Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 657
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2352520, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38713593

RESUMEN

Vaginal transmission from semen of male Ebola virus (EBOV) survivors has been implicated as a potential origin of Ebola virus disease (EVD) outbreaks. While EBOV in semen must traverse cervicovaginal mucus (CVM) to reach target cells, the behaviour of EBOV in CVM is poorly understood. CVM contains substantial quantities of IgG, and arrays of IgG bound to a virion can develop multiple Fc-mucin bonds, immobilizing the IgG/virion complex in mucus. Here, we measured the real-time mobility of fluorescent Ebola virus-like-particles (VLP) in 50 CVM specimens from 17 women, with and without ZMapp, a cocktail of 3 monoclonal IgGs against EBOV. ZMapp-mediated effective trapping of Ebola VLPs in CVM from a subset of women across the menstrual cycle, primarily those with Lactobacillus crispatus dominant microbiota. Our work underscores the influence of the vaginal microbiome on IgG-mucin crosslinking against EBOV and identifies bottlenecks in the sexual transmission of EBOV.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Vagina , Humanos , Femenino , Ebolavirus/fisiología , Vagina/virología , Fiebre Hemorrágica Ebola/virología , Fiebre Hemorrágica Ebola/transmisión , Virión , Inmunoglobulina G , Adulto , Moco del Cuello Uterino/virología , Moco/virología
2.
ACS Infect Dis ; 10(5): 1590-1601, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38684073

RESUMEN

Ebola virus (EBOV) is an enveloped virus that must fuse with the host cell membrane in order to release its genome and initiate infection. This process requires the action of the EBOV envelope glycoprotein (GP), encoded by the virus, which resides in the viral envelope and consists of a receptor binding subunit, GP1, and a membrane fusion subunit, GP2. Despite extensive research, a mechanistic understanding of the viral fusion process is incomplete. To investigate GP-membrane association, a key step in the fusion process, we used two approaches: high-throughput measurements of single-particle diffusion and single-molecule measurements with optical tweezers. Using these methods, we show that the presence of the endosomal Niemann-Pick C1 (NPC1) receptor is not required for primed GP-membrane binding. In addition, we demonstrate this binding is very strong, likely attributed to the interaction between the GP fusion loop and the membrane's hydrophobic core. Our results also align with previously reported findings, emphasizing the significance of acidic pH in the protein-membrane interaction. Beyond Ebola virus research, our approach provides a powerful toolkit for studying other protein-membrane interactions, opening new avenues for a better understanding of protein-mediated membrane fusion events.


Asunto(s)
Ebolavirus , Proteínas del Envoltorio Viral , Ebolavirus/metabolismo , Ebolavirus/fisiología , Ebolavirus/genética , Ebolavirus/química , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Humanos , Unión Proteica , Internalización del Virus , Proteína Niemann-Pick C1/metabolismo , Membrana Celular/metabolismo , Membrana Celular/virología , Fiebre Hemorrágica Ebola/virología , Concentración de Iones de Hidrógeno
3.
Nat Commun ; 15(1): 162, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167417

RESUMEN

SARS-CoV-2 and filovirus enter cells via the cell surface angiotensin-converting enzyme 2 (ACE2) or the late-endosome Niemann-Pick C1 (NPC1) as a receptor. Here, we screened 974 natural compounds and identified Tubeimosides I, II, and III as pan-coronavirus and filovirus entry inhibitors that target NPC1. Using in-silico, biochemical, and genomic approaches, we provide evidence that NPC1 also binds SARS-CoV-2 spike (S) protein on the receptor-binding domain (RBD), which is blocked by Tubeimosides. Importantly, NPC1 strongly promotes productive SARS-CoV-2 entry, which we propose is due to its influence on fusion in late endosomes. The Tubeimosides' antiviral activity and NPC1 function are further confirmed by infection with SARS-CoV-2 variants of concern (VOC), SARS-CoV, and MERS-CoV. Thus, NPC1 is a critical entry co-factor for highly pathogenic human coronaviruses (HCoVs) in the late endosomes, and Tubeimosides hold promise as a new countermeasure for these HCoVs and filoviruses.


Asunto(s)
Ebolavirus , Receptores Virales , Humanos , Unión Proteica , Receptores Virales/metabolismo , Proteína Niemann-Pick C1/metabolismo , Ebolavirus/fisiología , Internalización del Virus , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo
4.
PLoS Pathog ; 19(12): e1011848, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38055723

RESUMEN

Interaction between the Ebola virus envelope glycoprotein (GP) and the endosomal membrane is an essential step during virus entry into the cell. Acidic pH and Ca2+ have been implicated in mediating the GP-membrane interaction. However, the molecular mechanism by which these environmental factors regulate the conformational changes that enable engagement of GP with the target membrane is unknown. Here, we apply fluorescence correlation spectroscopy (FCS) and single-molecule Förster resonance energy transfer (smFRET) imaging to elucidate how the acidic pH, Ca2+ and anionic phospholipids in the late endosome promote GP-membrane interaction, thereby facilitating virus entry. We find that bis(monoacylglycero)phosphate (BMP), which is specific to the late endosome, is especially critical in determining the Ca2+-dependence of the GP-membrane interaction. Molecular dynamics (MD) simulations suggested residues in GP that sense pH and induce conformational changes that make the fusion loop available for insertion into the membrane. We similarly confirm residues in the fusion loop that mediate GP's interaction with Ca2+, which likely promotes local conformational changes in the fusion loop and mediates electrostatic interactions with the anionic phospholipids. Collectively, our results provide a mechanistic understanding of how the environment of the late endosome regulates the timing and efficiency of virus entry.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Ebolavirus/fisiología , Calcio/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Endosomas/metabolismo , Conformación Proteica , Internalización del Virus , Fusión de Membrana , Concentración de Iones de Hidrógeno
5.
Front Cell Infect Microbiol ; 13: 1275277, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035334

RESUMEN

Introduction: Ebola virus (EBOV) is an RNA virus of the Filoviridae family that is responsible for outbreaks of hemorrhagic fevers in primates with a lethality rate as high as 90%. EBOV primarily targets host macrophages leading to cell activation and systemic cytokine storm, and fatal infection is associated with an inhibited interferon response, and lymphopenia. The EBOV surface glycoprotein (GP) has been shown to directly induce T cell depletion and can be secreted outside the virion via extracellular vesicles (EVs), though most studies are limited to epithelial cells and underlying mechanisms remain poorly elucidated. Methods: To assess the role of GP on EBOV-induced dysregulation of host immunity, we first utilized EBOV virus-like particles (VLPs) expressing VP40 and NP either alone (Bald-VLP) or in conjunction with GP (VLP-GP) to investigate early inflammatory responses in THP-1 macrophages and in a murine model. We then sought to decipher the role of non-classical inflammatory mediators such as EVs over the course of EBOV infection in two EBOV-infected rhesus macaques by isolating and characterizing circulatory EVs throughout disease progression using size exclusion chromatography, nanoparticle tracking-analysis, and LC-MS/MS. Results: While all VLPs could induce inflammatory mediators and recruit small peritoneal macrophages, pro-inflammatory cytokine and chemokine gene expression was exacerbated by the presence of GP. Further, quantification of EVs isolated from infected rhesus macaques revealed that the concentration of vesicles peaked in circulation at the terminal stage, at which time EBOV GP could be detected in host-derived exosomes. Moreover, comparative proteomics conducted across EV populations isolated from serum at various time points before and after infection revealed differences in host-derived protein content that were most significantly pronounced at the endpoint of infection, including significant expression of mediators of TLR4 signaling. Discussion: These results suggest a dynamic role for EVs in the modification of disease states in the context of EBOV. Overall, our work highlights the importance of viral factors, such as the GP, and host derived EVs in the inflammatory cascade and pathogenesis of EBOV, which can be collectively further exploited for novel antiviral development.


Asunto(s)
Ebolavirus , Vesículas Extracelulares , Fiebre Hemorrágica Ebola , Animales , Ratones , Fiebre Hemorrágica Ebola/metabolismo , Macaca mulatta , Cromatografía Liquida , Espectrometría de Masas en Tándem , Ebolavirus/fisiología , Quimiocinas/metabolismo , Vesículas Extracelulares/metabolismo
6.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37834238

RESUMEN

Infection with Ebola virus (EBOV) is responsible for hemorrhagic fever in humans with a high mortality rate. Combined efforts of prevention and therapeutic intervention are required to tackle highly variable RNA viruses, whose infections often lead to outbreaks. Here, we have screened the 2P2I3D chemical library using a nanoluciferase-based protein complementation assay (NPCA) and isolated two compounds that disrupt the interaction of the EBOV protein fragment VP35IID with the N-terminus of the dsRNA-binding proteins PKR and PACT, involved in IFN response and/or intrinsic immunity, respectively. The two compounds inhibited EBOV infection in cell culture as well as infection by measles virus (MV) independently of IFN induction. Consequently, we propose that the compounds are antiviral by restoring intrinsic immunity driven by PACT. Given that PACT is highly conserved across mammals, our data support further testing of the compounds in other species, as well as against other negative-sense RNA viruses.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Animales , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/metabolismo , Ebolavirus/fisiología , Antivirales/farmacología , Antivirales/uso terapéutico , Mamíferos
7.
Viruses ; 15(9)2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37766234

RESUMEN

Ebola virus is a zoonotic pathogen with a geographic range covering diverse ecosystems that are home to many potential reservoir species. Although researchers have detected Ebola virus RNA and serological evidence of previous infection in different rodents and bats, the infectious virus has not been isolated. The field is missing critical knowledge about where the virus is maintained between outbreaks, either because the virus is rarely encountered, overlooked during sampling, and/or requires specific unknown conditions that regulate viral expression. This study assessed adipose tissue as a previously overlooked tissue capable of supporting Ebola virus infection. Adipose tissue is a dynamic endocrine organ helping to regulate and coordinate homeostasis, energy metabolism, and neuroendocrine and immune functions. Through in vitro infection of human and bat (Eptesicus fuscus) brown adipose tissue cultures using wild-type Ebola virus, this study showed high levels of viral replication for 28 days with no qualitative indicators of cytopathic effects. In addition, alterations in adipocyte metabolism following long-term infection were qualitatively observed through an increase in lipid droplet number while decreasing in size, a harbinger of lipolysis or adipocyte browning. The finding that bat and human adipocytes are susceptible to Ebola virus infection has important implications for potential tissue tropisms that have not yet been investigated. Additionally, the findings suggest how the metabolism of this tissue may play a role in pathogenesis, viral transmission, and/or zoonotic spillover events.


Asunto(s)
Quirópteros , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Humanos , Ecosistema , Ebolavirus/fisiología , Tejido Adiposo , Línea Celular
8.
Am J Pathol ; 193(12): 2031-2046, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37689386

RESUMEN

The pathophysiology of long-recognized hematologic abnormalities in Ebolavirus (EBOV) disease (EVD) is unknown. From limited human sampling (of peripheral blood), it has been postulated that emergency hematopoiesis plays a role in severe EVD, but the systematic characterization of the bone marrow (BM) has not occurred in human disease or in nonhuman primate models. In a lethal rhesus macaque model of EVD, 18 sternal BM samples exposed to the Kikwit strain of EBOV were compared to those from uninfected controls (n = 3). Immunohistochemistry, RNAscope in situ hybridization, transmission electron microscopy, and confocal microscopy showed that EBOV infects BM monocytes/macrophages and megakaryocytes. EBOV exposure was associated with severe BM hypocellularity, including depletion of myeloid, erythroid, and megakaryocyte hematopoietic cells. These depletions were negatively correlated with cell proliferation (Ki67 expression) and were not associated with BM apoptosis during disease progression. In EBOV-infected rhesus macaques with terminal disease, BM showed marked hemophagocytosis, megakaryocyte emperipolesis, and the release of immature hematopoietic cells into the sinusoids. Collectively, these data demonstrate not only direct EBOV infection of BM monocytes/macrophages and megakaryocytes but also that disease progression is associated with hematopoietic failure, notably in peripheral cytopenia. These findings inform current pathophysiologic unknowns and suggest a crucial role for BM dysfunction and/or failure, including emergency hematopoiesis, as part of the natural history of severe human disease.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Humanos , Ebolavirus/fisiología , Macaca mulatta , Médula Ósea , Progresión de la Enfermedad
9.
J Mol Biol ; 435(20): 168241, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37598728

