Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Vis ; 30: 167-174, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601015

RESUMEN

Purpose: To examine whether increased ephrin type-B receptor 1 (EphB1) leads to inflammatory mediators in retinal Müller cells. Methods: Diabetic human and mouse retinal samples were examined for EphB1 protein levels. Rat Müller cells (rMC-1) were grown in culture and treated with EphB1 siRNA or ephrin B1-Fc to explore inflammatory mediators in cells grown in high glucose. An EphB1 overexpression adeno-associated virus (AAV) was used to increase EphB1 in Müller cells in vivo. Ischemia/reperfusion (I/R) was performed on mice treated with the EphB1 overexpression AAV to explore the actions of EphB1 on retinal neuronal changes in vivo. Results: EphB1 protein levels were increased in diabetic human and mouse retinal samples. Knockdown of EphB1 reduced inflammatory mediator levels in Müller cells grown in high glucose. Ephrin B1-Fc increased inflammatory proteins in rMC-1 cells grown in normal and high glucose. Treatment of mice with I/R caused retinal thinning and loss of cell numbers in the ganglion cell layer. This was increased in mice exposed to I/R and treated with the EphB1 overexpressing AAVs. Conclusions: EphB1 is increased in the retinas of diabetic humans and mice and in high glucose-treated Müller cells. This increase leads to inflammatory proteins. EphB1 also enhanced retinal damage in response to I/R. Taken together, inhibition of EphB1 may offer a new therapeutic option for diabetic retinopathy.


Asunto(s)
Retinopatía Diabética , Efrina-B1 , Enfermedades de la Retina , Animales , Humanos , Ratones , Ratas , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Células Ependimogliales/metabolismo , Efrina-B1/genética , Efrina-B1/metabolismo , Glucosa/metabolismo , Mediadores de Inflamación/metabolismo , Retina/metabolismo , Enfermedades de la Retina/metabolismo
2.
Int J Biol Macromol ; 258(Pt 1): 128848, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38114003

RESUMEN

The survival benefit for patients with gastric cancer (GC) is modest due to its high transfer potential. Targeted therapy for metastasis-related genes in GC may be a viable approach, however, inhibitors specifically targeting GC are limited. In this study, GC patient-derived xenografts (PDX) with metastatic burden were established via orthotopic transplantation. PCR-Array analysis of primary and metastatic tumors revealed EPH receptor B2 (EPHB2) as the most significantly upregulated gene. The interaction between the EPHB2 receptor and its cognate-specific EFNB1 ligands was high in GC and correlated with a poor prognosis. Fc-EFNB1 treatment increased the invasion and migration abilities of GC cells and induced a high EPHB2 expression. EPHB2 knockdown in GC cells completely abolished the ephrin ligand-induced effects on invasion and migration abilities. Signal transduction analysis revealed Wnt/ß-catenin and FAK as downstream signaling mediators potentially inducing the EPHB2 phenotype. In conclusion, the observed deregulation of EPHB2/EFNB1 expression in GC enhances the invasive phenotype, suggesting a potential role of EPHB2/EFNB1 compound in local tumor cell invasion and the formation of metastasis.


Asunto(s)
Receptor EphB2 , Neoplasias Gástricas , Humanos , Receptor EphB2/genética , Receptor EphB2/metabolismo , Neoplasias Gástricas/patología , Efrina-B1/genética , Efrina-B1/metabolismo , beta Catenina/metabolismo , Ligandos , Vía de Señalización Wnt , Movimiento Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética
3.
Life Sci Alliance ; 6(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574991

RESUMEN

Direct contact between cells expressing either ephrin ligands or Eph receptor tyrosine kinase produces diverse developmental responses. Transmembrane ephrinB ligands play active roles in transducing bi-directional signals downstream of EphB/ephrinB interaction. However, it has not been well understood how ephrinB relays transcellular signals to neighboring cells and what intracellular effectors are involved. Here, we report that kindlin2 can mediate bi-directional ephrinB signaling through binding to a highly conserved NIYY motif in the ephrinB2 cytoplasmic tail. We show this interaction is important for EphB/ephrinB-mediated integrin activation in mammalian cells and for blood vessel morphogenesis during zebrafish development. A mixed two-cell population study revealed that kindlin2 (in ephrinB2-expressing cells) modulates transcellular EphB4 activation by promoting ephrinB2 clustering. This mechanism is also operative for EphB2/ephrinB1, suggesting that kindlin2-mediated regulation is conserved for EphB/ephrinB signaling pathways. Together, these findings show that kindlin2 enables EphB4/ephrinB2 bi-directional signal transmission.


Asunto(s)
Transducción de Señal , Pez Cebra , Animales , Receptores de la Familia Eph/metabolismo , Efrina-B2/genética , Efrina-B2/metabolismo , Efrina-B1/metabolismo , Mamíferos/metabolismo
4.
Dev Dyn ; 252(3): 363-376, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36153792

RESUMEN

BACKGROUND: The apical surface (AS) of epithelial cells is highly specialized; it is important for morphogenetic processes that are essential to shape organs and tissues and it plays a role in morphogen and growth factor signaling. Apical progenitors in the mammalian neocortex are pseudoepithelial cells whose apical surface lines the ventricle. Whether changes in their apical surface sizes are important for cortical morphogenesis and/or other aspects of neocortex development has not been thoroughly addressed. RESULTS: Here we show that apical progenitors are heterogeneous with respect to their apical surface area. In Efnb1 mutants, the size of the apical surface is modified and this correlates with discrete alterations of tissue organization without impacting apical progenitors proliferation. CONCLUSIONS: Altogether, our data reveal heterogeneity in apical progenitors AS area in the developing neocortex and shows a role for Ephrin B1 in controlling AS size. Our study also indicates that changes in AS size do not have strong repercussion on apical progenitor behavior.


Asunto(s)
Neocórtex , Neuronas , Animales , Neuronas/metabolismo , Transducción de Señal , Efrina-B1/metabolismo , Mamíferos/metabolismo
5.
J Neurodev Disord ; 14(1): 21, 2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-35305552

RESUMEN

BACKGROUND: Fetal alcohol spectrum disorders (FASD) are common, yet preventable developmental disorders that stem from prenatal exposure to alcohol. This exposure leads to a wide array of behavioural and physical problems with a complex and poorly defined biological basis. Molecular investigations to date predominantly use rodent animal models, but because of genetic, developmental and social behavioral similarity, primate models are more relevant. We previously reported reduced cortical and hippocampal neuron levels in an Old World monkey (Chlorocebus sabaeus) model with ethanol exposure targeted to the period of rapid synaptogenesis and report here an initial molecular study of this model. The goal of this study was to evaluate mRNA expression of the hippocampus at two different behavioural stages (5 months, 2 years) corresponding to human infancy and early childhood. METHODS: Offspring of alcohol-preferring or control dams drank a maximum of 3.5 g ethanol per kg body weight or calorically matched sucrose solution 4 days per week during the last 2 months of gestation. Total mRNA expression was measured with the Affymetrix GeneChip Rhesus Macaque Genome Array in a 2 × 2 study design that interrogated two independent variables, age at sacrifice, and alcohol consumption during gestation. RESULTS AND DISCUSSION: Statistical analysis identified a preferential downregulation of expression when interrogating the factor 'alcohol' with a balanced effect of upregulation vs. downregulation for the independent variable 'age'. Functional exploration of both independent variables shows that the alcohol consumption factor generates broad functional annotation clusters that likely implicate a role for epigenetics in the observed differential expression, while the variable age reliably produced functional annotation clusters predominantly related to development. Furthermore, our data reveals a novel connection between EFNB1 and the FASDs; this is highly plausible both due to the role of EFNB1 in neuronal development as well as its central role in craniofrontal nasal syndrome (CFNS). Fold changes for key genes were subsequently confirmed via qRT-PCR. CONCLUSION: Prenatal alcohol exposure leads to global downregulation in mRNA expression. The cellular interference model of EFNB1 provides a potential clue regarding how genetically susceptible individuals may develop the phenotypic triad generally associated with classic fetal alcohol syndrome.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal , Efectos Tardíos de la Exposición Prenatal , Animales , Preescolar , Chlorocebus aethiops , Modelos Animales de Enfermedad , Efrina-B1/metabolismo , Efrina-B1/farmacología , Etanol/metabolismo , Femenino , Trastornos del Espectro Alcohólico Fetal/genética , Trastornos del Espectro Alcohólico Fetal/metabolismo , Hipocampo/metabolismo , Humanos , Macaca mulatta/genética , Macaca mulatta/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , ARN Mensajero/metabolismo , ARN Mensajero/farmacología
6.
Dev Dyn ; 251(7): 1138-1155, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35025117

RESUMEN

BACKGROUND: Variation in facial shape may arise from the combinatorial or overlapping actions of paralogous genes. Given its many members, and overlapping expression and functions, the EPH receptor family is a compelling candidate source of craniofacial morphological variation. We performed a detailed morphometric analysis of an allelic series of E14.5 Ephb1-3 receptor mutants to determine the effect of each paralogous receptor gene on craniofacial morphology. RESULTS: We found that Ephb1, Ephb2, and Ephb3 genotypes significantly influenced facial shape, but Ephb1 effects were weaker than Ephb2 and Ephb3 effects. Ephb2-/- and Ephb3-/- mutations affected similar aspects of facial morphology, but Ephb3-/- mutants had additional facial shape effects. Craniofacial differences across the allelic series were largely consistent with predicted additive genetic effects. However, we identified a potentially important nonadditive effect where Ephb1 mutants displayed different morphologies depending on the combination of other Ephb paralogs present, where Ephb1+/- , Ephb1-/- , and Ephb1-/- ; Ephb3-/- mutants exhibited a consistent deviation from their predicted facial shapes. CONCLUSIONS: This study provides a detailed assessment of the effects of Ephb receptor gene paralogs on E14.5 mouse facial morphology and demonstrates how the loss of specific receptors contributes to facial dysmorphology.


Asunto(s)
Efrina-B1 , Desarrollo Maxilofacial , Receptor EphB1 , Receptor EphB3 , Receptores de la Familia Eph , Animales , Efrina-B1/genética , Efrina-B1/metabolismo , Cara , Ratones , Mutación , Receptor EphB1/genética , Receptor EphB2/genética , Receptor EphB3/genética , Receptores de la Familia Eph/metabolismo
7.
Reprod Biol ; 21(3): 100511, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33991765

RESUMEN

Ephrin receptors and ligands are membrane-bound molecules that modulate diverse cellular functions such as cell adhesion, epithelial-mesenchymal transition, motility, differentiation and proliferation. We recently reported the co-expression of ephrin-B1 and EphB4 in adult and foetal Leydig cells of the mouse testis, and thus speculated that their co-expression is a common property in gonadal steroidogenic cells. Therefore, in this study we examined the expression and localisation of ephrin-B1 and EphB4 in the naturally cycling mouse ovary, as their expression patterns in the ovary are virtually unknown. We found that ephrin-B1 and EphB4 were co-expressed in steroidogenic cells of all kinds, i.e. granulosa cells and CYP17A1-positive steroidogenic theca cells as well as in 3ß-HSD-positive luteal cells and the interstitial glands; their co-expression potentially serves as a good marker to identify sex steroid-producing cells even in extra-gonadal organs/tissues. We also found that ephrin-B1 and EphB4 expression in granulosa cells was faint and strong, respectively; ephrin-B1 expression in luteal cells was weak in developing and temporally mature corpora lutea (those of the current cycle) and likely strong in regressing corpora lutea (those of the previous cycle) and EphB4 expression in luteal cells was weak in corpora lutea of the current cycle and likely faint/negative in the corpora lutea of the previous cycle. These findings suggest that a luteinising hormone surge triggers the upregulation of ephrin-B1 and downregulation of EphB4, as this expression fluctuation occurs after the surge. Overall, ephrin-B1 and EphB4 expression patterns may represent benchmarks for steroidogenic cells in the ovary.


Asunto(s)
Efrina-B1/metabolismo , Regulación de la Expresión Génica/fisiología , Ovario/metabolismo , Receptor EphB4/metabolismo , Animales , Efrina-B1/genética , Femenino , Ratones , Ovario/citología , Transporte de Proteínas , Receptor EphB4/genética
8.
Am J Pathol ; 191(7): 1209-1226, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33887216

RESUMEN

Ephrin-B1 is one of the critical components of the slit diaphragm of kidney glomerular podocyte. However, the precise function of ephrin-B1 is unclear. To clarify the function of ephrin-B1, ephrin-B1-associated molecules were studied. RNA-sequencing analysis suggested that Na+/H+ exchanger regulatory factor 2 (NHERF2), a scaffolding protein, is associated with ephrin-B1. NHERF2 was expressed at the apical area and the slit diaphragm, and interacted with the nephrin-ephrin-B1 complex at the slit diaphragm. The nephrin-ephrin-B1-NHERF2 complex interacted with ezrin bound to F-actin. NHERF2 bound ephrin-B1 via its first postsynaptic density protein-95/disks large/zonula occludens-1 domain, and podocalyxin via its second postsynaptic density protein-95/disks large/zonula occludens-1 domain. Both in vitro analyses with human embryonic kidney 293 cells and in vivo study with rat nephrotic model showed that stimulaiton of the slit diaphragm, phosphorylation of nephrin and ephrin-B1, and dephosphorylation of NHERF2 and ezrin, disrupted the linkages of ephrin-B1-NHERF2 and NHERF2-ezrin. It is conceivable that the linkage of nephrin-ephrin-B1-NHERF2-ezrin-actin is a novel critical axis in the podocytes. Ephrin-B1 phosphorylation also disrupted the linkage of an apical transmembrane protein, podocalyxin, with NHERF2-ezrin-actin. The phosphorylation of ephrin-B1 and the consequent dephosphorylation of NHERF2 are critical initiation events leading to podocyte injury.


Asunto(s)
Efrina-B1/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Podocitos/metabolismo , Podocitos/patología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Células HEK293 , Humanos , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Ratones , Ratones Noqueados , Ratas , Ratas Wistar
9.
Neuromolecular Med ; 23(4): 521-530, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33782855

RESUMEN

tDCS, a new, safe, non-invasive physical therapy method, is often used in motor dysfunction rehabilitation. However, the effects and underlying mechanisms of tDCS on hippocampal neurogenesis after cerebral ischemia (CI) are still unclear. This study aimed to investigate the promotive effect and mechanism of repetitive anodal-tDCS on hippocampal neurogenesis after CI in mice. The CI model in mice was established using bilateral common carotid artery occlusion (BCCAO). The pathological changes in the hippocampal CA1 region and cognitive function were assessed by hematoxylin and eosin staining and Morris water maze test, respectively. Hippocampal neurogenesis was observed by immunofluorescence staining. The levels of expression of ephrinb1, EPHB2, MAP-2, and NMDAR in the hippocampi were analyzed by qRT-PCR and Western blotting. Compared with the sham mice, the model mice showed significant neuronal damage in the hippocampal CA1 region (P < 0.01), cognitive dysfunction (P < 0.01), and endogenous hippocampal neurogenesis (P < 0.01). These results suggested that the CI model was successfully established, and that CI could promote endogenous hippocampal neurogenesis, but this hippocampal neurogenesis was unable to recover cognitive dysfunction. Compared with the model mice, the tDCS mice had ameliorated pathological damage in the CA1 region (P < 0.01), improved cognitive function (P < 0.01), increased hippocampal neurogenesis (P < 0.01), and increased mRNA and protein expression of ephrinb1, EPHB2, MAP-2, and NMDAR (P < 0.05). Repetitive anodal-tDCS can promote hippocampal neurogenesis and improve cognitive function in CI mice. The effect may be related to the activation of the ephrinb1/EPHB2/MAP-2/NMDAR signaling pathway.


Asunto(s)
Isquemia Encefálica , Estimulación Transcraneal de Corriente Directa , Animales , Isquemia Encefálica/metabolismo , Efrina-B1/metabolismo , Hipocampo/metabolismo , Ratones , Neurogénesis
10.
Development ; 148(3)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33462110

RESUMEN

Rab11 family-interacting protein 5 (Rab11fip5) is an adaptor protein that binds to the small GTPase Rab11, which has an important function in endosome recycling and trafficking of cellular proteins to the plasma membrane. Rab11fip5 is involved in many cellular processes, such as cytoskeleton rearrangement, iron uptake and exocytosis in neuroendocrine cells, and is also known as a candidate gene for autism-spectrum disorder. However, the role of Rab11fip5 during early embryonic development is not clearly understood. In this study, we identified Rab11fip5 as a protein that interacts with ephrinB1, a transmembrane ligand for Eph receptors. The PDZ binding motif in ephrinB1 and the Rab-binding domain in Rab11fip5 are necessary for their interaction in a complex. EphrinB1 and Rab11fip5 display overlapping expression in the telencephalon of developing amphibian embryos. The loss of Rab11fip5 function causes a reduction in telencephalon size and a decrease in the expression level of ephrinB1. Moreover, morpholino oligonucleotide-mediated knockdown of Rab11fip5 decreases cell proliferation in the telencephalon. The overexpression of ephrinB1 rescues these defects, suggesting that ephrinB1 recycling by the Rab11/Rab11fip5 complex is crucial for proper telencephalon development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Efrina-B1/metabolismo , Telencéfalo/crecimiento & desarrollo , Telencéfalo/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proliferación Celular , Citoesqueleto , Endosomas/metabolismo , Efrina-B1/genética , Exocitosis , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Neurogénesis , Telencéfalo/citología , Xenopus laevis
11.
Mol Pain ; 16: 1744806920984079, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33356837

RESUMEN

BACKGROUND: Myofascial pain syndrome (MPS) is an important clinical condition that is characterized by chronic muscle pain and a myofascial trigger point (MTrP) located in a taut band (TB). Previous studies showed that EphrinB1 was involved in the regulation of pathological pain via EphB1 signalling, but whether EphrinB1-EphB1 plays a role in MTrP is not clear. METHODS: The present study analysed the levels of p-EphB1/p-EphB2/p-EphB3 in biopsies of MTrPs in the trapezius muscle of 11 MPS patients and seven healthy controls using a protein microarray kit. EphrinB1-Fc was injected intramuscularly to detect EphrinB1s/EphB1s signalling in peripheral sensitization. We applied a blunt strike to the left gastrocnemius muscles (GM) and eccentric exercise for 8 weeks with 4 weeks of recovery to analyse the function of EphrinB1/EphB1 in the muscle pain model. RESULTS: P-EphB1, p-EphB2, and p-EphB3 expression was highly increased in human muscles with MTrPs compared to healthy muscle. EphB1 (r = 0.723, n = 11, P < 0.05), EphB2 (r = 0.610, n = 11, P < 0.05), and EphB3 levels (r = 0.670, n = 11, P < 0.05) in the MPS group were significantly correlated with the numerical rating scale (NRS) in the MTrPs. Intramuscular injection of EphrinB1-Fc produces hyperalgesia, which can be partially prevented by pre-treatment with EphB1-Fc. The p-EphB1 contents in MTrPs of MPS animals were significantly higher than that among control animals (P < 0.01). Intramuscular administration of the EphB1 inhibitor EphB1-Fr significantly suppressed mechanical hyperalgesia. CONCLUSIONS: The present study showed that the increased expression of p-EphB1/p-EphB2/p-EphB3 was related to MTrPs in patients with MPS. This report is the first study to examine the function of EphrinB1-EphB1 signalling in primary muscle afferent neurons in MPS patients and a rat animal model. This pathway may be one of the most important and promising targets for MPS.


