Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Am J Ther ; 31(3): e258-e267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38691665

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is characterized by loss of motor neurons due to degeneration of nerve cells within the brain and spinal cord. Early symptoms include limb weakness, twitching or muscle cramping, and slurred speech. As the disease progresses, difficulty breathing, swallowing, and paralysis can lead to death. Currently, there are no medications that cure ALS, and guidelines recommend treatments focused on symptom management. Intravenous (IV) edaravone was approved by the US Food and Drug Administration (FDA) in 2017 as a treatment to slow the progression of ALS. In May 2022, the FDA approved an oral suspension (ORS) formulation of edaravone. MECHANISM OF ACTION: The mechanism of action of edaravone is not well defined. However, its neuroprotective effects are thought to result from antioxidant properties occurring through elimination of free radicals. PHARMACOKINETICS: Edaravone ORS (105 mg) has a bioavailability of 57% when compared with edaravone IV (60 mg). The ORS should be taken on an empty stomach in the morning, with water and no food or beverages, for 1 hour. Edaravone is bound to albumin (92%), has a mean volume of distribution of 63.1 L, a half-life of 4.5-9 hours, and a total clearance of 35.9 L/h after intravenous administration. Edaravone is metabolized into nonactive sulfate and glucuronide conjugates. CLINICAL TRIALS: The FDA approval was based on studies of the pharmacokinetics, safety, tolerability, and bioavailability of edaravone ORS. A phase III, global, multicenter, open-label safety study was conducted on edaravone ORS in 185 patients with ALS over 48 weeks. The most reported treatment-emergent adverse events were falls, muscular weakness, and constipation. Serious treatment-emergent adverse events included disease worsening, dysphagia, dyspnea, and respiratory failure. THERAPEUTIC ADVANCE: Oral edaravone is an ALS treatment that can be self-administered or administered by a caregiver, precluding the need for administration by a health care professional in an institutional setting.


Asunto(s)
Esclerosis Amiotrófica Lateral , Edaravona , Fármacos Neuroprotectores , Edaravona/administración & dosificación , Edaravona/farmacología , Edaravona/uso terapéutico , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/efectos adversos , Administración Oral , Suspensiones , Disponibilidad Biológica
2.
Medicine (Baltimore) ; 103(17): e37954, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669396

RESUMEN

To explore the value of thromboelastography (TEG) in evaluating the efficacy of Xueshuantong combined with edaravone for the treatment of acute cerebral infarction (ACI). We retrospectively analyzed the clinical data of 96 patients with ACI treated with Xueshuantong combined with edaravone and monitored by TEG. The correlation between the results of TEG examination and treatment outcomes in patients after treatment was analyzed. After treatment, 65 of 96 patients showed good efficacy and 31 had poor efficacy. kinetic time (KT), reaction time (RT), and the percentage of clot lysis at 30 minutes after Ma value (LY30) of patients with good therapeutic effects were significantly higher than those with poor therapeutic effects; However, maximum amplitude (MA) and coagulation index (CI) were significantly lower than those with poor efficacy (P < .05). There was a significant positive correlation between KT, RT, and LY30 and the therapeutic effect of ACI, and a significant negative correlation between the therapeutic effects of MA, CI, and ACI (P < .05). Logistic analysis confirmed that KT, RT, and LY30 were protective factors for the therapeutic effect of ACI; MA and CI were risk factors for the therapeutic effect of ACI (P < .05). TEG has a high value in evaluating the efficacy of Xueshuantong combined with edaravone in the treatment of ACI. It can clarify changes in the coagulation function of patients, thereby guiding clinical follow-up treatment.


Asunto(s)
Infarto Cerebral , Medicamentos Herbarios Chinos , Edaravona , Tromboelastografía , Humanos , Tromboelastografía/métodos , Edaravona/uso terapéutico , Edaravona/farmacología , Masculino , Femenino , Infarto Cerebral/tratamiento farmacológico , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Medicamentos Herbarios Chinos/uso terapéutico , Resultado del Tratamiento , Quimioterapia Combinada , Enfermedad Aguda , Anciano de 80 o más Años
3.
Biomolecules ; 14(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38672460

RESUMEN

A considerable effort has been spent in the past decades to develop targeted therapies for the treatment of demyelinating diseases, such as multiple sclerosis (MS). Among drugs with free radical scavenging activity and oligodendrocyte protecting effects, Edaravone (Radicava) has recently received increasing attention because of being able to enhance remyelination in experimental in vitro and in vivo disease models. While its beneficial effects are greatly supported by experimental evidence, there is a current paucity of information regarding its mechanism of action and main molecular targets. By using high-throughput RNA-seq and biochemical experiments in murine oligodendrocyte progenitors and SH-SY5Y neuroblastoma cells combined with molecular docking and molecular dynamics simulation, we here provide evidence that Edaravone triggers the activation of aryl hydrocarbon receptor (AHR) signaling by eliciting AHR nuclear translocation and the transcriptional-mediated induction of key cytoprotective gene expression. We also show that an Edaravone-dependent AHR signaling transduction occurs in the zebrafish experimental model, associated with a downstream upregulation of the NRF2 signaling pathway. We finally demonstrate that its rapid cytoprotective and antioxidant actions boost increased expression of the promyelinating Olig2 protein as well as of an Olig2:GFP transgene in vivo. We therefore shed light on a still undescribed potential mechanism of action for this drug, providing further support to its therapeutic potential in the context of debilitating demyelinating conditions.