RESUMEN

Viral inclusion bodies (IBs) are potential sites of viral replication and assembly. How viral IBs form remains poorly defined. Here we describe a combined biophysical and cellular approach to identify the components necessary for IB formation during Ebola virus (EBOV) infection. We find that the eNP0VP35 complex containing Ebola nucleoprotein (eNP) and viral protein 35 (eVP35), the functional equivalents of nucleoprotein (N) and phosphoprotein (P) in non-segmented negative strand viruses (NNSVs), phase separates to form inclusion bodies. Phase separation of eNP0VP35 is reversible and modulated by ionic strength. The multivalency of eVP35, and not eNP, is also critical for phase separation. Furthermore, overexpression of an eVP35 peptide disrupts eNP0VP35 complex formation, leading to reduced frequency of IB formation and limited viral infection. Together, our results show that upon EBOV infection, the eNP0VP35 complex forms the minimum unit to drive IB formation and viral replication.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Cuerpos de Inclusión , Nucleoproteínas , Replicación Viral , Humanos , Ebolavirus/metabolismo , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/virología , Cuerpos de Inclusión/virología , Nucleoproteínas/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo
10.
J Infect Dis ; 228(Suppl 7): S508-S513, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37578011

RESUMEN

Ebola virus (EBOV) induces cell death not only in infected permissive cells but also in nonpermissive, bystander cells by employing different mechanisms. Hydroxycarboxylic acid receptor 2 (HCAR2) has been reported to be involved in apoptotic cell death. We previously reported an increase in the expression of HCAR2-specific mRNA in EBOV-infected individuals with fatal outcomes. Here, we report that infection with an EBOV lacking the VP30 gene (EBOVΔVP30) results in the upregulation of HCAR2 mRNA expression in human hepatocyte Huh7.0 cells stably expressing VP30. Transient overexpression of HCAR2 reduced the viability of Huh7.0 cells and human embryonic kidney cells. Phosphatidylserine externalization and cell membrane permeabilization by HCAR2 overexpression was also observed. Interestingly, coexpression of HCAR2 with EBOV VP40 further reduced cell viability in transfected cells compared to HCAR2 coexpression with other viral proteins. Our data suggest that HCAR2 may contribute to EBOV-induced cell death.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Muerte Celular , Ebolavirus/fisiología , ARN Mensajero/metabolismo , Proteínas Virales/metabolismo
11.
Vet Pathol ; 60(4): 473-487, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37170900

RESUMEN

The liver is an early systemic target of Ebola virus (EBOV), but characterization beyond routine histopathology and viral antigen distribution is limited. We hypothesized Ebola virus disease (EVD) systemic proinflammatory responses would be reflected in temporally altered liver myeloid phenotypes. We utilized multiplex fluorescent immunohistochemistry (mfIHC), multispectral whole slide imaging, and image analysis to quantify molecular phenotypes of myeloid cells in the liver of rhesus macaques (Macaca mulatta; n = 21) infected with EBOV Kikwit. Liver samples included uninfected controls (n = 3), 3 days postinoculation (DPI; n = 3), 4 DPI (n = 3), 5 DPI (n = 3), 6 DPI (n = 3), and terminal disease (6-8 DPI; n = 6). Alterations in hepatic macrophages occurred at ≥ 5 DPI characterized by a 1.4-fold increase in CD68+ immunoreactivity and a transition from primarily CD14-CD16+ to CD14+CD16- macrophages, with a 2.1-fold decrease in CD163 expression in terminal animals compared with uninfected controls. An increase in the neutrophil chemoattractant and alarmin S100A9 occurred within hepatic myeloid cells at 5 DPI, followed by rapid neutrophil influx at ≥ 6 DPI. An acute rise in the antiviral myxovirus resistance protein 1 (MxA) occurred at ≥ 4 DPI, with a predilection for enhanced expression in uninfected cells. Distinctive expression of major histocompatibility complex (MHC) class II was observed in hepatocytes during terminal disease. Results illustrate that EBOV causes macrophage phenotype alterations as well as neutrophil influx and prominent activation of interferon host responses in the liver. Results offer insight into potential therapeutic strategies to prevent and/or modulate the host proinflammatory response to normalize hepatic myeloid functionality.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Fiebre Hemorrágica Ebola/veterinaria , Fiebre Hemorrágica Ebola/patología , Ebolavirus/fisiología , Macaca mulatta , Hígado/patología , Fenotipo
12.
Viruses ; 15(5)2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37243162

RESUMEN

Members of the Ebolavirus genus demonstrate a marked differences in pathogenicity in humans with Ebola (EBOV) being the most pathogenic, Bundibugyo (BDBV) less pathogenic, and Reston (RESTV) is not known to cause a disease in humans. The VP24 protein encoded by members of the Ebolavirus genus blocks type I interferon (IFN-I) signaling through interaction with host karyopherin alpha nuclear transporters, potentially contributing to virulence. Previously, we demonstrated that BDBV VP24 (bVP24) binds with lower affinities to karyopherin alpha proteins relative to EBOV VP24 (eVP24), and this correlated with a reduced inhibition in IFN-I signaling. We hypothesized that modification of eVP24-karyopherin alpha interface to make it similar to bVP24 would attenuate the ability to antagonize IFN-I response. We generated a panel of recombinant EBOVs containing single or combinations of point mutations in the eVP24-karyopherin alpha interface. Most of the viruses appeared to be attenuated in both IFN-I-competent 769-P and IFN-I-deficient Vero-E6 cells in the presence of IFNs. However, the R140A mutant grew at reduced levels even in the absence of IFNs in both cell lines, as well as in U3A STAT1 knockout cells. Both the R140A mutation and its combination with the N135A mutation greatly reduced the amounts of viral genomic RNA and mRNA suggesting that these mutations attenuate the virus in an IFN-I-independent attenuation. Additionally, we found that unlike eVP24, bVP24 does not inhibit interferon lambda 1 (IFN-λ1), interferon beta (IFN-ß), and ISG15, which potentially explains the lower pathogenicity of BDBV relative to EBOV. Thus, the VP24 residues binding karyopherin alpha attenuates the virus by IFN-I-dependent and independent mechanisms.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Interferones/metabolismo , Ebolavirus/fisiología , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Proteínas Virales/metabolismo , Interferón beta/genética , Interferón beta/metabolismo
13.
J Virol ; 97(5): e0188822, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36975793

RESUMEN

Zaïre ebolavirus (EBOV) causes Ebola virus disease (EVD), a devastating viral hemorrhagic fever in humans. Nonhuman primate (NHP) models of EVD traditionally use intramuscular infection with higher case fatality rates and reduced mean time-to-death compared to contact transmission typical of human cases of EVD. A cynomolgus macaque model of oral and conjunctival EBOV was used to further characterize the more clinically relevant contact transmission of EVD. NHPs challenged via the oral route had an overall 50% survival rate. NHPs challenged with a target dose of 1 × 102 PFU or 1 × 104 PFU of EBOV via the conjunctival route had 40% and 100% mortality, respectively. Classic signs of lethal EVD-like disease were observed in all NHPs that succumbed to EBOV infection including viremia, hematological abnormalities, clinical chemistries indicative of hepatic and renal disease, and histopathological findings. Evidence of EBOV viral persistence in the eye was observed in NHPs challenged via the conjunctival route. IMPORTANCE This study is the first to examine the Kikwit strain of EBOV, the most commonly used strain, in the gold-standard macaque model of infection. Additionally, this is the first description of the detection of virus in the vitreous fluid, an immune privileged site that has been proposed as a viral reservoir, following conjunctival challenge. The oral and conjunctival macaque challenge model of EVD described here more faithfully recapitulates the prodrome that has been reported for human EVD. This work paves the way for more advanced studies to model contact transmission of EVD, including early events in mucosal infection and immunity, as well as the establishment of persistent viral infection and the emergence from these reservoirs.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Humanos , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/transmisión , Macaca fascicularis , Modelos Animales de Enfermedad , Conjuntiva/virología , Transmisión de Enfermedad Infecciosa
14.
J Mol Med (Berl) ; 101(5): 557-568, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36959259

RESUMEN

Ebola virus can trigger a release of pro-inflammatory cytokines with subsequent vascular leakage and impairment of clotting finally leading to multiorgan failure and shock after entering and infecting patients. Ebola virus is known to directly target endothelial cells and macrophages, even without infecting them, through direct interactions with viral proteins. These interactions affect cellular mechanics and immune processes, which are tightly linked to other key cellular functions such as metabolism. However, research regarding metabolic activity of these cells upon viral exposure remains limited, hampering our understanding of its pathophysiology and progression. Therefore, in the present study, an untargeted cellular metabolomic approach was performed to investigate the metabolic alterations of primary human endothelial cells and M1 and M2 macrophages upon exposure to Ebola virus-like particles (VLP). The results show that Ebola VLP led to metabolic changes among endothelial, M1, and M2 cells. Differential metabolite abundance and perturbed signaling pathway analysis further identified specific metabolic features, mainly in fatty acid-, steroid-, and amino acid-related metabolism pathways for all the three cell types, in a host cell specific manner. Taken together, this work characterized for the first time the metabolic alternations of endothelial cells and two primary human macrophage subtypes after Ebola VLP exposure, and identified the potential metabolites and pathways differentially affected, highlighting the important role of those host cells in disease development and progression. KEY MESSAGES: • Ebola VLP can lead to metabolic alternations in endothelial cells and M1 and M2 macrophages. • Differential abundance of metabolites, mainly including fatty acids and sterol lipids, was observed after Ebola VLP exposure. • Multiple fatty acid-, steroid-, and amino acid-related metabolism pathways were observed perturbed.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Ebolavirus/fisiología , Células Endoteliales , Transducción de Señal , Aminoácidos
15.
PLoS Pathog ; 19(1): e1011077, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652443

RESUMEN

Ebola virus (EBOV) causes severe hemorrhagic fever in humans with high mortality. In Ebola virus disease (EVD) survivors, EBOV persistence in the eyes may break through the inner blood-retinal barrier (iBRB), leading to ocular complications and EVD recurrence. However, the mechanism by which EBOV affects the iBRB remains unclear. Here, we used the in vitro iBRB model to simulate EBOV in retinal tissue and found that Ebola virus-like particles (EBO-VLPs) could disrupt the iBRB. Cytokine screening revealed that EBO-VLPs stimulate pericytes to secrete vascular endothelial growth factor (VEGF) to cause iBRB breakdown. VEGF downregulates claudin-1 to disrupt the iBRB. Ebola glycoprotein is crucial for VEGF stimulation and iBRB breakdown. Furthermore, EBO-VLPs caused iBRB breakdown by stimulating VEGF in rats. This study provides a mechanistic insight into that EBOV disrupts the iBRB, which will assist in developing new strategies to treat EBOV persistence in EVD survivors.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Ratas , Humanos , Animales , Ebolavirus/fisiología , Barrera Hematorretinal , Factor A de Crecimiento Endotelial Vascular , Pericitos
16.
Lancet Infect Dis ; 23(1): 91-102, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370717