Asunto(s)
Efrina-B1/metabolismo , Hiperalgesia/patología , Músculo Esquelético/patología , Mialgia/metabolismo , Síndromes del Dolor Miofascial/patología , Receptor EphB1/metabolismo , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Humanos , Hiperalgesia/complicaciones , Masculino , Células Musculares/metabolismo , Células Musculares/patología , Mialgia/complicaciones , Síndromes del Dolor Miofascial/complicaciones , Fosforilación , Ratas Sprague-Dawley , Regulación hacia Arriba
12.
PLoS Biol ; 18(11): e3000680, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33253166

RESUMEN

Proopiomelanocortin (POMC) neurons are major regulators of energy balance and glucose homeostasis. In addition to being regulated by hormones and nutrients, POMC neurons are controlled by glutamatergic input originating from multiple brain regions. However, the factors involved in the formation of glutamatergic inputs and how they contribute to bodily functions remain largely unknown. Here, we show that during the development of glutamatergic inputs, POMC neurons exhibit enriched expression of the Efnb1 (EphrinB1) and Efnb2 (EphrinB2) genes, which are known to control excitatory synapse formation. In vivo loss of Efnb1 in POMC-expressing progenitors decreases the amount of glutamatergic inputs, associated with a reduced number of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor subunits and excitability of these cells. We found that mice lacking Efnb1 in POMC-expressing progenitors display impaired glucose tolerance due to blunted vagus nerve activity and decreased insulin secretion. However, despite reduced excitatory inputs, mice lacking Efnb2 in POMC-expressing progenitors showed no deregulation of insulin secretion and only mild alterations in feeding behavior and gluconeogenesis. Collectively, our data demonstrate the role of ephrins in controlling excitatory input amount into POMC-expressing progenitors and show an isotype-specific role of ephrins on the regulation of glucose homeostasis and feeding.


Asunto(s)
Efrina-B1/metabolismo , Glucosa/metabolismo , Proopiomelanocortina/metabolismo , Animales , Encéfalo/metabolismo , Metabolismo Energético/fisiología , Efrina-B1/fisiología , Efrina-B2/metabolismo , Efrina-B2/fisiología , Fármacos actuantes sobre Aminoácidos Excitadores/metabolismo , Homeostasis/fisiología , Masculino , Ratones , Ratones Noqueados , N-Metilaspartato/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
13.
J Neurosci ; 40(36): 6854-6871, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32801156

RESUMEN

Astrocytes are implicated in synapse formation and elimination, which are associated with developmental refinements of neuronal circuits. Astrocyte dysfunctions are also linked to synapse pathologies associated with neurodevelopmental disorders and neurodegenerative diseases. Although several astrocyte-derived secreted factors are implicated in synaptogenesis, the role of contact-mediated glial-neuronal interactions in synapse formation and elimination during development is still unknown. In this study, we examined whether the loss or overexpression of the membrane-bound ephrin-B1 in astrocytes during postnatal day (P) 14-28 period would affect synapse formation and maturation in the developing hippocampus. We found enhanced excitation of CA1 pyramidal neurons in astrocyte-specific ephrin-B1 KO male mice, which coincided with a greater vGlut1/PSD95 colocalization, higher dendritic spine density, and enhanced evoked AMPAR and NMDAR EPSCs. In contrast, EPSCs were reduced in CA1 neurons neighboring ephrin-B1-overexpressing astrocytes. Overexpression of ephrin-B1 in astrocytes during P14-28 developmental period also facilitated evoked IPSCs in CA1 neurons, while evoked IPSCs and miniature IPSC amplitude were reduced following astrocytic ephrin-B1 loss. Lower numbers of parvalbumin-expressing cells and a reduction in the inhibitory VGAT/gephyrin-positive synaptic sites on CA1 neurons in the stratum pyramidale and stratum oriens layers of KO hippocampus may contribute to reduced inhibition and higher excitation. Finally, dysregulation of excitatory/inhibitory balance in KO male mice is most likely responsible for impaired sociability observed in these mice. The ability of astrocytic ephrin-B1 to influence both excitatory and inhibitory synapses during development can potentially contribute to developmental refinement of neuronal circuits.SIGNIFICANCE STATEMENT This report establishes a link between astrocytes and the development of excitatory and inhibitory balance in the mouse hippocampus during early postnatal development. We provide new evidence that astrocytic ephrin-B1 differentially regulates development of excitatory and inhibitory circuits in the hippocampus during early postnatal development using a multidisciplinary approach. The ability of astrocytic ephrin-B1 to influence both excitatory and inhibitory synapses during development can potentially contribute to developmental refinement of neuronal circuits and associated behaviors. Given widespread and growing interest in the astrocyte-mediated mechanisms that regulate synapse development, and the role of EphB receptors in neurodevelopmental disorders, these findings establish a foundation for future studies of astrocytes in clinically relevant conditions.


Asunto(s)
Astrocitos/metabolismo , Efrina-B1/metabolismo , Potenciales Postsinápticos Excitadores , Hipocampo/metabolismo , Potenciales Postsinápticos Inhibidores , Animales , Homólogo 4 de la Proteína Discs Large/metabolismo , Efrina-B1/genética , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Piramidales/metabolismo , Células Piramidales/fisiología , Conducta Social , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
14.
Reprod Biol ; 20(3): 321-332, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32620380

RESUMEN

The erythropoietin-producing hepatocellular receptor B (EphB) class and ephrin-B ligand have been implicated in boundary formation in various epithelia. We recently found that ephrin-B1 and EphB2/EphB4 exhibit complementary expression in the epithelia along the excurrent duct system in the adult mouse testis. Moreover, the organisation and integrity of the duct system is indispensable for the transport of spermatozoa. Here, we examined ephrin-B1, EphB2 and EphB4 expression in the mouse testis during postnatal development. RT-PCR analysis revealed that the relative expression levels of these molecules decreased with age in early postnatal development, and were similar to those of adults by four weeks of age. Furthermore, immunostaining revealed that the excurrent duct system compartments exhibiting complementary expression of ephrin-B1 and EphB2/EphB4 were formed by two weeks of age. Meanwhile, ephrin-B1 and EphB4 were effective markers for spermatogonia in the neonatal testis due to their negative expression in gonocytes. Alternatively, EphB2 was a suitable marker for assessing completion of the first wave of spermatogenesis in puberty, due to its strong expression in the elongated spermatids of seminiferous tubules. Lastly, ephrin-B1 and EphB4 proved to be markers of both foetal and adult Leydig cells during postnatal development, as they were expressed in CYP17A1-positive cells. This study is the first to investigate the expression of ephrin-B1, EphB2, and EphB4 in normal mouse testes during postnatal development. The expression patterns of ephrin-B and EphBs may represent suitable tools for examining organisation of the excurrent duct system and monitoring reproductive toxicity during postnatal development.


Asunto(s)
Efrina-B1/metabolismo , Receptor EphB2/metabolismo , Receptor EphB4/metabolismo , Espermatogonias/metabolismo , Testículo/metabolismo , Animales , Masculino , Ratones , Espermatogénesis/fisiología , Testículo/crecimiento & desarrollo
15.
J Biol Chem ; 295(22): 7653-7668, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32321761

RESUMEN

The erythropoietin-producing human hepatocellular receptor EPH receptor B6 (EPHB6) is a receptor tyrosine kinase that has been shown previously to control catecholamine synthesis in the adrenal gland chromaffin cells (AGCCs) in a testosterone-dependent fashion. EPHB6 also has a role in regulating blood pressure, but several facets of this regulation remain unclear. Using amperometry recordings, we now found that catecholamine secretion by AGCCs is compromised in the absence of EPHB6. AGCCs from male knockout (KO) mice displayed reduced cortical F-actin disassembly, accompanied by decreased catecholamine secretion through exocytosis. This phenotype was not observed in AGCCs from female KO mice, suggesting that testosterone, but not estrogen, contributes to this phenotype. Of note, reverse signaling from EPHB6 to ephrin B1 (EFNB1) and a 7-amino acid-long segment in the EFNB1 intracellular tail were essential for the regulation of catecholamine secretion. Further downstream, the Ras homolog family member A (RHOA) and FYN proto-oncogene Src family tyrosine kinase (FYN)-proto-oncogene c-ABL-microtubule-associated monooxygenase calponin and LIM domain containing 1 (MICAL-1) pathways mediated the signaling from EFNB1 to the defective F-actin disassembly. We discuss the implications of EPHB6's effect on catecholamine exocytosis and secretion for blood pressure regulation.


Asunto(s)
Glándulas Suprarrenales/enzimología , Catecolaminas/metabolismo , Células Cromafines/enzimología , Exocitosis , Receptor EphB6/metabolismo , Transducción de Señal , Glándulas Suprarrenales/citología , Animales , Catecolaminas/genética , Células Cromafines/citología , Efrina-B1/genética , Efrina-B1/metabolismo , Femenino , Masculino , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Receptor EphB6/genética , Caracteres Sexuales , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
16.
Mol Biol Cell ; 31(11): 1167-1182, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32238105

RESUMEN

Caveolae, the cave-like structures abundant in endothelial cells (ECs), are important for multiple signaling processes such as production of nitric oxide and caveolae-mediated intracellular trafficking. Using superresolution microscopy, fluorescence resonance energy transfer, and biochemical analysis, we observed that the EphB1 receptor tyrosine kinase constitutively interacts with caveolin-1 (Cav-1), the key structural protein of caveolae. Activation of EphB1 with its ligand Ephrin B1 induced EphB1 phosphorylation and the uncoupling EphB1 from Cav-1 and thereby promoted phosphorylation of Cav-1 by Src. Deletion of Cav-1 scaffold domain binding (CSD) motif in EphB1 prevented EphB1 binding to Cav-1 as well as Src-dependent Cav-1 phosphorylation, indicating the importance of CSD in the interaction. We also observed that Cav-1 protein expression and caveolae numbers were markedly reduced in ECs from EphB1-deficient (EphB1-/-) mice. The loss of EphB1 binding to Cav-1 promoted Cav-1 ubiquitination and degradation, and hence the loss of Cav-1 was responsible for reducing the caveolae numbers. These studies identify the crucial role of EphB1/Cav-1 interaction in the biogenesis of caveolae and in coordinating the signaling function of Cav-1 in ECs.


Asunto(s)
Caveolas/metabolismo , Receptor EphB1/metabolismo , Animales , Caveolas/fisiología , Caveolina 1/metabolismo , Células Endoteliales/metabolismo , Efrina-B1/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Fosforilación , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor EphB1/fisiología , Transducción de Señal/fisiología
17.
PLoS Genet ; 16(2): e1008300, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32092051

RESUMEN

Craniofrontonasal syndrome (CFNS) is a rare X-linked disorder characterized by craniofacial, skeletal, and neurological anomalies and is caused by mutations in EFNB1. Heterozygous females are more severely affected by CFNS than hemizygous males, a phenomenon called cellular interference that results from EPHRIN-B1 mosaicism. In Efnb1 heterozygous mice, mosaicism for EPHRIN-B1 results in cell sorting and more severe phenotypes than Efnb1 hemizygous males, but how craniofacial dysmorphology arises from cell segregation is unknown and CFNS etiology therefore remains poorly understood. Here, we couple geometric morphometric techniques with temporal and spatial interrogation of embryonic cell segregation in mouse mutant models to elucidate mechanisms underlying CFNS pathogenesis. By generating EPHRIN-B1 mosaicism at different developmental timepoints and in specific cell populations, we find that EPHRIN-B1 regulates cell segregation independently in early neural development and later in craniofacial development, correlating with the emergence of quantitative differences in face shape. Whereas specific craniofacial shape changes are qualitatively similar in Efnb1 heterozygous and hemizygous mutant embryos, heterozygous embryos are quantitatively more severely affected, indicating that Efnb1 mosaicism exacerbates loss of function phenotypes rather than having a neomorphic effect. Notably, neural tissue-specific disruption of Efnb1 does not appear to contribute to CFNS craniofacial dysmorphology, but its disruption within neural crest cell-derived mesenchyme results in phenotypes very similar to widespread loss. EPHRIN-B1 can bind and signal with EPHB1, EPHB2, and EPHB3 receptor tyrosine kinases, but the signaling partner(s) relevant to CFNS are unknown. Geometric morphometric analysis of an allelic series of Ephb1; Ephb2; Ephb3 mutant embryos indicates that EPHB2 and EPHB3 are key receptors mediating Efnb1 hemizygous-like phenotypes, but the complete loss of EPHB1-3 does not fully recapitulate the severity of CFNS-like Efnb1 heterozygosity. Finally, by generating Efnb1+/Δ; Ephb1; Ephb2; Ephb3 quadruple knockout mice, we determine how modulating cumulative receptor activity influences cell segregation in craniofacial development and find that while EPHB2 and EPHB3 play an important role in craniofacial cell segregation, EPHB1 is more important for cell segregation in the brain; surprisingly, complete loss of EPHB1-EPHB3 does not completely abrogate cell segregation. Together, these data advance our understanding of the etiology and signaling interactions underlying CFNS dysmorphology.


Asunto(s)
Movimiento Celular/genética , Anomalías Craneofaciales/genética , Efrina-B1/genética , Cresta Neural/embriología , Cráneo/anomalías , Animales , Anomalías Craneofaciales/diagnóstico , Modelos Animales de Enfermedad , Embrión de Mamíferos , Desarrollo Embrionario/genética , Efrina-B1/metabolismo , Femenino , Heterocigoto , Humanos , Masculino , Ratones , Ratones Noqueados , Mosaicismo , Mutación , Cresta Neural/citología , Fenotipo , Receptores de la Familia Eph/genética , Receptores de la Familia Eph/metabolismo , Índice de Severidad de la Enfermedad , Factores Sexuales , Cráneo/embriología , Cromosoma X/genética
18.
J Biol Chem ; 295(12): 3932-3944, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32060095

RESUMEN

Eph receptors are a family of receptor tyrosine kinases that control directional cell movement during various biological processes, including embryogenesis, neuronal pathfinding, and tumor formation. The biochemical pathways of Eph receptors are context-dependent in part because of the varied composition of a heterotypic, oligomeric, active Eph receptor complex. Downstream of the Eph receptors, little is known about the essential phosphorylation events that define the context and instruct cell movement. Here, we define a pathway that is required for Eph receptor B2 (EphB2)-mediated cell sorting and is conserved among multiple Eph receptors. Utilizing a HEK293 model of EphB2+/ephrinB1+ cell segregation, we found that the scaffold adaptor protein SH2 domain-containing adaptor protein B (Shb) is essential for EphB2 functionality. Further characterization revealed that Shb interacts with known modulators of cytoskeletal rearrangement and cell mobility, including Nck adaptor protein (Nck), p120-Ras GTPase-activating protein (RasGAP), and the α- and ß-Chimaerin Rac GAPs. We noted that phosphorylation of Tyr297, Tyr246, and Tyr336 of Shb is required for EphB2-ephrinB1 boundary formation, as well as binding of Nck, RasGAP, and the chimaerins, respectively. Similar complexes were formed in the context of EphA4, EphA8, EphB2, and EphB4 receptor activation. These results indicate that phosphotyrosine-mediated signaling through Shb is essential in EphB2-mediated heterotypic cell segregation and suggest a conserved function for Shb downstream of multiple Eph receptors.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Quimerinas/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptor EphB2/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Separación Celular , Proteínas Quimerinas/química , Efrina-B1/genética , Efrina-B1/metabolismo , Células HEK293 , Humanos , Espectrometría de Masas , Proteínas Oncogénicas/química , Fosforilación , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/química , Receptor EphB2/química , Receptor EphB2/genética , Transducción de Señal , Dominios Homologos src
19.
Neurogastroenterol Motil ; 32(4): e13782, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32004400

RESUMEN

BACKGROUND: Ephrin-B2/EphB receptor signaling contributes to persistent pain states such as postinflammatory and neuropathic pain. Visceral hypersensitivity (VHS) is a major mechanism underlying abdominal pain in patients with irritable bowel syndrome (IBS) and inflammatory bowel diseases (IBD) in remission, but the underlying pathophysiology remains unclear. Here, we evaluated the spinal ephrin-B2/EphB pathway in VHS in 2 murine models of VHS, that is, postinflammatory TNBS colitis and maternal separation (MS). METHODS: Wild-type (WT) mice and mice lacking ephrin-B2 in Nav 1.8 nociceptive neurons (cKO) were studied. VHS was induced by: 1. intracolonic instillation of TNBS or 2. water avoidance stress (WAS) in mice that underwent maternal separation (MS). VHS was assessed by quantifying the visceromotor response (VMRs) during colorectal distention. Colonic tissue and spinal cord were collected for histology, gene, and protein expression evaluation. KEY RESULTS: In WT mice, but not cKO mice, TNBS induced VHS at day 14 after instillation, which returned to baseline perception from day 28 onwards. In MS WT mice, WAS induced VHS for up to 4 weeks. In cKO however, visceral pain perception returned to basal level by week 4. The development of VHS in WT mice was associated with significant upregulation of spinal ephrin-B2 and EphB1 mRNA expression or protein levels in the TNBS model and upregulation of spinal ephrin-B2 protein in the MS model. No changes were observed in cKO mice. VHS was not associated with persistent intestinal inflammation. CONCLUSIONS AND INFERENCES: Overall, our data indicate that the ephrin-B2/EphB1 spinal signaling pathway is involved in VHS and may represent a novel therapeutic target.


Asunto(s)
Efrina-B1/metabolismo , Efrina-B2/metabolismo , Hiperalgesia/metabolismo , Médula Espinal/metabolismo , Dolor Visceral/metabolismo , Animales , Hiperalgesia/etiología , Inflamación/complicaciones , Masculino , Privación Materna , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal/fisiología , Estrés Psicológico/complicaciones , Dolor Visceral/etiología
20.
Am J Pathol ; 190(2): 333-346, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31837290

RESUMEN

Ephrin-B1 plays a critical role at slit diaphragm. Partitioning-defective (Par)-6 is down-regulated in podocyte of ephrin-B1 knockout mouse, suggesting that Par-6 is associated with ephrin-B1. Par polarity complex, consisting of Par-6, Par-3, and atypical protein kinase C, is essential for tight junction formation. In this study, the expression of Par-6 was analyzed in the normal and nephrotic syndrome model rats, and the molecular association of Par-6, Par-3, ephrin-B1, and nephrin was assessed with the human embryonic kidney 293 cell expression system. Par-6 was concentrated at slit diaphragm. Par 6 interacted with ephrin-B1 but not with nephrin, and Par-3 interacted with nephrin but not with ephrin-B1. The complexes of Par-6-ephrin-B1 and Par-3-nephrin were linked via extracellular sites of ephrin-B1 and nephrin. The Par-6-ephrin-B1 complex was delinked from the Par-3-nephrin complex, and Par-6 and ephrin-B1 were clearly down-regulated already at early phase of nephrotic model. The alteration of Par-6/ephrin-B1 advanced that of Par-3/nephrin. Stimulation to nephrin phosphorylated not only nephrin but also ephrin-B1, and consequently inhibited the interaction between ephrin-B1 and Par-6. Par-6 appeared at presumptive podocyte of early developmental stage and moved to basal area at capillary loop stage to participate in slit diaphragm formation at the final stage. Par-6-ephrin-B1 interaction is crucial for formation and maintenance of slit diaphragm of podocyte.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas Portadoras/metabolismo , Efrina-B1/metabolismo , Glomérulos Renales/citología , Proteínas de la Membrana/metabolismo , Síndrome Nefrótico/patología , Podocitos/citología , Animales , Animales Recién Nacidos , Proteínas Portadoras/genética , Diafragma , Efrina-B1/genética , Células HEK293 , Humanos , Glomérulos Renales/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Síndrome Nefrótico/metabolismo , Fosforilación , Podocitos/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...