Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Food Chem Toxicol ; 191: 114874, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032681

RESUMEN

The most common cause of anovulatory infertility is polycystic ovarian syndrome (PCOS), which is closely associated with obesity and metabolic syndrome. Artificial sweetener, notably saccharin sodium (SS), has been utilized in management of obesity in PCOS. However, accumulating evidence points towards SS deleterious effects on ovarian physiology, potentially through activation of ovarian sweet and bitter taste receptors, culminating in a phenotype reminiscent of PCOS. This research embarked on exploration of SS influence on ovarian functions within a PCOS paradigm. Rats were categorized into six groups: Control, Letrozole-model, two SS groups at 2 dose levels, and two groups receiving 2 doses of SS with Letrozole. The study underscored SS capability to potentiate PCOS-related anomalies. Elevated cystic profile with outer thin granulosa cells, were discernible. This owed to increased apoptotic markers as cleaved CASP-3, mirrored by high BAX and low BCL-2, with enhanced p38-MAPK/ERK1/2 pathway. This manifestation was accompanied by activation of taste receptors and disruption of steroidogenic factors; StAR, CYP11A1, and 17ß-HSD. Thus, SS showed an escalation in testosterone, progesterone, estrogen, and LH/FSH ratio, insinuating a perturbation in endocrine regulation. It is found that there is an impact of taste receptor downstream signaling on ovarian steroidogenesis and apoptosis instigating pathophysiological milieu of PCOS.


Asunto(s)
Modelos Animales de Enfermedad , Letrozol , Síndrome del Ovario Poliquístico , Sacarina , Animales , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/metabolismo , Femenino , Ratas , Sacarina/administración & dosificación , Receptores Acoplados a Proteínas G/metabolismo , Apoptosis/efectos de los fármacos , Ratas Sprague-Dawley , Edulcorantes/toxicidad , Ovario/efectos de los fármacos , Ovario/metabolismo
2.
Reprod Toxicol ; 128: 108644, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38880404

RESUMEN

Sucralose, the extensively utilized sweetener, might lead to metabolic disorders with prolonged consumption, but it remains uncertain if sucralose has any impact on female reproductive health. We incorporated sucralose into drinking water and observed food intake, body weight, estrous cycle, follicular development, serum hormones, and insulin sensitivity of mice. The mice did not experience any changes in their food intake or body weight after consuming sucralose. However, they displayed irregularities in the estrous cycle, marked by a reduced count of primordial, primary, and secondary follicles, coupled with a significant increase in the number of antral follicles. There was a decline in follicle-stimulating hormone (FSH), estradiol (E2), and progesterone (P4) levels, while testosterone (T) and luteinizing hormone (LH) levels surged, leading to a notable elevation in the LH / FSH ratio. Sucralose also induced insulin resistance, as evidenced by elevated insulin levels and impaired insulin tolerance, which responded to an increase in bacterial-derived serum endotoxin. By eliminating insulin resistance with rosiglitazone (RSG), eradicating intestinal flora-derived endotoxins with neomycin (NEO), or enhancing intestinal barrier function with indole-3-carbinol (I3C), the abnormalities in estrous cycle, disruptions in follicular development, hormonal imbalances and elevation in serum endotoxins induced by sucralose were successfully reversed. The present study indicates that sucralose-induced follicular dysplasia in mice is probably related to impaired intestinal permeability, infiltration of endotoxins, initiation of systemic inflammation, and insulin resistance.


Asunto(s)
Ciclo Estral , Resistencia a la Insulina , Folículo Ovárico , Sacarosa , Animales , Femenino , Sacarosa/análogos & derivados , Ciclo Estral/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Ratones , Edulcorantes/toxicidad , Hormona Folículo Estimulante/sangre , Hormona Luteinizante/sangre , Progesterona/sangre
3.
Comput Biol Med ; 178: 108731, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38870727

RESUMEN

Non-sugar sweeteners (NSSs) or artificial sweeteners have long been used as food chemicals since World War II. NSSs, however, also raise a concern about their mutagenicity. Evaluating the mutagenic ability of NSSs is crucial for food safety; this step is needed for every new chemical registration in the food and pharmaceutical industries. A computational assessment provides less time, money, and involved animals than the in vivo experiments; thus, this study developed a novel computational method from an ensemble convolutional deep neural network and read-across algorithms, called DeepRA, to classify the mutagenicity of chemicals. The mutagenicity data were obtained from the curated Ames test data set. The DeepRA model was developed using both molecular descriptors and molecular fingerprints. The obtained DeepRA model provides accurate and reliable mutagenicity classification through an independent test set. This model was then used to examine the NSSs-related chemicals, enabling the evaluation of mutagenicity from the NSSs-like substances. Finally, this model was publicly available at https://github.com/taraponglab/deepra for further use in chemical regulation and risk assessment.


Asunto(s)
Aprendizaje Profundo , Mutágenos , Mutágenos/toxicidad , Edulcorantes/toxicidad , Pruebas de Mutagenicidad , Algoritmos , Redes Neurales de la Computación
4.
Sci Rep ; 14(1): 11492, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769413

RESUMEN

The research employed network toxicology and molecular docking techniques to systematically examine the potential carcinogenic effects and mechanisms of aspartame (L-α-aspartyl-L-phenylalanine methyl ester). Aspartame, a commonly used synthetic sweetener, is widely applied in foods and beverages globally. In recent years, its safety issues, particularly the potential carcinogenic risk, have garnered widespread attention. The study first constructed an interaction network map of aspartame with gastric cancer targets using network toxicology methods and identified key targets and pathways. Preliminary validation was conducted through microarray data analysis and survival analysis, and molecular docking techniques were employed to further examine the binding affinity and modes of action of aspartame with key proteins. The findings suggest that aspartame has the potential to impact various cancer-related proteins, potentially raising the likelihood of cellular carcinogenesis by interfering with biomolecular function. Furthermore, the study found that the action patterns and pathways of aspartame-related targets are like the mechanisms of known carcinogenic pathways, further supporting the scientific hypothesis of its potential carcinogenicity. However, given the complexity of the in vivo environment, we also emphasize the necessity of validating these molecular-level findings in actual biological systems. The study introduces a fresh scientific method for evaluating the safety of food enhancers and provides a theoretical foundation for shaping public health regulations.


Asunto(s)
Aspartame , Carcinógenos , Simulación del Acoplamiento Molecular , Aspartame/química , Aspartame/efectos adversos , Aspartame/metabolismo , Aspartame/toxicidad , Humanos , Carcinógenos/toxicidad , Carcinógenos/química , Edulcorantes/química , Edulcorantes/efectos adversos , Edulcorantes/toxicidad , Neoplasias Gástricas/inducido químicamente
5.
Environ Monit Assess ; 196(5): 451, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613723

RESUMEN

As the general population's diet has shifted to reflect current weight-loss trends, there has been an increase in zero-calorie artificial sweetener usage. Sucralose (C12H19Cl3O8), commonly known as Splenda® in the USA, is a primary example of these sweeteners. In recent years, sucralose has been identified as an environmental contaminant that cannot easily be broken down via bacterial decomposition. This study focuses on the impact of sucralose presence on microbial communities in brackish and freshwater systems. Microbial respiration and fluorescence were measured as indicators of microbial activity in sucralose-dosed samples taken from both freshwater and estuarine marsh environments. Results showed a significant difference between microbial concentration and respiration when dosed with varying levels of sucralose. Diatom respiration implied a negative correlation of community abundance with sucralose concentration. The freshwater cyanobacterial respiration increased in the presence of sucralose, implying a positive correlation of community abundance with sucralose concentration. This was in direct contrast to its brackish water counterpart. However, further investigation is necessary to confirm any potential utility of these communities in the breakdown of sucralose in the marsh environment.


Asunto(s)
Monitoreo del Ambiente , Sacarosa/análogos & derivados , Humedales , Humanos , Edulcorantes/toxicidad , Agua Dulce , Suelo
6.
Food Chem Toxicol ; 188: 114524, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38428799

RESUMEN

Sucralose, a sugar substitute first approved for use in 1991, is a non-caloric sweetener regulated globally as a food additive. Based on numerous experimental animal studies (dating to the 1980s) and human epidemiology studies, international health agencies have determined that sucralose is safe when consumed as intended. A single lifetime rodent carcinogenicity bioassay conducted by the Ramazzini Institute (RI) reported that mice fed diets containing sucralose develop hematopoietic neoplasia, but controversy continues regarding the validity and relevance of these data for predicting health effects in humans. The present paper addresses the controversy by providing the perspective of experienced pathologists on sucralose-related animal toxicity and carcinogenicity data generally, and the RI carcinogenicity bioassay findings specifically, using results from publicly available papers and international regulatory authority decisions. In the authors' view, flaws in the design, methodology, data evaluation, and reporting of the RI carcinogenicity bioassay for sucralose diminish the value of the data as evidence that this agent represents a carcinogenic hazard to humans. This limitation will remain until the RI bioassay is repeated under Good Laboratory Practices and the design, data, and accuracy of the pathology diagnoses and interpretations are reviewed by qualified pathologists with experience in evaluating potential chemically-induced carcinogenic hazards.


Asunto(s)
Pruebas de Carcinogenicidad , Sacarosa , Animales , Sacarosa/análogos & derivados , Sacarosa/toxicidad , Ratones , Humanos , Proyectos de Investigación , Bioensayo/métodos , Edulcorantes/toxicidad , Ratas , Carcinógenos/toxicidad , Patólogos
7.
Neurotoxicology ; 102: 37-47, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499183

RESUMEN

Aspartame (APM) is one of the most widely used artificial sweeteners worldwide. Studies have revealed that consuming APM may negatively affect the body, causing oxidative stress damage to multiple organs and leading to various neurophysiological symptoms. However, it's still unclear if consuming APM and one's daily biological rhythm have an interactive effect on health. In this study, healthy adult C57BL/6 mice were randomly divided into four groups: Control group (CON), oral gavage sham group (OGS), daytime APM intragastric group (DAI) and nighttime APM intragastric group (NAI). DAI and NAI groups were given 80 mg/kg body weight daily for 4 weeks. We found that DAI and NAI groups had significantly increased mean body weight, higher serum corticosterone levels, up-regulated pro-inflammatory responses in serum and brain, and exacerbated depressive-like behaviors than the CON and the two APM intake groups. Moreover, all these changes induced by APM intake were more significant in the DAI group than in the NAI group. The present study, for the first time, revealed that the intake of APM and daily biological rhythm have an interactive effect on health. This suggests that more attention should be paid to the timing of APM intake in human beings, and this study also provides an intriguing clue to the circadian rhythms of experimental animals that researchers should consider more when conducting animal experiments.


Asunto(s)
Aspartame , Peso Corporal , Corticosterona , Citocinas , Depresión , Ratones Endogámicos C57BL , Edulcorantes , Animales , Corticosterona/sangre , Aspartame/toxicidad , Depresión/inducido químicamente , Depresión/sangre , Masculino , Ratones , Peso Corporal/efectos de los fármacos , Citocinas/sangre , Citocinas/metabolismo , Edulcorantes/administración & dosificación , Edulcorantes/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Conducta Animal/efectos de los fármacos
8.
Toxicol Mech Methods ; 34(5): 584-595, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38347751

RESUMEN

High Fructose Corn Syrup (HFCS) and Fructose (FR) are widely used sweeteners in many foods and beverages. This study aimed at investigating the cytotoxic effects of HFCS (5%-30%) and FR (62.5-2000 µg/mL) using MTT assay in Human Hepatocellular Carcinoma (HepG2) cells, and genotoxic effects of using Chromosome Aberrations (CAs), Sister Chromatid Exchanges (SCEs), Micronuclei (MN) and comet assays in human lymphocytes. HFCS significantly reduced the cell viability in HepG2 cells at between 7.5% and 30% for 24 and 48 h. 30% HFCS caused a very significant toxic effect. FR had a cytotoxic effect in HepG2 cells at all treatments. However, as fructose concentration decreased, the cell viability decreased. HFCS (10%-20%) and FR (250-2000 µg/mL) decreased the mitotic index at higher concentrations. IC50 value was found to be a 15% for 48 h. IC50 value of FR was detected as 62.5 µg/mL for 24 h and 48 h. HFCS significantly increased CAs frequency at 15% and 20%. FR significantly increased the frequency of CAs at 250, 1000, and 2000 µg/mL for 48 h. Both sweeteners increased the frequency of SCEs at all concentrations. HFCS (15% and 20%) and FR (250, 1000, and 2000 µg/mL) induced MN frequency at higher concentrations. HFCS caused DNA damage in comet assay at 10% -30%. FR increased tail intensity and moment at 125-2000 µg/mL and tail length at 62.5, 250 and 500 µg/mL. Therefore, HFCS and FR are clearly seen to be cytotoxic and genotoxic, especially at higher concentrations.


HFCS and FR exhibited cytotoxic effect at HepG2 and human lymphocytes at higher concentrations.Both sweeteners increased the frequencies of CAs and SCEs at higher concentrations.HFCS caused DNA damage at 10% -30% concentrations.HFCS (15% and 20%) and FR (250, 1000, and 2000 µg/mL) induced MN frequency.


Asunto(s)
Supervivencia Celular , Ensayo Cometa , Fructosa , Jarabe de Maíz Alto en Fructosa , Edulcorantes , Humanos , Edulcorantes/toxicidad , Jarabe de Maíz Alto en Fructosa/toxicidad , Jarabe de Maíz Alto en Fructosa/efectos adversos , Fructosa/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Daño del ADN/efectos de los fármacos , Intercambio de Cromátides Hermanas/efectos de los fármacos , Linfocitos/efectos de los fármacos , Linfocitos/patología , Aberraciones Cromosómicas/inducido químicamente , Pruebas de Micronúcleos , Relación Dosis-Respuesta a Droga , Mutágenos/toxicidad , Masculino , Medición de Riesgo
9.
Environ Int ; 185: 108496, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38359549

RESUMEN

Artificial sweeteners (AS) are extensively utilized as sugar substitutes and have been recognized as emerging environmental contaminants. While the effect of AS on aquatic organisms has garnered recent attention, their effects on soil invertebrates and gut microbial communities remain unclear. To address this knowledge gap, we exposed springtails (Folsomia candida) to both single and combined treatments of four typical AS (sucralose [SUC], saccharin [SAC], cyclamate [CYC], and acesulfame [ACE]) at environmentally relevant concentrations of 0.01, 0.1 and 1 mg kg-1 in soil. Following the first-generational exposure, the reproduction of juveniles showed a significant increase under all the AS treatments of 0.1 mg kg-1. The transcriptomic analysis revealed significant enrichment of several Kyoto Encyclopedia of Gene and Genome pathways (e.g., glycolysis/gluconeogenesis, pentose and glucuronate interconversions, amino sugar, and nucleotide sugar metabolism, ribosome, and lysosome) in springtails under all AS treatments. Analysis of gut bacterial microbiota indicated that three AS (SUC, CYC, and ACE) significantly decreased alpha diversity, and all AS treatments increased the abundance of the genus Achromobacter. After the sixth-generational exposure to CYC, weight increased, but reproduction was inhibited. The pathways that changed significantly (e.g., extracellular matrix-receptor interaction, amino sugar and nucleotide sugar metabolism, lysosome) were generally similar to those altered in first-generational exposure, but with opposite regulation directions. Furthermore, the effect on the alpha diversity of gut microbiota was contrary to that after first-generational exposure, and more noticeable disturbances in microbiota composition were observed. These findings underscore the ecological risk of AS in soils and improve our understanding of the toxicity effects of AS on living organisms.


Asunto(s)
Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Edulcorantes/toxicidad , Edulcorantes/análisis , Edulcorantes/metabolismo , Suelo , Contaminantes Químicos del Agua/análisis , Ciclamatos/análisis , Amino Azúcares , Nucleótidos
10.
Chemosphere ; 352: 141260, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272137

RESUMEN

The existence of the artificial sweetener acesulfame (ACE) in quantities of significance can negatively impact water quality, and its consumption has been associated with deleterious health effects. The present investigation explores the efficacy of heat-activated sodium persulfate (SPS) for eliminating ACE. The complete degradation of 0.50 mg L-1 of ACE was achieved within 45 min under a reaction temperature of 50 °C and 100 mg L-1 of SPS. The impact of thermal decomposition on ACE at a temperature of 60 °C was negligible. This study considers several factors, such as the SPS and ACE loading, the reaction temperature, the initial pH, and the water matrix of the reactor. The results indicate that the method's efficiency is positively correlated with higher initial concentrations of SPS, whereas it is inversely associated with the initial concentration of ACE. Furthermore, higher reaction temperatures and acidic initial pH levels promote the degradation of acesulfame. At the same time, certain constituents of the water matrix, such as humic acid, chlorides, and bicarbonates, can hinder the degradation process. Additionally, the data from LC-QToF-MS analysis of the samples were used to investigate transformation through suspect and non-target screening approaches. Overall, ACE's eight transformation products (TPs) were detected, and a potential ACE decomposition pathway was proposed. The concentration of TPs followed a volcano curve, decreasing in long treatment times. The ecotoxicity of ACE and its identified TPs was predicted using the ECOSAR software. The majority of TPs exhibited not harmful values.


Asunto(s)
Compuestos de Sodio , Sulfatos , Contaminantes Químicos del Agua , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis , Calor , Temperatura , Cinética , Edulcorantes/toxicidad , Edulcorantes/análisis
11.
Artículo en Inglés | MEDLINE | ID: mdl-38060281

RESUMEN

The changes in dietary habit around the world have led to an increased use of additives in the food. The safety of food additives has been a main focus of research for many years due to the ongoing debate on their potential effects on health. In this study, the in vitro genotoxic effects of mannitol and lactitol, polyols used as sweetener food additives, were evaluated using chromosomal aberrations (CAs) and micronucleus (MN) assays in human peripheral lymphocytes. Additionally, the effects of these sweeteners on the mitotic index (MI) and nuclear division index (NDI) were investigated. Concentrations of 500, 1000, 2000, 4000, and 8000 µg/mL for mannitol and 250, 500, 1000, 2000, and 4000 µg/mL for lactitol were used. The results indicated that both polyols did not affect CA and MN frequency, and did not cause a significant change in NDI at all treatment concentratoins. However, mannitol (except at concentrations of 500 and 1000 µg/mL) and lactitol (except at 250 µg/mL) significantly decreased the MI compared to the control at almost all concentrations and treatment times. In conclusion, it was observed that mannitol and lactitol did not have a significant genotoxic effect at the concentrations used in human lymphocytes in vitro.


Asunto(s)
Manitol , Edulcorantes , Humanos , Manitol/toxicidad , Edulcorantes/toxicidad , Células Cultivadas , Aditivos Alimentarios , Daño del ADN
12.
Food Res Int ; 173(Pt 1): 113365, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803662

RESUMEN

Photolytic transformation of aspartame - a widely used artificial sweetener - under the simulated sunlight was studied for the first time. The experiments were conducted in pH range of 2.5 - 7.0 and in eight soft drinks available in the market. The highest degradation rate in the tested buffered solutions was observed under the neutral pH conditions. Irradiation of the soft drinks resulted in significantly (up to tenfold) faster degradation of aspartame, regardless of its initial concentration in the beverage. Such considerable acceleration of decomposition, not reported for aspartame so far, was ascribed to influence of the co-occurring ingredients, which can act as the photosensitizers. These findings indicate that some formulations may be particularly unfavorable in the context of aspartame photostability. Qualitative analysis of the studied processes revealed formation of six phototransformation products including three previously not described. In silico estimation of toxicity showed that some of the identified photoproducts, including the novel phenolic derivatives, may be more harmful than the parent compound. Taking into account relatively extensive formation of those products in the soft drinks, such finding may be particularly important from the food safety point of view.


Asunto(s)
Aspartame , Edulcorantes , Aspartame/análisis , Edulcorantes/toxicidad , Edulcorantes/análisis , Bebidas Gaseosas/análisis , Bebidas/análisis
13.
Artículo en Inglés | MEDLINE | ID: mdl-37619954

RESUMEN

Artificial sweeteners are widely used in food and pharmaceuticals, but their stability and persistence raise concerns about their impact on aquatic life. Although standard toxicity tests do not reveal lethal effects, recent studies suggest a potential neurotoxic mode of action. Using environmentally relevant concentrations, we assessed the effects of sucralose and acesulfame, common sugar substitutes, on Daphnia magna focusing on biochemical (acetylcholinesterase activity; AChE), physiological (heart rate), and behavioural (swimming) endpoints. We found dose-dependent increases in AChE and inhibitory effects on heart rate and behaviour for both substances. Moreover, acesulfame induced a biphasic response in AChE activity, inhibiting it at lower concentrations and stimulating at higher ones. For all endpoints, the EC50 values were lower for acesulfame than for sucralose. Additionally, the relationship between acetylcholinesterase and heart rate differed depending on the substance, suggesting possible differences in the mode of action between sucralose and acesulfame. All observed EC50 values were at µg/l levels, i.e., within the levels reported for wastewater, with adverse effects observed at as low as 0.1 µg acesulfame /l. Our findings emphasise the need to re-evaluate risk assessment thresholds for artificial sweeteners and provide evidence for the neurotoxic effects of artificial sweeteners in the environment, informing international regulatory standards.


Asunto(s)
Síndromes de Neurotoxicidad , Edulcorantes , Animales , Edulcorantes/toxicidad , Daphnia , Acetilcolinesterasa , Cardiotoxicidad
14.
J Toxicol Environ Health B Crit Rev ; 26(6): 307-341, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37246822

RESUMEN

The purpose of this study was to determine the toxicological and pharmacokinetic properties of sucralose-6-acetate, a structural analog of the artificial sweetener sucralose. Sucralose-6-acetate is an intermediate and impurity in the manufacture of sucralose, and recent commercial sucralose samples were found to contain up to 0.67% sucralose-6-acetate. Studies in a rodent model found that sucralose-6-acetate is also present in fecal samples with levels up to 10% relative to sucralose which suggest that sucralose is also acetylated in the intestines. A MultiFlow® assay, a high-throughput genotoxicity screening tool, and a micronucleus (MN) test that detects cytogenetic damage both indicated that sucralose-6-acetate is genotoxic. The mechanism of action was classified as clastogenic (produces DNA strand breaks) using the MultiFlow® assay. The amount of sucralose-6-acetate in a single daily sucralose-sweetened drink might far exceed the threshold of toxicological concern for genotoxicity (TTCgenotox) of 0.15 µg/person/day. The RepliGut® System was employed to expose human intestinal epithelium to sucralose-6-acetate and sucralose, and an RNA-seq analysis was performed to determine gene expression induced by these exposures. Sucralose-6-acetate significantly increased the expression of genes associated with inflammation, oxidative stress, and cancer with greatest expression for the metallothionein 1 G gene (MT1G). Measurements of transepithelial electrical resistance (TEER) and permeability in human transverse colon epithelium indicated that sucralose-6-acetate and sucralose both impaired intestinal barrier integrity. Sucralose-6-acetate also inhibited two members of the cytochrome P450 family (CYP1A2 and CYP2C19). Overall, the toxicological and pharmacokinetic findings for sucralose-6-acetate raise significant health concerns regarding the safety and regulatory status of sucralose itself.


Asunto(s)
Sacarosa , Edulcorantes , Humanos , Sacarosa/toxicidad , Sacarosa/química , Sacarosa/metabolismo , Edulcorantes/toxicidad , Edulcorantes/metabolismo , Proyectos de Investigación , Heces/química
15.
Regul Toxicol Pharmacol ; 139: 105369, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36870410

RESUMEN

Several toxicological and epidemiological studies were published during the last five decades on non-sugar sweeteners (NSS) and cancer. Despite the large amount of research, the issue still continues to be of interest. In this review, we provided a comprehensive quantitative review of the toxicological and epidemiological evidence on the possible relation between NSS and cancer. The toxicological section includes the evaluation of genotoxicity and carcinogenicity data for acesulfame K, advantame, aspartame, cyclamates, saccharin, steviol glycosides and sucralose. The epidemiological section includes the results of a systematic search of cohort and case-control studies. The majority of the 22 cohort studies and 46 case-control studies showed no associations. Some risks for bladder, pancreas and hematopoietic cancers found in a few studies were not confirmed in other studies. Based on the review of both the experimental data on genotoxicity or carcinogenicity of the specific NSS evaluated, and the epidemiological studies it can be concluded that there is no evidence of cancer risk associated to NSS consumption.


Asunto(s)
Neoplasias , Edulcorantes , Humanos , Edulcorantes/toxicidad , Azúcares , Sacarina , Aspartame/toxicidad , Neoplasias/inducido químicamente , Neoplasias/epidemiología
16.
Food Chem Toxicol ; 172: 113549, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36493943

RESUMEN

Aspartame has been studied extensively and evaluated for its safety in foods and beverages yet concerns for its potential carcinogenicity have persisted, driven primarily by animal studies conducted at the Ramazzini Institute (RI). To address this controversy, an updated systematic review of available human, animal, and mechanistic data was conducted leveraging critical assessment tools to consider the quality and reliability of data. The evidence base includes 12 animal studies and >40 epidemiological studies reviewed by the World Health Organization which collectively demonstrate a lack of carcinogenic effect. Assessment of >1360 mechanistic endpoints, including many guideline-based genotoxicity studies, demonstrate a lack of activity associated with endpoints grouped to key characteristics of carcinogens. Other non-specific mechanistic data (e.g., mixed findings of oxidative stress across study models, tissues, and species) do not provide evidence of a biologically plausible carcinogenic pathway associated with aspartame. Taken together, available evidence supports that aspartame consumption is not carcinogenic in humans and that the inconsistent findings of the RI studies may be explained by flaws in study design and conduct (despite additional analyses to address study limitations), as acknowledged by authoritative bodies.


Asunto(s)
Aspartame , Edulcorantes , Animales , Humanos , Aspartame/toxicidad , Carcinogénesis , Pruebas de Carcinogenicidad , Carcinógenos/toxicidad , Reproducibilidad de los Resultados , Edulcorantes/toxicidad
17.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163020

RESUMEN

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays a crucial role in the pathophysiological process associated with diabetes-related complications. The effect of high glucose levels on macrophage-derived exosomal MALAT1 is unknown. Therefore, we investigated the molecular regulatory mechanisms controlling exosomal MALAT1 in macrophages under high glucose treatment and the therapeutic target of macrophage-derived exosomal MALAT1 using a balloon injury model of vascular disease in diabetic rats. High glucose (25 mM) significantly increased MALAT1 expression in macrophage-derived exosomes. MALAT1 suppressed miR-150-5p expression in macrophage-derived exosomes under high-glucose conditions. Silencing MALAT1 using MALAT1 siRNA significantly reversed miR-150-5p expression induced by macrophage-derived exosomes. Macrophage-derived exosomes under high-glucose treatment significantly increased resistin expression in macrophages. Silencing MALAT1 and overexpression of miR-150-5p significantly decreased resistin expression induced by macrophage-derived exosomes. Overexpression of miR-150-5p significantly decreased resistin luciferase activity induced by macrophage-derived exosomes. Macrophage-derived exosome significantly decreased glucose uptake in macrophages and silencing MALAT1, resistin or overexpression of miR-150-5p significantly reversed glucose uptake. Balloon injury to the carotid artery significantly increased MALAT1 and resistin expression and significantly decreased miR-150-5p expression in arterial tissue. Silencing MALAT1 significantly reversed miR-150-5p expression in arterial tissue after balloon injury. Silencing MALAT1 or overexpression of miR-150-5p significantly reduced resistin expression after balloon injury. In conclusion, high glucose up-regulates MALAT1 to suppress miR-150-5p expression and counteracts the inhibitory effect of miR-150-5p on resistin expression in macrophages to promote vascular disease. Macrophage-derived exosomes containing MALAT1 may serve as a novel cell-free approach for the treatment of vascular disease in diabetes mellitus.


Asunto(s)
Enfermedades de las Arterias Carótidas/patología , Diabetes Mellitus Experimental/complicaciones , Glucosa/toxicidad , Hiperglucemia/patología , MicroARNs/antagonistas & inhibidores , ARN Largo no Codificante/metabolismo , Resistina/metabolismo , Animales , Enfermedades de las Arterias Carótidas/etiología , Enfermedades de las Arterias Carótidas/metabolismo , Modelos Animales de Enfermedad , Exosomas/genética , Exosomas/metabolismo , Regulación de la Expresión Génica , Hiperglucemia/inducido químicamente , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , ARN Largo no Codificante/genética , Ratas , Ratas Wistar , Resistina/genética , Edulcorantes/toxicidad
18.
J Hazard Mater ; 422: 126942, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34449343

RESUMEN

The abuse of antibiotics on animals could induce the development of antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB), and acesulfame potassium (ACE) is the widely used artificial sweetener in animal feed. Generally speaking, ACE and ARB often coexist in livestock wastewater, however, the impact of the co-occurrence of ACE and ARB on the transmission of ARGs is still unknown. In this study, the effects of ACE on vertical gene transfer (VGT) and horizontal gene transfer (HGT) were both evaluated. For VGT, ACE may hinder the spread of sul gene in Pseudomonas HLS-6 by blocking ARB growth. As for HGT (from Escherichia coli DH5α to Pseudomonas HLS-6), environmentally relevant ACE concentration could facilitate the conjugative transfer. The underlying mechanisms of HGT were characterized by enhanced cell membrane permeability, reactive oxygen species overproduction, SOS response, energy supply, which were all further verified by the changes in transcription levels of related genes. Interestingly, intracellular Mg2+ in donor strain was found for the first time as an indicator for the conjugation occurrence in ACE treated mating system. This study may provide new insights into the role of ACE on ARGs proliferation and highlight its potential environmental impacts.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Edulcorantes , Inhibidores de la Enzima Convertidora de Angiotensina , Animales , Antibacterianos/toxicidad , Membrana Celular , Farmacorresistencia Microbiana , Transferencia de Gen Horizontal , Genes Bacterianos , Edulcorantes/toxicidad , Tiazinas , Transcriptoma
19.
Front Endocrinol (Lausanne) ; 12: 780888, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899613

RESUMEN

Adult and childhood obesity have reached pandemic level proportions. The idea that caloric excess and insufficient levels of physical activity leads to obesity is a commonly accepted answer for unwanted weight gain. This paradigm offers an inconclusive explanation as the world continually moves towards an unhealthier and heavier existence irrespective of energy balance. Endocrine disrupting chemicals (EDCs) are chemicals that resemble natural hormones and disrupt endocrine function by interfering with the body's endogenous hormones. A subset of EDCs called obesogens have been found to cause metabolic disruptions such as increased fat storage, in vivo. Obesogens act on the metabolic system through multiple avenues and have been found to affect the homeostasis of a variety of systems such as the gut microbiome and adipose tissue functioning. Obesogenic compounds have been shown to cause metabolic disturbances later in life that can even pass into multiple future generations, post exposure. The rising rates of obesity and related metabolic disease are demanding increasing attention on chemical screening efforts and worldwide preventative strategies to keep the public and future generations safe. This review addresses the most current findings on known obesogens and their effects on the metabolic system, the mechanisms of action through which they act upon, and the screening efforts through which they were identified with. The interplay between obesogens, brown adipose tissue, and the gut microbiome are major topics that will be covered.


Asunto(s)
Adipogénesis/fisiología , Tejido Adiposo/metabolismo , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Microbioma Gastrointestinal/fisiología , Obesidad/metabolismo , Adipogénesis/efectos de los fármacos , Tejido Adiposo/efectos de los fármacos , Animales , Disruptores Endocrinos/análisis , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/análisis , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Obesidad/inducido químicamente , Edulcorantes/análisis , Edulcorantes/toxicidad
20.
PLoS One ; 16(12): e0260968, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34860856

RESUMEN

Diabetic retinopathy (DR), the most common complication of diabetes mellitus, is associated with oxidative stress, nuclear factor-κB (NFκB) activation, and excess production of vascular endothelial growth factor (VEGF) and intracellular adhesion molecule-1 (ICAM-1). Muller glial cells, spanning the entirety of the retina, are involved in DR inflammation. Mitigation of DR pathology currently occurs via invasive, frequently ineffective therapies which can cause adverse effects. The application of far-red to near-infrared (NIR) light (630-1000nm) reduces oxidative stress and inflammation in vitro and in vivo. Thus, we hypothesize that 670nm light treatment will diminish oxidative stress preventing downstream inflammatory mechanisms associated with DR initiated by Muller cells. In this study, we used an in vitro model system of rat Müller glial cells grown under normal (5 mM) or high (25 mM) glucose conditions and treated with a 670 nm light emitting diode array (LED) (4.5 J/cm2) or no light (sham) daily. We report that a single 670 nm light treatment diminished reactive oxygen species (ROS) production and preserved mitochondrial integrity in this in vitro model of early DR. Furthermore, treatment for 3 days in culture reduced NFκB activity to levels observed in normal glucose and prevented the subsequent increase in ICAM-1. The ability of 670nm light treatment to prevent early molecular changes in this in vitro high glucose model system suggests light treatment could mitigate early deleterious effects modulating inflammatory signaling and diminishing oxidative stress.


Asunto(s)
Metabolismo Energético , Células Ependimogliales/efectos de la radiación , Glucosa/toxicidad , Rayos Infrarrojos , Mitocondrias/efectos de la radiación , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Animales , Células Cultivadas , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Ratas , Edulcorantes/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...