RESUMEN

BACKGROUND: In its earliest phases, Ebola virus disease's rapid-onset, high fever, and gastrointestinal symptoms are largely indistinguishable from other infectious illnesses. We aimed to characterise the clinical indicators associated with Ebola virus disease to improve outbreak response. METHODS: In this retrospective analysis, we assessed routinely collected data from individuals with possible Ebola virus disease attending 30 Ebola health facilities in two provinces of the Democratic Republic of the Congo between Aug 1, 2018, and Aug 28, 2019. We used logistic regression analysis to model the probability of Ebola infection across 34 clinical variables and four types of possible Ebola virus disease exposures: contact with an individual known to have Ebola virus disease, attendance at any funeral, health facility consultation, or consultation with an informal health practitioner. FINDINGS: Data for 24 666 individuals were included. If a patient presented to care in the early symptomatic phase (ie, days 0-2), Ebola virus disease positivity was most associated with previous exposure to an individual with Ebola virus disease (odds ratio [OR] 11·9, 95% CI 9·1-15·8), funeral attendance (2·1, 1·6-2·7), or health facility consultations (2·1, 1·6-2·8), rather than clinical parameters. If presentation occurred on day 3 or later (after symptom onset), bleeding at an injection site (OR 33·9, 95% CI 12·7-101·3), bleeding gums (7·5, 3·7-15·4), conjunctivitis (2·4, 1·7-3·4), asthenia (1·9, 1·5-2·3), sore throat (1·8, 1·3-2·4), dysphagia (1·8, 1·4-2·3), and diarrhoea (1·6, 1·3-1·9) were additional strong predictors of Ebola virus disease. Some Ebola virus disease-specific signs were less prevalent among vaccinated individuals who were positive for Ebola virus disease when compared with the unvaccinated, such as dysphagia (-47%, p=0·0024), haematemesis (-90%, p=0·0131), and bleeding gums (-100%, p=0·0035). INTERPRETATION: Establishing the exact time an individual first had symptoms is essential to assessing their infection risk. An individual's exposure history remains of paramount importance, especially in the early phase. Ebola virus disease vaccination reduces symptom severity and should also be considered when assessing the likelihood of infection. These findings about symptomatology should be translated into practice during triage and should inform testing and quarantine procedures. FUNDING: Médecins Sans Frontières and its research affiliate Epicentre.


Asunto(s)
Trastornos de Deglución , Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Fiebre Hemorrágica Ebola/prevención & control , Estudios Retrospectivos , República Democrática del Congo/epidemiología , Trastornos de Deglución/epidemiología , Ebolavirus/fisiología , Brotes de Enfermedades/prevención & control
17.
PLoS Negl Trop Dis ; 16(12): e0010993, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36542657

RESUMEN

We explore how animal host traits, phylogenetic identity and cell receptor sequences relate to infection status and mortality from ebolaviruses. We gathered exhaustive databases of mortality from Ebolavirus after exposure and infection status based on PCR and antibody tests. We performed ridge regressions predicting mortality and infection as a function of traits, phylogenetic eigenvectors and separately host receptor sequences. We found that mortality from Ebolavirus had a strong association to life history characteristics and phylogeny. In contrast, infection status related not just to life history and phylogeny, but also to fruit consumption which suggests that geographic overlap of frugivorous mammals can lead to spread of virus in the wild. Niemann Pick C1 (NPC1) receptor sequences predicted infection statuses of bats included in our study with very high accuracy, suggesting that characterizing NPC1 in additional species is a promising avenue for future work. We combine the predictions from our mortality and infection status models to differentiate between species that are infected and also die from Ebolavirus versus species that are infected but tolerate the virus (possible reservoirs of Ebolavirus). We therefore present the first comprehensive estimates of Ebolavirus reservoir statuses for all known terrestrial mammals in Africa.


Asunto(s)
Quirópteros , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Ebolavirus/fisiología , Filogenia , Mamíferos , Proteínas Portadoras , Receptores de Superficie Celular
18.
Commun Biol ; 5(1): 1204, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36352100

RESUMEN

Despite increasing evidence that uveitis is common and consequential in survivors of Ebola virus disease (EVD), the host-pathogen determinants of the clinical phenotype are undefined, including the pathogenetic role of persistent viral antigen, ocular tissue-specific immune responses, and histopathologic characterization. Absent sampling of human intraocular fluids and tissues, these questions might be investigated in animal models of disease; however, challenges intrinsic to the nonhuman primate model and the animal biosafety level 4 setting have historically limited inquiry. In a rhesus monkey survivor of experimental Ebola virus (EBOV) infection, we observed and documented the clinical, virologic, immunologic, and histopathologic features of severe uveitis. Here we show the clinical natural history, resultant ocular pathology, intraocular antigen-specific antibody detection, and persistent intraocular EBOV RNA detected long after clinical resolution. The association of persistent EBOV RNA as a potential driver of severe immunopathology has pathophysiologic implications for understanding, preventing, and mitigating vision-threatening uveitis in EVD survivors.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Uveítis , Animales , Humanos , Fiebre Hemorrágica Ebola/complicaciones , Ebolavirus/fisiología , Macaca mulatta , Uveítis/complicaciones , Uveítis/diagnóstico , ARN
19.
Glob Health Sci Pract ; 10(3)2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-36332065

RESUMEN

INTRODUCTION: During the 2018-2020 Ebola virus disease (EVD) outbreak in the Democratic Republic of the Congo, risk communication and community engagement (RCCE) were prioritized in geographic areas in Uganda considered at high risk of introduction of EVD. To inform EVD preparedness in Uganda, we evaluated community perceptions and prevention practices related to EVD in 6 districts in Uganda. METHODS: In March 2020, we conducted a population-based survey in 6 purposively selected districts in Uganda using multistage cluster sampling. We examined differences between districts classified as high- versus low risk for EVD in terms of their message exposure from RCCE; risk perception; and EVD knowledge, attitudes, and prevention practices. RESULTS: A total of 3,485 respondents were interviewed (91% response rate). EVD message exposure was more common in the high- versus low-risk districts. EVD risk perceptions were low overall but greater in the high- versus low-risk districts. Comprehensive knowledge was significantly greater in the high- versus low-risk districts (adjusted prevalence ratio [aPR] 1.61, 95% confidence interval [CI]=1.35, 1.93). Respondents' engagement in all 3 EVD prevention practices (frequent handwashing with soap, avoiding physical contact with suspected Ebola patients, and avoiding burials involving contact with a corpse) was very low (4%). However, respondents with comprehensive knowledge were more likely to engage in all 3 EVD prevention practices compared to respondents without comprehensive knowledge (aPR 1.87, 95% CI=1.08, 3.25). CONCLUSION: Our findings suggest that while RCCE efforts as part of EVD outbreak preparedness may have contributed to higher EVD knowledge in the targeted high-risk districts, uptake of prevention behaviors was similarly low across districts. In a non-outbreak setting, implementing targeted RCCE strategies may not be sufficient to motivate people to adopt protective behaviors in the absence of a high threshold of perceived threat such as in an active outbreak.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/prevención & control , Uganda/epidemiología , Brotes de Enfermedades/prevención & control
20.
Front Cell Infect Microbiol ; 12: 1023557, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36310868

RESUMEN

Macrophages contribute to Ebola virus disease through their susceptibility to direct infection, their multi-faceted response to ebolaviruses, and their association with pathological findings in tissues throughout the body. Viral attachment and entry factors, as well as the more recently described influence of cell polarization, shape macrophage susceptibility to direct infection. Moreover, the study of Toll-like receptor 4 and the RIG-I-like receptor pathway in the macrophage response to ebolaviruses highlight important immune signaling pathways contributing to the breadth of macrophage responses. Lastly, the deep histopathological catalogue of macrophage involvement across numerous tissues during infection has been enriched by descriptions of tissues involved in sequelae following acute infection, including: the eye, joints, and the nervous system. Building upon this knowledge base, future opportunities include characterization of macrophage phenotypes beneficial or deleterious to survival, delineation of the specific roles macrophages play in pathological lesion development in affected tissues, and the creation of macrophage-specific therapeutics enhancing the beneficial activities and reducing the deleterious contributions of macrophages to the outcome of Ebola virus disease.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Fiebre Hemorrágica Ebola/metabolismo , Ebolavirus/fisiología , Macrófagos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA