Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 593
Filtrar
1.
J Math Biol ; 89(2): 25, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963509

RESUMEN

The Ebola virus disease (EVD) has been endemic since 1976, and the case fatality rate is extremely high. EVD is spread by infected animals, symptomatic individuals, dead bodies, and contaminated environment. In this paper, we formulate an EVD model with four transmission modes and a time delay describing the incubation period. Through dynamical analysis, we verify the importance of blocking the infection source of infected animals. We get the basic reproduction number without considering the infection source of infected animals. And, it is proven that the model has a globally attractive disease-free equilibrium when the basic reproduction number is less than unity; the disease eventually becomes endemic when the basic reproduction number is greater than unity. Taking the EVD epidemic in Sierra Leone in 2014-2016 as an example, we complete the data fitting by combining the effect of the media to obtain the unknown parameters, the basic reproduction number and its time-varying reproduction number. It is shown by parameter sensitivity analysis that the contact rate and the removal rate of infected group have the greatest influence on the prevalence of the disease. And, the disease-controlling thresholds of these two parameters are obtained. In addition, according to the existing vaccination strategy, only the inoculation ratio in high-risk areas is greater than 0.4, the effective reproduction number can be less than unity. And, the earlier the vaccination time, the greater the inoculation ratio, and the faster the disease can be controlled.


Asunto(s)
Número Básico de Reproducción , Ebolavirus , Fiebre Hemorrágica Ebola , Conceptos Matemáticos , Modelos Biológicos , Fiebre Hemorrágica Ebola/transmisión , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/epidemiología , Número Básico de Reproducción/estadística & datos numéricos , Humanos , Animales , Sierra Leona/epidemiología , Ebolavirus/patogenicidad , Ebolavirus/fisiología , Epidemias/estadística & datos numéricos , Epidemias/prevención & control , Simulación por Computador , Modelos Epidemiológicos , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/estadística & datos numéricos
2.
EBioMedicine ; 104: 105170, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38823088

RESUMEN

BACKGROUND: Ebola virus disease (EVD) survivors experience ocular sequelae including retinal lesions, cataracts, and vision loss. While monoclonal antibodies targeting the Ebola virus glycoprotein (EBOV-GP) have shown promise in improving prognosis, their effectiveness in mitigating ocular sequelae remains uncertain. METHODS: We developed and characterized a BSL-2-compatible immunocompetent mouse model to evaluate therapeutics targeting EBOV-GP by inoculating neonatal mice with vesicular stomatitis virus expressing EBOV-GP (VSV-EBOV). To examine the impact of anti-EBOV-GP antibody treatment on acute retinitis and ocular sequelae, VSV-EBOV-infected mice were treated with polyclonal antibodies or monoclonal antibody preparations with antibody-dependent cellular cytotoxicity (ADCC-mAb) or neutralizing activity (NEUT-mAb). FINDINGS: Treatment with all anti-EBOV-GP antibodies tested dramatically reduced viremia and improved survival. Further, all treatments reduced the incidence of cataracts. However, NEUT-mAb alone or in combination with ADCC-mAb reduced viral load in the eyes, downregulated the ocular immune and inflammatory responses, and minimized retinal damage more effectively. INTERPRETATION: Anti-EBOV-GP antibodies can improve survival among EVD patients, but improved therapeutics are needed to reduce life altering sequelae. This animal model offers a new platform to examine the acute and long-term effect of the virus in the eye and the relative impact of therapeutic candidates targeting EBOV-GP. Results indicate that even antibodies that improve systemic viral clearance and survival can differ in their capacity to reduce acute ocular inflammation, and long-term retinal pathology and corneal degeneration. FUNDING: This study was partly supported by Postgraduate Research Fellowship Awards from ORISE through an interagency agreement between the US DOE and the US FDA.


Asunto(s)
Anticuerpos Antivirales , Modelos Animales de Enfermedad , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Ratones , Ebolavirus/inmunología , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/virología , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/farmacología , Humanos , Carga Viral , Glicoproteínas/inmunología , Glicoproteínas/metabolismo , Proteínas del Envoltorio Viral/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/uso terapéutico , Citotoxicidad Celular Dependiente de Anticuerpos
3.
Genes (Basel) ; 15(4)2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38674337

RESUMEN

Ebola virus (EBOV) is a highly pathogenic virus that causes a severe illness called Ebola virus disease (EVD). EVD has a high mortality rate and remains a significant threat to public health. Research on EVD pathogenesis has traditionally focused on host transcriptional responses. Limited recent studies, however, have revealed some information on the significance of cellular microRNAs (miRNAs) in EBOV infection and pathogenic mechanisms, but further studies are needed. Thus, this study aimed to identify and validate additional known and novel human miRNAs in EBOV-infected adult retinal pigment epithelial (ARPE) cells and predict their potential roles in EBOV infection and pathogenic mechanisms. We analyzed previously available small RNA-Seq data obtained from ARPE cells and identified 23 upregulated and seven downregulated miRNAs in the EBOV-infected cells; these included two novel miRNAs and 17 additional known miRNAs not previously identified in ARPE cells. In addition to pathways previously identified by others, these miRNAs are associated with pathways and biological processes that include WNT, FoxO, and phosphatidylinositol signaling; these pathways were not identified in the original study. This study thus confirms and expands on the previous study using the same datasets and demonstrates further the importance of human miRNAs in the host response and EVD pathogenesis during infection.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , MicroARNs , Epitelio Pigmentado de la Retina , Humanos , MicroARNs/genética , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/virología , Ebolavirus/genética , Ebolavirus/patogenicidad , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/virología , Epitelio Pigmentado de la Retina/patología , Línea Celular
4.
Cell Rep ; 43(5): 114127, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38652660

RESUMEN

Ebola virus (EBOV), a major global health concern, causes severe, often fatal EBOV disease (EVD) in humans. Host genetic variation plays a critical role, yet the identity of host susceptibility loci in mammals remains unknown. Using genetic reference populations, we generate an F2 mapping cohort to identify host susceptibility loci that regulate EVD. While disease-resistant mice display minimal pathogenesis, susceptible mice display severe liver pathology consistent with EVD-like disease and transcriptional signatures associated with inflammatory and liver metabolic processes. A significant quantitative trait locus (QTL) for virus RNA load in blood is identified in chromosome (chr)8, and a severe clinical disease and mortality QTL is mapped to chr7, which includes the Trim5 locus. Using knockout mice, we validate the Trim5 locus as one potential driver of liver failure and mortality after infection. The identification of susceptibility loci provides insight into molecular genetic mechanisms regulating EVD progression and severity, potentially informing therapeutics and vaccination strategies.


Asunto(s)
Ebolavirus , Predisposición Genética a la Enfermedad , Fiebre Hemorrágica Ebola , Sitios de Carácter Cuantitativo , Animales , Fiebre Hemorrágica Ebola/virología , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/patología , Sitios de Carácter Cuantitativo/genética , Ebolavirus/patogenicidad , Ebolavirus/genética , Ratones , Ratones Noqueados , Mapeo Cromosómico , Hígado/patología , Hígado/metabolismo , Humanos , Ratones Endogámicos C57BL , Femenino , Masculino
5.
Virol Sin ; 39(3): 434-446, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38556051

RESUMEN

The Ebola virus (EBOV) is a member of the Orthoebolavirus genus, Filoviridae family, which causes severe hemorrhagic diseases in humans and non-human primates (NHPs), with a case fatality rate of up to 90%. The development of countermeasures against EBOV has been hindered by the lack of ideal animal models, as EBOV requires handling in biosafety level (BSL)-4 facilities. Therefore, accessible and convenient animal models are urgently needed to promote prophylactic and therapeutic approaches against EBOV. In this study, a recombinant vesicular stomatitis virus expressing Ebola virus glycoprotein (VSV-EBOV/GP) was constructed and applied as a surrogate virus, establishing a lethal infection in hamsters. Following infection with VSV-EBOV/GP, 3-week-old female Syrian hamsters exhibited disease signs such as weight loss, multi-organ failure, severe uveitis, high viral loads, and developed severe systemic diseases similar to those observed in human EBOV patients. All animals succumbed at 2-3 days post-infection (dpi). Histopathological changes indicated that VSV-EBOV/GP targeted liver cells, suggesting that the tissue tropism of VSV-EBOV/GP was comparable to wild-type EBOV (WT EBOV). Notably, the pathogenicity of the VSV-EBOV/GP was found to be species-specific, age-related, gender-associated, and challenge route-dependent. Subsequently, equine anti-EBOV immunoglobulins and a subunit vaccine were validated using this model. Overall, this surrogate model represents a safe, effective, and economical tool for rapid preclinical evaluation of medical countermeasures against EBOV under BSL-2 conditions, which would accelerate technological advances and breakthroughs in confronting Ebola virus disease.


Asunto(s)
Modelos Animales de Enfermedad , Ebolavirus , Fiebre Hemorrágica Ebola , Mesocricetus , Animales , Fiebre Hemorrágica Ebola/virología , Fiebre Hemorrágica Ebola/patología , Ebolavirus/genética , Ebolavirus/patogenicidad , Femenino , Humanos , Vesiculovirus/genética , Vesiculovirus/patogenicidad , Anticuerpos Antivirales/sangre , Cricetinae , Carga Viral , Glicoproteínas/genética , Glicoproteínas/inmunología
6.
Recent Adv Antiinfect Drug Discov ; 19(4): 276-299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38279760

RESUMEN

BACKGROUND: Ebola virus (EBOV) is a genus of negative-strand RNA viruses belonging to the family Filoviradae that was first described in 1976 in the present-day Democratic Republic of the Congo. It has intermittently affected substantial human populations in West Africa and presents itself as a global health menace due to the high mortality rate of patients, high transmission rate, difficult patient management, and the emergence of complicated autoimmune disease-like conditions post-infection. OBJECTIVE: EBOV or other EBOV-like species as a biochemical weapon pose a significant risk; hence, the need to develop both prophylactic and therapeutic medications to combat the virus is unquestionable. METHODS: In this review work, we have compiled the literature pertaining to transmission, pathogenesis, immune response, and diagnosis of EBOV infection. We included detailed structural details of EBOV along with all the available therapeutics against EBOV disease. We have also highlighted current developments and recent advances in therapeutic approaches against Ebola virus disease (EVD). DISCUSSION: The development of preventive vaccines against the virus is proving to be a successful effort as of now; however, problems concerning logistics, product stability, multi- dosing, and patient tracking are prominent in West Africa. Monoclonal antibodies that target EBOV proteins have also been developed and approved in the clinic; however, no small drug molecules that target these viral proteins have cleared clinical trials. An understanding of clinically approved vaccines and their shortcomings also serves an important purpose for researchers in vaccine design in choosing the right vector, antigen, and particular physicochemical properties that are critical for the vaccine's success against the virus across the world. CONCLUSION: Our work brings together a comprehensive review of all available prophylactic and therapeutic medications developed and under development against the EBOV, which will serve as a guide for researchers in pursuing the most promising drug discovery strategies against the EBOV and also explore novel mechanisms of fighting against EBOV infection.


Asunto(s)
Antivirales , Ebolavirus , Fiebre Hemorrágica Ebola , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/terapia , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/virología , Humanos , Ebolavirus/efectos de los fármacos , Ebolavirus/patogenicidad , Antivirales/uso terapéutico , Antivirales/farmacología , Vacunas contra el Virus del Ébola/uso terapéutico , Vacunas contra el Virus del Ébola/inmunología , Animales , África Occidental/epidemiología
7.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34969849

RESUMEN

Infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) provokes a potentially fatal pneumonia with multiorgan failure, and high systemic inflammation. To gain mechanistic insight and ferret out the root of this immune dysregulation, we modeled, by in vitro coculture, the interactions between infected epithelial cells and immunocytes. A strong response was induced in monocytes and B cells, with a SARS-CoV-2-specific inflammatory gene cluster distinct from that seen in influenza A or Ebola virus-infected cocultures, and which reproduced deviations reported in blood or lung myeloid cells from COVID-19 patients. A substantial fraction of the effect could be reproduced after individual transfection of several SARS-CoV-2 proteins (Spike and some nonstructural proteins), mediated by soluble factors, but not via transcriptional induction. This response was greatly muted in monocytes from healthy children, perhaps a clue to the age dependency of COVID-19. These results suggest that the inflammatory malfunction in COVID-19 is rooted in the earliest perturbations that SARS-CoV-2 induces in epithelia.


Asunto(s)
COVID-19/inmunología , Células Epiteliales/inmunología , Monocitos/inmunología , SARS-CoV-2/patogenicidad , Adulto , Linfocitos B/inmunología , COVID-19/patología , Niño , Técnicas de Cocultivo , Ebolavirus/patogenicidad , Células Epiteliales/virología , Perfilación de la Expresión Génica , Humanos , Inflamación , Virus de la Influenza A/patogenicidad , Pulmón/inmunología , Células Mieloides/inmunología , Especificidad de la Especie , Proteínas Virales/inmunología
9.
Antiviral Res ; 197: 105226, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34923028

RESUMEN

It has been shown that a very early cell-intrinsic response to infection is the upregulation of CD47 cell surface expression, a molecule known for delivering a "don't eat me signal" that inhibits macrophage-mediated phagocytosis and antigen presentation. Thus, blockade of CD47 signaling during lymphocytic choriomenigitis virus infections of mice has been shown to enhance the kinetics and potency of immune responses, thereby producing faster recovery. It seems counterintuitive that one of the earliest responses to infection would be immunoinhibitory, but it has been hypothesized that CD47 induction acts as an innate immune system checkpoint to prevent immune overactivation and immunopathogenic responses during certain infections. In the current study we examined the effect of CD47 blockade on lethal Ebola virus infection of mice. At 6 days post-infection, CD47 blockade was associated with significantly increased activation of B cells along with increases in recently cytolytic CD8+ T cells. However, the anti-CD47-treated mice exhibited increased weight loss, higher virus titers, and succumbed more rapidly. The anti-CD47-treated mice also had increased inflammatory cytokines in the plasma indicative of a "cytokine storm". Thus, in the context of this rapid hemorrhagic disease, CD47 blockade indeed exacerbated immunopathology and disease severity.


Asunto(s)
Antígeno CD47/genética , Antígeno CD47/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Animales , Citocinas/sangre , Citocinas/inmunología , Ebolavirus/patogenicidad , Femenino , Fiebre Hemorrágica Ebola/patología , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos C57BL , Fagocitosis , Células RAW 264.7 , Índice de Severidad de la Enfermedad , Transducción de Señal
10.
Viruses ; 13(12)2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34960709

RESUMEN

Type I interferons (IFNs) are cytokines with both antiviral properties and protective roles in innate immune responses to viral infection. They induce an antiviral cellular state and link innate and adaptive immune responses. Yet, viruses have evolved different strategies to inhibit such host responses. One of them is the existence of viral proteins which subvert type I IFN responses to allow quick and successful viral replication, thus, sustaining the infection within a host. We propose mathematical models to characterise the intra-cellular mechanisms involved in viral protein antagonism of type I IFN responses, and compare three different molecular inhibition strategies. We study the Ebola viral protein, VP35, with this mathematical approach. Approximate Bayesian computation sequential Monte Carlo, together with experimental data and the mathematical models proposed, are used to perform model calibration, as well as model selection of the different hypotheses considered. Finally, we assess if model parameters are identifiable and discuss how such identifiability can be improved with new experimental data.


Asunto(s)
Ebolavirus , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Animales , Teorema de Bayes , Ebolavirus/patogenicidad , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Inmunidad Innata , Macaca mulatta , Modelos Biológicos , Método de Montecarlo
11.
Front Immunol ; 12: 729851, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721393

RESUMEN

Multiple agents in the family Filoviridae (filoviruses) are associated with sporadic human outbreaks of highly lethal disease, while others, including several recently identified agents, possess strong zoonotic potential. Although viral glycoprotein (GP)-specific monoclonal antibodies have demonstrated therapeutic utility against filovirus disease, currently FDA-approved molecules lack antiviral breadth. The development of broadly neutralizing antibodies has been challenged by the high sequence divergence among filovirus GPs and the complex GP proteolytic cleavage cascade that accompanies filovirus entry. Despite this variability in the antigenic surface of GP, all filoviruses share a site of vulnerability-the binding site for the universal filovirus entry receptor, Niemann-Pick C1 (NPC1). Unfortunately, this site is shielded in extracellular GP and only uncovered by proteolytic cleavage by host proteases in late endosomes and lysosomes, which are generally inaccessible to antibodies. To overcome this obstacle, we previously developed a 'Trojan horse' therapeutic approach in which engineered bispecific antibodies (bsAbs) coopt viral particles to deliver GP:NPC1 interaction-blocking antibodies to their endo/lysosomal sites of action. This approach afforded broad protection against members of the genus Ebolavirus but could not neutralize more divergent filoviruses. Here, we describe next-generation Trojan horse bsAbs that target the endo/lysosomal GP:NPC1 interface with pan-filovirus breadth by exploiting the conserved and widely expressed host cation-independent mannose-6-phosphate receptor for intracellular delivery. Our work highlights a new avenue for the development of single therapeutics protecting against all known and newly emerging filoviruses.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Antivirales/farmacología , Anticuerpos ampliamente neutralizantes/farmacología , Ebolavirus/efectos de los fármacos , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Lisosomas/efectos de los fármacos , Proteína Niemann-Pick C1/antagonistas & inhibidores , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Internalización del Virus/efectos de los fármacos , Anticuerpos Biespecíficos/genética , Anticuerpos ampliamente neutralizantes/genética , Ebolavirus/inmunología , Ebolavirus/patogenicidad , Epítopos , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/virología , Interacciones Huésped-Patógeno , Humanos , Ligandos , Lisosomas/inmunología , Lisosomas/metabolismo , Lisosomas/virología , Proteína Niemann-Pick C1/genética , Proteína Niemann-Pick C1/inmunología , Proteína Niemann-Pick C1/metabolismo , Ingeniería de Proteínas , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Células THP-1 , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo
12.
Viruses ; 13(11)2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34835103

RESUMEN

Ebola virus disease (EVD) is a serious global health concern because case fatality rates are approximately 50% due to recent widespread outbreaks in Africa. Well-defined nonhuman primate (NHP) models for different routes of Ebola virus exposure are needed to test the efficacy of candidate countermeasures. In this natural history study, four rhesus macaques were challenged via aerosol with a target titer of 1000 plaque-forming units per milliliter of Ebola virus. The course of disease was split into the following stages for descriptive purposes: subclinical, clinical, and decompensated. During the subclinical stage, high levels of venous partial pressure of carbon dioxide led to respiratory acidemia in three of four of the NHPs, and all developed lymphopenia. During the clinical stage, all animals had fever, viremia, and respiratory alkalosis. The decompensatory stage involved coagulopathy, cytokine storm, and liver and renal injury. These events were followed by hypotension, elevated lactate, metabolic acidemia, shock and mortality similar to historic intramuscular challenge studies. Viral loads in the lungs of aerosol-exposed animals were not distinctly different compared to previous intramuscularly challenged studies. Differences in the aerosol model, compared to intramuscular model, include an extended subclinical stage, shortened clinical stage, and general decompensated stage. Therefore, the shortened timeframe for clinical detection of the aerosol-induced disease can impair timely therapeutic administration. In summary, this nonhuman primate model of aerosol-induced EVD characterizes early disease markers and additional details to enable countermeasure development.


Asunto(s)
Modelos Animales de Enfermedad , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/etiología , Aerosoles , Animales , Femenino , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Macaca mulatta , Masculino , ARN Viral/sangre , Carga Viral
13.
Viruses ; 13(10)2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34696439

RESUMEN

Biosafety, biosecurity, logistical, political, and technical considerations can delay or prevent the wide dissemination of source material containing viable virus from the geographic origin of an outbreak to laboratories involved in developing medical countermeasures (MCMs). However, once virus genome sequence information is available from clinical samples, reverse-genetics systems can be used to generate virus stocks de novo to initiate MCM development. In this study, we developed a reverse-genetics system for natural isolates of Ebola virus (EBOV) variants Makona, Tumba, and Ituri, which have been challenging to obtain. These systems were generated starting solely with in silico genome sequence information and have been used successfully to produce recombinant stocks of each of the viruses for use in MCM testing. The antiviral activity of MCMs targeting viral entry varied depending on the recombinant virus isolate used. Collectively, selecting and synthetically engineering emerging EBOV variants and demonstrating their efficacy against available MCMs will be crucial for answering pressing public health and biosecurity concerns during Ebola disease (EBOD) outbreaks.


Asunto(s)
Ebolavirus/genética , Fiebre Hemorrágica Ebola/genética , Genética Inversa/métodos , Línea Celular , Brotes de Enfermedades , Ebolavirus/inmunología , Ebolavirus/patogenicidad , Genoma Viral/genética , Genotipo , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/virología , Humanos , Contramedidas Médicas , Fenotipo , Filogenia
14.
PLoS Pathog ; 17(9): e1009937, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34529738

RESUMEN

Ebola virus (EBOV) expresses three different glycoproteins (GPs) from its GP gene. The primary product, soluble GP (sGP), is secreted in abundance during infection. EBOV sGP has been discussed as a potential pathogenicity factor, however, little is known regarding its functional role. Here, we analyzed the role of sGP in vitro and in vivo. We show that EBOV sGP has two different functions that contribute to infectivity in tissue culture. EBOV sGP increases the uptake of virus particles into late endosomes in HEK293 cells, and it activates the mitogen-activated protein kinase (MAPK) signaling pathway leading to increased viral replication in Huh7 cells. Furthermore, we analyzed the role of EBOV sGP on pathogenicity using a well-established mouse model. We found an sGP-dependent significant titer increase of EBOV in the liver of infected animals. These results provide new mechanistic insights into EBOV pathogenicity and highlight EBOV sGP as a possible therapeutic target.


Asunto(s)
Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Animales , Ebolavirus/metabolismo , Células HEK293 , Humanos , Ratones , Factores de Virulencia/metabolismo
15.
Viruses ; 13(7)2021 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-34372594

RESUMEN

Currently there is no FDA-licensed vaccine or therapeutic against Sudan ebolavirus (SUDV) infections. The largest ever reported 2014-2016 West Africa outbreak, as well as the 2021 outbreak in the Democratic Republic of Congo, highlight the critical need for countermeasures against filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would greatly add to the screening of antivirals and vaccines. Here, we infected signal transducer and activator of transcription-1 knock out (STAT-1 KO) mice with five different wildtype filoviruses to determine susceptibility. SUDV and Marburg virus (MARV) were the most virulent, and caused 100% or 80% lethality, respectively. Zaire ebolavirus (EBOV), Bundibugyo ebolavirus (BDBV), and Taï Forest ebolavirus (TAFV) caused 40%, 20%, and no mortality, respectively. Further characterization of SUDV in STAT-1 KO mice demonstrated lethality down to 3.1 × 101 pfu. Viral genomic material was detectable in serum as early as 1 to 2 days post-challenge. The onset of viremia was closely followed by significant changes in total white blood cells and proportion of neutrophils and lymphocytes, as well as by an influx of neutrophils in the liver and spleen. Concomitant significant fluctuations in blood glucose, albumin, globulin, and alanine aminotransferase were also noted, altogether consistent with other models of filovirus infection. Finally, favipiravir treatment fully protected STAT-1 KO mice from lethal SUDV challenge, suggesting that this may be an appropriate small animal model to screen anti-SUDV countermeasures.


Asunto(s)
Modelos Animales de Enfermedad , Ebolavirus/genética , Ratones Noqueados , Factor de Transcripción STAT1/genética , Amidas/uso terapéutico , Animales , Anticuerpos Antivirales/sangre , Antivirales/uso terapéutico , Ebolavirus/clasificación , Ebolavirus/efectos de los fármacos , Ebolavirus/patogenicidad , Femenino , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/virología , Masculino , Ratones , Pirazinas/uso terapéutico , Proteínas Virales/genética
16.
mBio ; 12(4): e0151721, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34372693

RESUMEN

Ebolaviruses Bundibugyo virus (BDBV) and Ebola virus (EBOV) cause fatal hemorrhagic disease in humans and nonhuman primates. While the host response to EBOV is well characterized, less is known about BDBV infection. Moreover, immune signatures that mediate natural protection against all ebolaviruses remain poorly defined. To explore these knowledge gaps, we transcriptionally profiled BDBV-infected rhesus macaques, a disease model that results in incomplete lethality. This approach enabled us to identify prognostic indicators. As expected, survival (∼60%) correlated with reduced clinical pathology and circulating infectious virus, although peak viral RNA loads were not significantly different between surviving and nonsurviving macaques. Survivors had higher anti-BDBV antibody titers and transcriptionally derived cytotoxic T cell-, memory B cell-, and plasma cell-type quantities, demonstrating activation of adaptive immunity. Conversely, a poor prognosis was associated with lack of an appropriate adaptive response, sustained innate immune signaling, and higher expression of myeloid-derived suppressor cell (MDSC)-related transcripts (S100A8, S100A9, CEBPB, PTGS2, CXCR1, and LILRA3). MDSCs are potent immunosuppressors of cellular and humoral immunity, and therefore, they represent a potential therapeutic target. Circulating plasminogen activator inhibitor 1 (PAI-1) and tissue plasminogen activator (tPA) levels were also elevated in nonsurvivors and in survivors exhibiting severe illness, emphasizing the importance of maintaining coagulation homeostasis to control disease progression. IMPORTANCE Bundibugyo virus (BDBV) and Ebola virus (EBOV) are ebolaviruses endemic to Africa that cause severe, often fatal hemorrhagic disease. BDBV is considered a less pathogenic ebolavirus due to its reduced lethality during human outbreaks, as well as in experimentally infected nonhuman primates. The reduced mortality of BDBV in NHP models, resulting in a pool of survivors, afforded us the unique opportunity of identifying immune correlates that confer protection against ebolaviruses. In this study, we discovered that the survival of BDBV-infected nonhuman primates (NHPs) was dependent on early development of adaptive (memory) immune responses and reduced myeloid-derived suppressor cell (MDSC)-related signaling. MDSCs are a heterogenous group of immune cells implicated in a number of diseases that are powerful immunosuppressors of cellular and humoral immunity. Thus, MDSCs represent a novel therapeutic target to prevent ebolavirus disease. To our knowledge, this is the first study to link increased morbidity with recruitment of these potent immunosuppressive cells.


Asunto(s)
Inmunidad Adaptativa/genética , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Transducción de Señal/inmunología , Inmunidad Adaptativa/inmunología , África , Animales , Anticuerpos Antivirales/sangre , Progresión de la Enfermedad , Ebolavirus/clasificación , Ebolavirus/patogenicidad , Femenino , Fiebre Hemorrágica Ebola/mortalidad , Humanos , Macaca mulatta , Masculino , Células B de Memoria/inmunología , Inhibidor 1 de Activador Plasminogénico/sangre , Transducción de Señal/genética , Activador de Tejido Plasminógeno/sangre
17.
mBio ; 12(4): e0097221, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34225493

RESUMEN

Ebola virus (EBOV) VP24 protein is a nucleocapsid-associated protein that inhibits interferon (IFN) gene expression and counteracts the IFN-mediated antiviral response, preventing nuclear import of signal transducer and activator of transcription 1 (STAT1). Proteomic studies to identify additional EBOV VP24 partners have pointed to the nuclear membrane component emerin as a potential element of the VP24 cellular interactome. Here, we have further studied this interaction and its impact on cell biology. We demonstrate that VP24 interacts with emerin but also with other components of the inner nuclear membrane, such as lamin A/C and lamin B. We also show that VP24 diminishes the interaction between emerin and lamin A/C and compromises the integrity of the nuclear membrane. This disruption is associated with nuclear morphological abnormalities, activation of a DNA damage response, the phosphorylation of extracellular signal-regulated kinase (ERK), and the induction of interferon-stimulated gene 15 (ISG15). Interestingly, expression of VP24 also promoted the cytoplasmic translocation and downmodulation of barrier-to-autointegration factor (BAF), a common interactor of lamin A/C and emerin, leading to repression of the BAF-regulated CSF1 gene. Importantly, we found that EBOV infection results in the activation of pathways associated with nuclear envelope damage, consistent with our observations in cells expressing VP24. In summary, here we demonstrate that VP24 acts at the nuclear membrane, causing morphological and functional changes in cells that recapitulate several of the hallmarks of laminopathy diseases. IMPORTANCE The Ebola virus (EBOV) VP24 protein is a nucleocapsid-associated protein with multiple functions. Proteomic studies have identified the cellular nuclear membrane component emerin as a potential VP24 interactor. Here, we demonstrate that VP24 not only interacts with emerin but also with lamin A/C and lamin B, prompting nuclear membrane disruption. This disruption is associated with nuclear morphological abnormalities, activation of a DNA damage response, the phosphorylation of extracellular signal-regulated kinase (ERK), and the induction of interferon-stimulated gene 15 (ISG15). Interestingly, VP24 also promotes the cytoplasmic translocation and downmodulation of barrier-to-autointegration factor (BAF), leading to repression of the BAF-regulated CSF1 gene. Finally, we show that EBOV infection also results in the activation of pathways associated with nuclear envelope damage, consistent with our observations in cells expressing VP24. These results reveal novel activities of EBOV VP24 protein, resulting in a cell phenotype similar to that of most laminopathies, with potential impact on EBOV replication.


Asunto(s)
Ebolavirus/patogenicidad , Laminopatías/virología , Laminas/metabolismo , Membrana Nuclear/patología , Proteínas Virales/genética , Células A549 , Transporte Activo de Núcleo Celular , Núcleo Celular/patología , Núcleo Celular/virología , Ebolavirus/química , Ebolavirus/genética , Células HEK293 , Células HeLa , Fiebre Hemorrágica Ebola/virología , Humanos , Laminas/clasificación , Proteínas de la Membrana/metabolismo , Membrana Nuclear/virología , Proteínas Nucleares/metabolismo , Fenotipo , Proteínas Virales/metabolismo , Replicación Viral
18.
J Virol ; 95(20): e0116521, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34319156

RESUMEN

Ebola virus (EBOV) attaches to target cells using two categories of cell surface receptors: C-type lectins and phosphatidylserine (PS) receptors. PS receptors typically bind to apoptotic cell membrane PS and orchestrate the uptake and clearance of apoptotic debris. Many enveloped viruses also contain exposed PS and can therefore exploit these receptors for cell entry. Viral infection can induce PS externalization in host cells, resulting in increased outer PS levels on budding virions. Scramblase enzymes carry out cellular PS externalization; thus, we targeted these proteins in order to manipulate viral envelope PS levels. We investigated two scramblases previously identified to be involved in EBOV PS levels, transmembrane protein 16F and Xk-related protein 8 (XKR8), as possible mediators of cellular and viral envelope surface PS levels during the replication of recombinant vesicular stomatitis virus containing its native glycoprotein (rVSV/G) or the EBOV glycoprotein (rVSV/EBOV-GP). We found that rVSV/G and rVSV/EBOV-GP virions produced in XKR8 knockout cells contain decreased levels of PS on their surfaces, and the PS-deficient rVSV/EBOV-GP virions are 70% less efficient at infecting cells through PS receptors. We also observed reduced rVSV and EBOV virus-like particle (VLP) budding in ΔXKR8 cells. Deletion of XKR8 in HAP1 cells reduced rVSV/G and rVSV/EBOV-GP budding by 60 and 65%, respectively, and reduced Ebola VLP budding more than 60%. We further demonstrated that caspase cleavage of XKR8 is required to promote budding. This suggests that XKR8, in addition to mediating virion PS levels, may also be critical for enveloped virus budding at the plasma membrane. IMPORTANCE Within the last decade, countries in western and central Africa have experienced the most widespread and deadly Ebola outbreaks since Ebola virus was identified in 1976. While outbreaks are primarily attributed to zoonotic transfer events, new evidence is emerging outbreaks may be caused by a combination of spillover events and viral latency or persistence in survivors. The possibility that Ebola virus can remain dormant and then reemerge in survivors highlights the critical need to prevent the virus from entering and establishing infection in human cells. Thus far, host cell scramblases TMEM16F and XKR8 have been implicated in Ebola envelope surface phosphatidylserine (PS) and cell entry using PS receptors. We assessed the contributions of these proteins using CRISPR knockout cells and two EBOV models: rVSV/EBOV-GP and EBOV VLPs. We observed that XKR8 is required for optimal EBOV envelope PS levels and infectivity and particle budding across all viral models.


Asunto(s)
Ebolavirus/metabolismo , Fosfatidilserinas/metabolismo , Liberación del Virus/fisiología , Línea Celular , Ebolavirus/patogenicidad , Glicoproteínas/metabolismo , Fiebre Hemorrágica Ebola/virología , Humanos , Fosfatidilserinas/fisiología , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/fisiología , Proteínas del Envoltorio Viral/metabolismo , Virión/metabolismo , Ensamble de Virus/genética , Ensamble de Virus/fisiología , Liberación del Virus/genética
19.
PLoS One ; 16(5): e0251101, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34029352

RESUMEN

INTRODUCTION: Viral outbreaks present a particular challenge in countries in Africa where there is already a high incidence of other infectious diseases, including malaria which can alter immune responses to secondary infection. Ebola virus disease (EVD) is one such problem; understanding how Plasmodium spp. and Ebolavirus (EBOV) interact is important for future outbreaks. METHODS: We conducted a systematic review in PubMed and Web of Science to find peer-reviewed papers with primary data literature to determine 1) prevalence of EBOV/Plasmodium spp. coinfection, 2) effect of EBOV/Plasmodium spp. coinfection on EVD pathology and the immune response, 3) impact of EBOV/Plasmodium spp. coinfection on the outcome of EVD-related mortality. Random effects meta-analyses were conducted with the R package meta to produce overall proportion and effect estimates as well as measure between-study heterogeneity. RESULTS: From 322 peer-reviewed papers, 17 were included in the qualitative review and nine were included in a meta-analysis. Prevalence of coinfection was between 19% and 72%. One study reported significantly lower coagulatory response biomarkers in coinfected cases but no difference in inflammatory markers. Case fatality rates were similar between EBOV(+)/Pl(+) and EBOV(+)/Pl(-) cases (62.8%, 95% CI 49.3-74.6 and 56.7%, 95% CI 53.2-60.1, respectively), and there was no significant difference in risk of mortality (RR 1.09, 95% CI 0.90-1.31) although heterogeneity between studies was high. One in vivo mouse model laboratory study found no difference in mortality by infection status, but another found prior acute Plasmodium yoeli infection was protective against morbidity and mortality via the IFN-γ signalling pathway. CONCLUSION: The literature was inconclusive; studies varied widely and there was little attempt to adjust for confounding variables. Laboratory studies may present the best option to answer how pathogens interact within the body but improvement in data collection and analysis and in diagnostic methods would aid patient studies in the future.


Asunto(s)
Coinfección/epidemiología , Fiebre Hemorrágica Ebola/epidemiología , Malaria/epidemiología , Animales , Brotes de Enfermedades , Ebolavirus/patogenicidad , Humanos , Prevalencia
20.
Front Immunol ; 12: 627688, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790899

RESUMEN

Heterologous prime-boost immunization regimens are a common strategy for many vaccines. DNA prime rAd5-GP boost immunization has been demonstrated to protect non-human primates against a lethal challenge of Ebola virus, a pathogen that causes fatal hemorrhagic disease in humans. This protection correlates with antibody responses and is also associated with IFNγ+ TNFα+ double positive CD8+ T-cells. In this study, we compared single DNA vs. multiple DNA prime immunizations, and short vs. long time intervals between the DNA prime and the rAd5 boost to evaluate the impact of these different prime-boost strategies on vaccine-induced humoral and cellular responses in non-human primates. We demonstrated that DNA/rAd5 prime-boost strategies can be tailored to induce either CD4+ T-cell or CD8+ T-cell dominant responses while maintaining a high magnitude antibody response. Additionally, a single DNA prime immunization generated a stable memory response that could be boosted by rAd5 3 years later. These results suggest DNA/rAd5 prime-boost provides a flexible platform that can be fine-tuned to generate desirable T-cell memory responses.


Asunto(s)
Vacunas contra el Virus del Ébola/administración & dosificación , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Esquemas de Inmunización , Inmunización Secundaria , Inmunogenicidad Vacunal , Animales , Anticuerpos Antivirales/sangre , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/patogenicidad , Femenino , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Memoria Inmunológica , Macaca fascicularis , Factores de Tiempo , Vacunas de ADN/administración & dosificación , Vacunas de ADN/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...