Asunto(s)
Antioxidantes , Edaravona , Factor 2 Relacionado con NF-E2 , Receptores de Hidrocarburo de Aril , Transducción de Señal , Pez Cebra , Receptores de Hidrocarburo de Aril/metabolismo , Edaravona/farmacología , Animales , Transducción de Señal/efectos de los fármacos , Humanos , Ratones , Antioxidantes/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Simulación de Dinámica Molecular
4.
Brain Res ; 1833: 148917, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38582415

RESUMEN

Exploring the intricate pathogenesis of Vascular Dementia (VD), there is a noted absence of potent treatments available in the current medical landscape. A new brain-protective medication developed in China, Edaravone dexboeol (EDB), has shown promise due to its antioxidant and anti-inflammatory properties, albeit with a need for additional research to elucidate its role and mechanisms in VD contexts. In a research setup, a VD model was established utilizing Sprague-Dawley (SD) rats, subjected to permanent bilateral typical carotid artery occlusion (2VO). Behavioral assessment of the rats was conducted using the Bederson test and pole climbing test, while cognitive abilities, particularly learning and memory, were evaluated via the novel object recognition test and the Morris water maze test. Ensuing, the levels of malondialdehyde (MDA), superoxide dismutase (SOD), IL-1ß, IL-6, IL-4, and tumor necrosis factor-α (TNF-α) were determined through Enzyme-Linked Immunosorbent Assay (ELISA). Synaptic plasticity-related proteins, synaptophysin (SYP), post-synaptic density protein 95 (PSD-95), and N-methyl-D-aspartate (NMDA) receptor proteins (NR1, NR2A, NR2B) were investigated via Western blotting technique. The findings imply that EDB has the potential to ameliorate cognitive deficiencies, attributed to VD, by mitigating oxidative stress, dampening inflammatory responses, and modulating the NMDA receptor signaling pathway, furnishing new perspectives into EDB's mechanism and proposing potential avenues for therapeutic strategies in managing VD.


Asunto(s)
Disfunción Cognitiva , Demencia Vascular , Modelos Animales de Enfermedad , Edaravona , Hipocampo , Estrés Oxidativo , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato , Transducción de Señal , Animales , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/metabolismo , Estrés Oxidativo/efectos de los fármacos , Edaravona/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Ratas , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Inflamación/metabolismo , Inflamación/tratamiento farmacológico
5.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474192

RESUMEN

The brain is susceptible to oxidative stress, which is associated with various neurological diseases. Edaravone (MCI-186, 3-methyl-1 pheny-2-pyrazolin-5-one), a free radical scavenger, has promising effects by quenching hydroxyl radicals (∙OH) and inhibiting both ∙OH-dependent and ∙OH-independent lipid peroxidation. Edaravone was initially developed in Japan as a neuroprotective agent for acute cerebral infarction and was later applied clinically to treat amyotrophic lateral sclerosis (ALS), a neurodegenerative disease. There is accumulating evidence for the therapeutic effects of edaravone in a wide range of diseases related to oxidative stress, including ischemic stroke, ALS, Alzheimer's disease, and placental ischemia. These neuroprotective effects have expanded the potential applications of edaravone. Data from experimental animal models support its safety for long-term use, implying broader applications in various neurodegenerative diseases. In this review, we explain the unique characteristics of edaravone, summarize recent findings for specific diseases, and discuss its prospects for future therapeutic applications.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Animales , Femenino , Embarazo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Antioxidantes/uso terapéutico , Antipirina , Edaravona/farmacología , Edaravona/uso terapéutico , Depuradores de Radicales Libres/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Placenta
6.
Medicina (Kaunas) ; 60(3)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38541080

RESUMEN

Antioxidants, usually administered orally through the systemic route, are known to counteract the harmful effects of oxidative stress on retinal cells. The formulation of these antioxidants as eye drops might offer a new option in the treatment of oxidative retinopathies. In this review, we will focus on the use of some of the most potent antioxidants in treating retinal neuropathies. Melatonin, known for its neuroprotective qualities, may mitigate oxidative damage in the retina. N-acetyl-cysteine (NAC), a precursor to glutathione, enhances the endogenous antioxidant defense system, potentially reducing retinal oxidative stress. Idebenone, a synthetic analogue of coenzyme Q10, and edaravone, a free radical scavenger, contribute to cellular protection against oxidative injury. Epigallocatechin-3-gallate (EGCG), a polyphenol found in green tea, possesses anti-inflammatory and antioxidant effects that could be beneficial in cases of retinopathy. Formulating these antioxidants as eye drops presents a localized and targeted delivery method, ensuring effective concentrations reach the retina. This approach might minimize systemic side effects and enhance therapeutic efficacy. In this paper, we also introduce a relatively new strategy: the alkylation of two antioxidants, namely, edaravone and EGCG, to improve their insertion into the lipid bilayer of liposomes or even directly into cellular membranes, facilitating their crossing of epithelial barriers and targeting the posterior segment of the eye. The synergistic action of these antioxidants may offer a multifaceted defense against oxidative damage, holding potential for the treatment and management of oxidative retinopathies. Further research and clinical trials will be necessary to validate the safety and efficacy of these formulations, but the prospect of antioxidant-based eye drops represents a promising avenue for future ocular therapies.


Asunto(s)
Oftalmopatías , Enfermedades de la Retina , Humanos , Edaravona/farmacología , Antioxidantes/farmacología , Estrés Oxidativo , Enfermedades de la Retina/tratamiento farmacológico , Soluciones Oftálmicas
7.
Free Radic Biol Med ; 217: 116-125, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548187

RESUMEN

PURPOSE: Ferroptosis has recently been recognized as a mechanism of cerebral ischemia-reperfusion (I/R) injury, attributed to blood-brain barrier (BBB) disruption. Edaravone dexboneol (Eda.B) is a novel neuroprotective agent widely employed in ischemic stroke, which is composed of edaravone (Eda) and dexborneol. This study aimed to investigate the protective effects of Eda.B on the BBB in cerebral I/R and explore its potential mechanisms. METHODS: Transient middle cerebral artery occlusion (tMCAO) Sprague-Dawley-rats model was used. Rats were randomly assigned to sham-operated group (sham, n = 20), model group (tMCAO, n = 20), Eda.B group (Eda.B, n = 20), Eda group (Eda, n = 20) and dexborneol group (dexborneol, n = 20), and Eda.B + Zinc protoporphyria group (Eda.B + ZnPP, n = 5). Infarct area, cellular apoptosis and neurofunctional recovery were accessed through TTC staining, TUNEL staining, and modified Garcia scoring system, respectively. BBB integrity was evaluated via Evans blue staining. Nuclear factor E2 related factor 2 (Nrf-2)/heme oxygenase 1 (HO-1)/glutathione peroxidase 4 (GPX4) signaling were qualified by Western blot. Transmission electron microscopy (TEM) revealed alterations in ipsilateral brain tissue among groups. Glutathione (GSH) and malondialdehyde (MDA) levels, and Fe2+ tissue content determination were detected. RESULTS: Eda.B effectively improved neurological deficits, diminished infarct area and cellular apoptosis, as well as ameliorated BBB integrity in tMCAO rats. Further, Eda.B significantly inhibited ferroptosis, as evidenced by ameliorated pathological features of mitochondria, down-regulated of MDA and Fe2+ levels and up-regulated GSH content. Mechanistically, Eda.B attenuated BBB disruption via Nrf-2-mediated ferroptosis, promoting nuclear translocation of Nrf-2, increasing HO-1, GPX4 expression, alleviating the loss of zonula occludens 1 (ZO-1) and occludin as well as decreasing 4-hydroxynonenal (4-HNE) level. CONCLUSIONS: This study revealed for the first time that Eda.B safeguarded the BBB from cerebral I/R injury by inhibiting ferroptosis through the activation of the Nrf-2/HO-1/GPX4 axis, providing a novel insight into the neuroprotective effect of Eda.B in cerebral I/R.


Asunto(s)
Isquemia Encefálica , Ferroptosis , Fármacos Neuroprotectores , Daño por Reperfusión , Ratas , Animales , Barrera Hematoencefálica , Hemo-Oxigenasa 1/metabolismo , Edaravona/farmacología , Ratas Sprague-Dawley , Isquemia Encefálica/patología , Fármacos Neuroprotectores/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Reperfusión , Daño por Reperfusión/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
8.
Chem Biodivers ; 21(5): e202400110, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38424689

RESUMEN

Drugs with anti-platelet aggregation and neuroprotection are of great significance for the treatment of ischemic stroke. A series of edaravone and 6-phenyl-4,5-dihydropyridazin-3(2H)-one hybrids were designed and synthesized. Among them, 6g showed the most effective cytoprotective effect against oxygen-glucose deprivation/reoxygenation-induced damage in BV2 cells and an excellent inhibitory effect on platelet aggregation induced by adenosine diphosphate and arachidonic acid. Additionally, 6g could prevent thrombosis caused by ferric chloride in rats and pose a lower risk of causing bleeding compared with aspirin. It provides better protection against ischemia/reperfusion injury in rats compared with edaravone and alleviates the oxidative stress related to cerebral ischemia/reperfusion by increasing the GSH and SOD levels and decreasing the MDA concentration. Finally, molecular docking results showed that 6g probably acts on PDE3 A and plays an anti-platelet aggregation effect. Overall, 6g could be a potential candidate compound for the treatment of ischemic stroke.


Asunto(s)
Edaravona , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Inhibidores de Agregación Plaquetaria , Agregación Plaquetaria , Animales , Edaravona/farmacología , Edaravona/química , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Ratas , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/síntesis química , Agregación Plaquetaria/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/síntesis química , Simulación del Acoplamiento Molecular , Masculino , Ratones , Estructura Molecular , Relación Estructura-Actividad , Ratas Sprague-Dawley , Descubrimiento de Drogas , Piridazinas/farmacología , Piridazinas/química , Estrés Oxidativo/efectos de los fármacos
9.
Ann Nucl Med ; 38(5): 337-349, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38360964

RESUMEN

BACKGROUND: Brain ischemia-reperfusion injury is a complex process, and neuroinflammation is an important secondary contributing pathological event. Neutrophils play major roles in ischemic neuroinflammation. Once activated, neutrophils express formyl peptide receptors (FPRs), which are special receptors of a class of chemoattractants and may be potential targets to regulate the activity of neutrophils and control cerebral ischemic injury. This study was aimed to explore the ameliorating effect of Cyclosporin H (CsH), a potent FPR antagonist, on brain ischemic injury by inhibiting the activation and migration of neutrophils, and improving cerebral blood flow. METHODS: We employed a middle cerebral artery occlusion (MCAO) Model on rats and performed behavioral, morphological, and microPET imaging assays to investigate the potential restoring efficacy of CsH on cerebral ischemic damages. Peptide N-cinnamoyl-F-(D)L-F-(D)L-F (cFLFLF), an antagonist to the neutrophil FPR with a high binding affinity, was used for imaging neutrophil distribution. RESULTS: We found that CsH had similar effect with edaravone on improving the neurobehavioral deficient symptoms after cerebral ischemia-reperfusion, and treatment with CsH also alleviated ischemic cerebral infarction. Compared with the MCAO Model group, [18F]FDG uptake ratios of the CsH and edaravone treatment groups were significantly higher. The CsH-treated groups also showed significant increases in [18F]FDG uptake at 144 h when compared with that of 24 h. This result indicates that like edaravone, treatment with both doses of CsH promoted the recovery of blood supply after cerebral ischemic event. Moreover, MCAO-induced cerebral ischemia significantly increased the radiouptake of [68Ga]Ga-cFLFLF at 72 h after ischemia-reperfusion operation. Compared with MCAO Model group, radiouptake values of [68Ga]-cFLFLF in both doses of CsH and edaravone groups were all decreased significantly. These results showed that both doses of CsH resulted in a similar therapeutic effect with edaravone on inhibiting neutrophil infiltration in cerebral infarction. CONCLUSION: Potent FPR antagonist CsH is promisingly beneficial in attenuating neuroinflammation and improving neurobehavioral function against cerebral infarction. Therefore, FPR may become a novel target for regulating neuroinflammation and improving prognosis for ischemic cerebrovascular disorders.


Asunto(s)
Isquemia Encefálica , Ciclosporina , Daño por Reperfusión , Ratas , Animales , Infiltración Neutrófila , Edaravona/farmacología , Edaravona/uso terapéutico , Fluorodesoxiglucosa F18 , Enfermedades Neuroinflamatorias , Radioisótopos de Galio/uso terapéutico , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/complicaciones , Tomografía de Emisión de Positrones , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Daño por Reperfusión/diagnóstico por imagen , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/complicaciones
10.
Eur J Pharmacol ; 966: 176317, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38216081

RESUMEN

Oxidative stress and endoplasmic reticulum stress (ERS) was associated with the development of asthma. Edaravone (EDA) plays a classical role to prevent the occurrence and development of oxidative stress-related diseases. Herein, we investigated the involvement and signaling pathway of EDA in asthma, with particular emphasis on its impact on type 2 innate lymphoid cells (ILC2) and CD4+T cells, and then further elucidated whether EDA could inhibit house dust mite (HDM)-induced allergic asthma by affecting oxidative stress and ERS. Mice received intraperitoneally injection of EDA (10 mg/kg, 30 mg/kg), dexamethasone (DEX) and N-acetylcysteine (NAC), with the latter two used as positive control drugs. DEX and high dose of EDA showed better therapeutic effects in alleviating airway inflammation and mucus secretion in mice, along with decreasing eosinophils and neutrophils in bronchoalveolar lavage fluid (BALF) than NAC. Further, the protein levels of IL-33 in lung tissues were inhibited by EDA, leading to reduced activation of ILC2s in the lung. EDA treatment alleviated the activation of CD4+ T cells in lung tissues of HDM-induced asthmatic mice and reduced Th2 cytokine secretion in BALF. ERS-related markers (p-eIF2α, IRE1α, CHOP, GRP78) were decreased after treatment of EDA compared to HDM group. Malondialdehyde (MDA), glutathione (GSH), hydrogen peroxide (H2O2), and superoxide dismutase (SOD) were detected to evaluate the oxidant stress in lung tissues. EDA showed a protective effect against oxidant stress. In conclusion, our findings demonstrated that EDA could suppress allergic airway inflammation by inhibiting oxidative stress and ERS, suggesting to serve as an adjunct medication for asthma in the future.


Asunto(s)
Asma , Inmunidad Innata , Ratones , Animales , Edaravona/farmacología , Edaravona/uso terapéutico , Citocinas/metabolismo , Endorribonucleasas/metabolismo , Peróxido de Hidrógeno/farmacología , Linfocitos , Proteínas Serina-Treonina Quinasas/metabolismo , Asma/metabolismo , Pulmón , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Estrés Oxidativo , Oxidantes/farmacología , Pyroglyphidae/metabolismo , Modelos Animales de Enfermedad
11.
Eur J Med Chem ; 266: 116155, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266553

RESUMEN

Novel hybrids of selective COX-2 inhibitors (coxibs) and active derivatives of free radical scavenger edaravone were designed to overcome the risk of cardiovascular events and stroke increased by NSAIDs (nonsteroidal anti-inflammatory drugs) in this study. All the hybrids were assayed for the COX-2 inhibitory and DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging activities in vitro. Finally, we found a series of hybrids with good inhibitory activity and selectivity of COX-2 and excellent free radical scavenging activity in vitro. The most promising compound 6a (WYZ90) exhibited very potent COX-2 inhibitory activity (COX-2, IC50 = 75 nM), weak COX-1 inhibitory activity (COX-1, IC50 = 5734 nM), better free radical scavenging activity (DPPH, IC50 = 19.9 µM) than edaravone, moderate drug-likeness and ADME properties in silico, acceptable pharmacokinetic properties (T1/2 = 4.16 h, 10 mg/kg, o.p.) and oral bioavailability (F% = 36.03 %) in mice. In addition, compound WYZ90 showed similar analgesic activity to the selective COX-2 inhibitor celecoxib in acetic acid-induced mice and better antioxidant activity in Fe2+-induced lipid peroxidation in mouse liver tissue homogenate than edaravone. In conclusion, this study provided a novel class of coxibs containing edaravone moiety as COX-2 selective NSAIDs with free radical scavenging activity and the candidate compound WYZ90 showed not only similar selective COX-2 inhibitory and analgesic activity to celecoxib but also better free radical scavenging and antioxidant activity than edaravone.


Asunto(s)
Antiinflamatorios no Esteroideos , Inhibidores de la Ciclooxigenasa 2 , Ratones , Animales , Antiinflamatorios no Esteroideos/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Edaravona/farmacología , Ciclooxigenasa 2 , Celecoxib , Antioxidantes , Analgésicos/farmacología , Radicales Libres/química
12.
Anat Rec (Hoboken) ; 307(2): 372-384, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37475155

RESUMEN

Inflammatory injury following ischemia-reperfusion (I/R) severely limits the efficacy of stroke treatment. Edaravone dexborneol (C.EDA) has been shown to reduce inflammation following a cerebral hemorrhage. However, the precise anti-inflammatory mechanism of C.EDA is unknown. In this study, we investigated whether C.EDA provides neuroprotection after I/R in rats, as well as the potential mechanisms involved. A middle cerebral artery occlusion/reperfusion (I/R) model was created using Sprague-Dawley rats. The blood flow of the central cerebral artery was monitored by a laser speckle imaging system. The neurological score was used to assess behavioral improvement. Cerebral infarction volume was measured by TTC staining. And the integrity of the blood-brain barrier was detected by Evan's blue staining. The expression of the nuclear factor kappa-B (NF-κB)/ the NOD-like receptor protein (NLRP3) inflammasome signal pathway and microglia polarization were detected by immunofluorescence and Western blotting. The cerebral blood flow ratio indicates that the cerebral I/R model was successfully established. After reperfusion for 72 h, the improvement of neurological scores, infarct volume reduction, and integrity of the blood-brain barrier was observed in I/R rats with C.EDA treatment. Meanwhile, the immunofluorescence result showed that the expression of iNOS, NLRP3, and NF-κB protein was decreased and the level of Arg1 was increased. Western blot analysis showed that the expression of NF-κB/NLRP3 signal pathway-related protein was decreased. In conclusion, this study indicates that C.EDA alleviates I/R injury by blocking the activation of the NLRP3 inflammasome and regulating the polarization of M1/M2 microglia via the NF-κB signal pathway.


Asunto(s)
FN-kappa B , Daño por Reperfusión , Ratas , Animales , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Edaravona/farmacología , Ratas Sprague-Dawley , Proteínas NLR , Transducción de Señal/fisiología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo
13.
Molecules ; 28(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38005288

RESUMEN

Currently, there are no effective drugs for the treatment of amyotrophic lateral sclerosis (ALS). Only two drugs-edaravone and riluzole-have been approved, but they have very limited efficacy. The aim of this work was to modify the structural core of the Edaravone-phenylpyrazolone moiety and combine it with aminoadamantane pharmacophore in order to expand the spectrum of its action to a number of processes involved in the pathogenesis of ALS. New conjugates of edaravone derivatives with 1-aminoadamantanes combined with alkylene or hydroxypropylene spacers were synthesized, and their biological activity was investigated. Compounds were found that could inhibit lipid peroxidation and calcium-related mitochondrial permeability, block fast sodium currents of CNS neurons, and reduce aggregation of the mutated form of the FUS-protein typical to ALS. So, the proposed modification of the edaravone molecule has allowed the obtaining of new original structures that combine some prospective therapeutic mechanisms against key chains of the pathogenesis of ALS. The identified lead compounds can be used for further optimization and development of new promising drugs on this basis for the treatment of ALS.


Asunto(s)
Adamantano , Esclerosis Amiotrófica Lateral , Fármacos Neuroprotectores , Humanos , Edaravona/farmacología , Edaravona/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Riluzol , Amantadina/uso terapéutico
14.
Viruses ; 15(11)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38005914

RESUMEN

Singapore grouper iridovirus (SGIV) is a virus with high fatality rate in the grouper culture industry. The outbreak of SGIV is often accompanied by a large number of grouper deaths, which has a great impact on the economy. Therefore, it is of great significance to find effective drugs against SGIV. It has been reported that edaravone is a broad-spectrum antiviral drug, most widely used clinically in recent years, but no report has been found exploring the effect of edaravone on SGIV infections. In this study, we evaluated the antiviral effect of edaravone against SGIV, and the anti-SGIV mechanism of edaravone was also explored. It was found that the safe concentration of edaravone on grouper spleen (GS) cells was 50 µg/mL, and it possessed antiviral activity against SGIV infection in a dose-dependent manner. Furthermore, edaravone could significantly disrupt SGIV particles and interference with SGIV binding to host cells, as well as SGIV replication in host cells. However, edaravone was not effective during the SGIV invasion into host cells. This study was the first time that it was determined that edaravone could exert antiviral effects in response to SGIV infection by directly interfering with the processes of SGIV infecting cells, aiming to provide a theoretical basis for the control of grouper virus disease.


Asunto(s)
Lubina , Infecciones por Virus ADN , Enfermedades de los Peces , Iridovirus , Ranavirus , Animales , Lubina/metabolismo , Edaravona/farmacología , Ranavirus/fisiología , Antivirales/farmacología , Enfermedades de los Peces/tratamiento farmacológico , Infecciones por Virus ADN/tratamiento farmacológico , Infecciones por Virus ADN/veterinaria , Proteínas de Peces/metabolismo
15.
J Neuroimmune Pharmacol ; 18(4): 640-656, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37924374

RESUMEN

Reduced uterine perfusion pressure (RUPP) is a well-established model which mimics many clinical features of preeclampsia (PE). Edaravone is a free radical scavenger with neuroprotective, antioxidant and anti-inflammatory effects against different models of cerebral ischemia. Therefore, we aimed to elucidate the different potential mechanisms through which PE affects fetal brain development using our previously established RUPP-placental ischemia mouse model. In addition, we investigated the neuroprotective effect of edaravone against the RUPP-induced fetal brain development alterations. On gestation day (GD) 13, pregnant mice were divided into four groups; sham (SV), edaravone (SE), RUPP (RV), and RUPP+edaravone (RE). SV and SE groups underwent sham surgeries, however, RV and RE groups were subjected to RUPP surgery via bilateral uterine ligation. Edaravone (3mg/kg) was injected via tail i.v. injection from GD 14-18. The fetal brains from different groups were collected on GD 18 and subjected to further investigations. The results showed that RUPP altered the structure of fetal brain cortex, induced neurodegeneration, increased the expression of the investigated pro-inflammatory markers; TNF-α, IL-6, IL-1ß, and MMP-9. RUPP resulted in microglial and astrocyte activation in the fetal brains, in addition to upregulation of Hif-1α and iNOS. Edaravone conferred a neuroprotective effect via alleviating the inflammatory response, restoring the neuronal structure and decreasing oxidative stress in the developing fetal brain. In conclusion, RUPP-placental ischemia mouse model could be a useful tool to further understand the underlying mechanisms of PE-induced child neuronal alterations. Edaravone could be a potential adjuvant therapy during PE to protect the developing fetal brain. The current study investigated the effects of a placenta-induced ischemia mouse model using reduced uterine perfusion pressure (RUPP) surgery on the fetal brain development and the potential neuroprotective effects of the drug edaravone. The study found that the RUPP model caused neurodegeneration and a pro-inflammatory response in the developing fetal brain, as well as hypoxia and oxidative stress. However, maternal injection of edaravone showed a strong ability to protect against these detrimental effects and target multiple pathways associated with neuronal damage. The current study suggests that the RUPP model could be useful for further study of the impact of preeclampsia on fetal brain development and that edaravone may have potential as a therapy for protecting against this damage.


Asunto(s)
Fármacos Neuroprotectores , Preeclampsia , Humanos , Ratas , Niño , Embarazo , Femenino , Ratones , Animales , Placenta/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Preeclampsia/metabolismo , Edaravona/farmacología , Edaravona/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas Sprague-Dawley , Encéfalo/metabolismo , Isquemia/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad
16.
Molecules ; 28(19)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37836771

RESUMEN

Edaravone (EDA), an antioxidant drug approved for the treatment of ischemic stroke and amyotrophic lateral sclerosis, was recently proposed as a remyelinating candidate for the treatment of multiple sclerosis. Here, we synthesized twelve EDA analogues 2b-4c showing three substitution patterns A-C, searching for improved remyelinating agents and putative molecular targets responsible for their regenerative activity. We profiled them in three primary assays to determine their stimulation of oligodendrocyte progenitor cell metabolism (tetrazolium MTT assay), their antioxidant potential (2,2-diphenyl-1-picrylhydrazyl-DPPH assay) and to predict their bioavailability (virtual ADME profile). Active 4'-carboxylate 2b, 4'-ester 2c and N1-carbamate-4'-ester 4a were further characterized, justifying their in vitro effects and selecting 4a as a putative EDA 1 prodrug suitable for in vivo testing.


Asunto(s)
Esclerosis Amiotrófica Lateral , Antioxidantes , Humanos , Edaravona/farmacología , Edaravona/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Estrés Oxidativo , Ésteres/farmacología
17.
Eur J Pharmacol ; 957: 176036, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37673366

RESUMEN

Cerebral small vessel disease (CSVD) is one of the most important causes of stroke and vascular dementia, so exploring effective treatment modalities for CSVD is warranted. This study aimed to explore the anti-inflammatory effects of Edaravone dexborneol (C.EDA) in a CSVD model. Mice with CSVD showed distinct cognitive decline, as assessed by the Morris water maze (MWM). Pathological staining verified leakage across the blood‒brain barrier (BBB), microglial proliferation, neuronal loss and demyelination. Western blot analysis demonstrated that M1 microglia dominated prophase and released proinflammatory molecules; the aryl hydrocarbon receptor (AHR) was found to participate in modulating nuclear factor-kappa B (NF-κB) signalling activation through tumour necrosis factor receptor-associated factor-6 (TRAF6). C.EDA treatment resulted in the polarization of microglia from the M1 to the M2 phenotype. Mice sequentially treated with C.EDA exhibited a significant improvement in cognitive function; expression of the anti-inflammatory cytokines and modulatory proteins AHR and TRAF6 was upregulated, while the levels of pNF-κBp65 and pIΚBα were downregulated. C.EDA promoted microglial activation towards the M2 phenotype by upregulating AHR expression, which prevented TRAF6 ubiquitination, promoted NF-κB RelA/p65 protein degradation and inhibited subsequent NF-κB phosphorylation. Mechanistically, the anti-inflammatory effect of C.EDA alleviated neuronal loss and myelin damage, while at the functional level, C.EDA improved cognitive function and thus showed good application prospects.


Asunto(s)
Estenosis Carotídea , Disfunción Cognitiva , Animales , Ratones , FN-kappa B , Edaravona/farmacología , Microglía , Estenosis Carotídea/complicaciones , Estenosis Carotídea/tratamiento farmacológico , Receptores de Hidrocarburo de Aril , Factor 6 Asociado a Receptor de TNF , Disfunción Cognitiva/tratamiento farmacológico
18.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37445867

RESUMEN

Edaravone is a mitochondrially targeted drug with a suggested capability to modify the course of diverse neurological diseases. Nevertheless, edaravone has not been tested yet in the context of spinocerebellar ataxia 1 (SCA1), an incurable neurodegenerative disease characterized mainly by cerebellar disorder, with a strong contribution of inflammation and mitochondrial dysfunction. This study aimed to address this gap, exploring the potential of edaravone to slow down SCA1 progression in a mouse knock-in SCA1 model. SCA1154Q/2Q and healthy SCA12Q/2Q mice were administered either edaravone or saline daily for more than 13 weeks. The functional impairments were assessed via a wide spectrum of behavioral assays reflecting motor and cognitive deficits and behavioral abnormalities. Moreover, we used high-resolution respirometry to explore mitochondrial function, and immunohistochemical and biochemical tools to assess the magnitude of neurodegeneration, inflammation, and neuroplasticity. Data were analyzed using (hierarchical) Bayesian regression models, combined with the methods of multivariate statistics. Our analysis pointed out various previously documented neurological and behavioral deficits of SCA1 mice. However, we did not detect any plausible therapeutic effect of edaravone on either behavioral dysfunctions or other disease hallmarks in SCA1 mice. Thus, our results did not provide support for the therapeutic potential of edaravone in SCA1.


Asunto(s)
Disfunción Cognitiva , Ataxias Espinocerebelosas , Ratones , Animales , Edaravona/farmacología , Edaravona/uso terapéutico , Teorema de Bayes , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/metabolismo , Mitocondrias , Disfunción Cognitiva/metabolismo , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Células de Purkinje
19.
J Antimicrob Chemother ; 78(9): 2209-2216, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37486104

RESUMEN

OBJECTIVES: Resistance genes can be genetically transmitted and exchanged between commensal and pathogenic bacterial species, and in different compartments including the environment, or human and animal guts (One Health concept). The aim of our study was to evaluate whether subdosages of antibiotics administered in veterinary medicine could enhance plasmid transfer and, consequently, resistance gene exchange in gut microbiota. METHODS: Conjugation frequencies were determined with Escherichia coli strains carrying IncL- (blaOXA-48) or IncI1-type (blaCTX-M-1) plasmids subjected to a series of subinhibitory concentrations of antibiotics used in veterinary medicine, namely amoxicillin, ceftiofur, apramycin, neomycin, enrofloxacin, colistin, erythromycin, florfenicol, lincomycin, oxytetracycline, sulfamethazine, tiamulin and the ionophore narasin. Treatments with subinhibitory dosages were performed with and without supplementation with the antioxidant edaravone, known as a mitigator of the inducibility effect of several antibiotics on plasmid conjugation frequency (PCF). Expression of SOS-response associated genes and fluorescence-based reactive oxygen species (ROS) detection assays were performed to evaluate the stress oxidative response. RESULTS: Increased PCFs were observed for both strains when treating with florfenicol and oxytetracycline. Increased expression of the SOS-associated recA gene also occurred concomitantly, as well as increased ROS production. Addition of edaravone to the treatments reduced their PCF and also showed a decreasing effect on SOS and ROS responses for both plasmid scaffolds. CONCLUSIONS: We showed here that some antibiotics used in veterinary medicine may induce transfer of plasmid-encoded resistance and therefore may contribute to the worldwide spread of antibiotic resistance genes.


Asunto(s)
Antibacterianos , Oxitetraciclina , Animales , Humanos , Antibacterianos/farmacología , Oxitetraciclina/farmacología , Edaravona/farmacología , Especies Reactivas de Oxígeno , Escherichia coli/genética , Plásmidos/genética , Farmacorresistencia Microbiana , Transferencia de Gen Horizontal
20.
Biomed Pharmacother ; 165: 115165, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37459660

RESUMEN

The disruption of the blood spinal cord barrier (BSCB) after spinal cord injury (SCI) can trigger secondary tissue damage. Edaravone is likely to protect the BSCB as a free radical scavenger, whereas it has been rarely reported thus far. In this study, the protective effect of edaravone was investigated with the use of compression spinal cord injured rats and human brain microvascular endothelial cells (HBMECs) injury. As indicated by the result of this study, edaravone treatment facilitated functional recovery after rats were subjected to SCI, ameliorated the vascular damage, and up-regulated the expression of BSCB-associated proteins. In vitro results, edaravone improved HBMECs viability, restored intercellular junctions, and promoted cellular angiogenic activities. It is noteworthy that autophagy was activated and RIP1/RIP3/MLKL phosphorylation was notably up-regulated. However, edaravone treatment exhibited the capability of mitigating above-mentioned tendency in vivo and in vitro. Moreover, rapamycin (Rapa) treatment deteriorated the protective effect of edaravone while aggravating the phosphorylation of RIP1/RIP3/MLKL expression. In the model of necrotic activator-induced HBMECs, autophagic expression was increased, whereas edaravone prevented autophagy and phosphorylation of RIP1/RIP3/MLKL. In general, our results suggested that edaravone is capable of reducing the destruction of BSCB and promoting functional recovery after SCI. The possible underlying mechanism is that edaravone is capable of protecting angiogenic activity and improving autophagy and the phosphorylation of RIP1/RIP3/MLKL, as well as their mutual deterioration. Accordingly, edaravone can be a favorable option for the treatment of SCI.


Asunto(s)
Necroptosis , Traumatismos de la Médula Espinal , Ratas , Humanos , Animales , Edaravona/farmacología , Ratas Sprague-Dawley , Células Endoteliales/metabolismo , Médula Espinal/metabolismo , Autofagia , Barrera Hematoencefálica/metabolismo , Proteínas Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA