by the overexpression of harmful oxidative processes and a simultaneous reduction in antioxidant gene expression. In conclusion, this study underscores the critical importance of comprehending the deleterious effects of UVC radiation, not only to safeguard human health on Earth, but also to address the potential risks associated with space missions, such as the ongoing Emirate astronaut program.


Asunto(s)
Drosophila melanogaster , Fertilidad , Mutación , Rayos Ultravioleta , Animales , Drosophila melanogaster/efectos de la radiación , Drosophila melanogaster/genética , Rayos Ultravioleta/efectos adversos , Fertilidad/efectos de la radiación , Fertilidad/genética , Mutación/efectos de la radiación , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Estrés Oxidativo/efectos de la radiación , Estrés Oxidativo/genética , Masculino , Femenino , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Antioxidantes/metabolismo , Regulación de la Expresión Génica/efectos de la radiación
18.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38738602

RESUMEN

Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that, in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In Plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of semaphorin function indicates that Semaphorin 1a, acting in a subset of medulla neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A has little effect on the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of Plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles.


Asunto(s)
Proteínas de Drosophila , Morfogénesis , Proteínas del Tejido Nervioso , Neurópilo , Lóbulo Óptico de Animales no Mamíferos , Receptores de Superficie Celular , Semaforinas , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Semaforinas/metabolismo , Semaforinas/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Morfogénesis/genética , Neurópilo/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Lóbulo Óptico de Animales no Mamíferos/embriología , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/embriología , Neuronas/metabolismo , Drosophila/metabolismo , Drosophila/embriología , Mutación/genética
19.
Proc Natl Acad Sci U S A ; 121(21): e2322501121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748578

RESUMEN

Biological regulation often depends on reversible reactions such as phosphorylation, acylation, methylation, and glycosylation, but rarely halogenation. A notable exception is the iodination and deiodination of thyroid hormones. Here, we report detection of bromotyrosine and its subsequent debromination during Drosophila spermatogenesis. Bromotyrosine is not evident when Drosophila express a native flavin-dependent dehalogenase that is homologous to the enzyme responsible for iodide salvage from iodotyrosine in mammals. Deletion or suppression of the dehalogenase-encoding condet (cdt) gene in Drosophila allows bromotyrosine to accumulate with no detectable chloro- or iodotyrosine. The presence of bromotyrosine in the cdt mutant males disrupts sperm individualization and results in decreased fertility. Transgenic expression of the cdt gene in late-staged germ cells rescues this defect and enhances tolerance of male flies to bromotyrosine. These results are consistent with reversible halogenation affecting Drosophila spermatogenesis in a process that had previously eluded metabolomic, proteomic, and genomic analyses.


Asunto(s)
Proteínas de Drosophila , Fertilidad , Espermatogénesis , Tirosina , Animales , Masculino , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Tirosina/metabolismo , Tirosina/análogos & derivados , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila/genética , Drosophila/metabolismo , Animales Modificados Genéticamente , Hidrolasas/metabolismo , Hidrolasas/genética
20.
Genes (Basel) ; 15(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38790181

RESUMEN

Hairless (H) encodes the major antagonist in the Notch signaling pathway, which governs cellular differentiation of various tissues in Drosophila. By binding to the Notch signal transducer Suppressor of Hairless (Su(H)), H assembles repressor complexes onto Notch target genes. Using genome engineering, three new H alleles, HFA, HLLAA and HWA were generated and a phenotypic series was established by several parameters, reflecting the residual H-Su(H) binding capacity. Occasionally, homozygous HWA flies develop to adulthood. They were compared with the likewise semi-viable HNN allele affecting H-Su(H) nuclear entry. The H homozygotes were short-lived, sterile and flightless, yet showed largely normal expression of several mitochondrial genes. Typical for H mutants, both HWA and HNN homozygous alleles displayed strong defects in wing venation and mechano-sensory bristle development. Strikingly, however, HWA displayed only a loss of bristles, whereas bristle organs of HNN flies showed a complete shaft-to-socket transformation. Apparently, the impact of HWA is restricted to lateral inhibition, whereas that of HNN also affects the respective cell type specification. Notably, reduction in Su(H) gene dosage only suppressed the HNN bristle phenotype, but amplified that of HWA. We interpret these differences as to the role of H regarding Su(H) stability and availability.


Asunto(s)
Alelos , Proteínas de Drosophila , Drosophila melanogaster , Alas de Animales , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA