Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.364
Filtrar
1.
BMC Plant Biol ; 24(1): 85, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38308226

RESUMEN

BACKGROUND: Onion seeds have limited storage capacity compared to other vegetable seeds. It is crucial to identify the mechanisms that induce tolerance to storage conditions and reduce seed deterioration. To address this goal, an experiment was conducted to evaluate changes in germination, biochemical, physiological, and molecular characteristics of onion seed landraces (Horand, Kazerun landraces and Zargan cultivar) at different aging levels (control, three-days and six-days accelerated aging, and natural aging for one year). RESULTS: The findings suggest that there was an increase in glucose, fructose, total sugar, and electrolyte leakage in the Horand (HOR), Kazerun (KAZ) landraces, and Zarghan (ZAR) cultivar, with Kazerun exhibiting the greatest increase. The percentage and rate of germination of Kazerun decreased by 54% and 33%, respectively, in six-day accelerated aging compared to the control, while it decreased by 12% and 14%, respectively, in Horand. Protein content decreased with increasing levels of aging, with a decrease of 26% in Kazerun landrace at six days of aging, while it was 16% in Horand landrace. The antioxidant activities of catalase, superoxide dismutase, and glutathione peroxidase decreased more intensively in Kazerun. The expression of AMY1, BMY1, CTR1, and NPR1 genes were lower in Kazerun landraces than in Horand and Zargan at different aging levels. CONCLUSIONS: The AMY1, BMY1, CTR1, and NPR1 genes play a pivotal role in onion seed germination, and their downregulation under stressful conditions has been shown to decrease germination rates. In addition, the activity of CAT, SOD, and GPx enzymes decreased by seed aging, and the amount of glucose, fructose, total sugar and electrolyte leakage increased, which ultimately led to seed deterioration. Based on the results of this experiment, it is recommended to conduct further studies into the molecular aspects involved in onion seed deterioration. More research on the genes related to this process is suggested, as well as investigating the impact of different priming treatments on the genes expression involved in the onion seed aging process.


Asunto(s)
Germinación , Cebollas , Cebollas/genética , Germinación/genética , Semillas/metabolismo , Electrólitos/análisis , Electrólitos/metabolismo , Fructosa/análisis , Fructosa/metabolismo , Glucosa/metabolismo , Azúcares/metabolismo
2.
Sci Rep ; 14(1): 1214, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216610

RESUMEN

Due to global climate change, crops are certainly confronted with a lot of abiotic and biotic stress factors during their growth that cause a serious threat to their development and overall productivity. Among different abiotic stresses, salt and drought are considered the most devastating stressors with serious impact on crop's yield stability. Here, the current study aimed to elucidate how melatonin works in regulating plant biomass, oxidative stress, antioxidant defense system, as well as the expression of genes related to salt and drought stress in rice plants. Eight groups of rice plants (3 replicates, 5 plants each) underwent varied treatments: control, melatonin, salt, drought, salt + drought, salt + melatonin, drought + melatonin, and salt + drought + melatonin. Melatonin (100 µM) was alternately applied a week before stress exposure; salt stress received 100 mM NaCl every 3 days for 3 weeks, and drought stress involved 10% PEG. Young leaves were randomly sampled from each group. The results showed that melatonin treatment markedly reduces salt and drought stress damage by promoting root, shoot length, fresh and dry weight, increasing chlorophyll contents, and inhibiting excessive production of oxidative stress markers. Salt and drought stress significantly decreased the water balance, and damaged cell membrane by reducing relative water contents and increasing electrolyte leakage. However, melatonin treated rice plants showed high relative water contents and low electrolyte leakage. Under salt and drought stress conditions, exogenous application of melatonin boosted the expression level of salt and drought stress responsive genes like OsSOS, OsNHX, OsHSF and OsDREB in rice plants. Taken together, our results reveal that melatonin treatment significantly increases salt and drought tolerance of rice plants, by increasing plant biomass, suppressing ROS accumulation, elevating antioxidants defense efficiency, and up-regulating the expression of salt and drought stress responsive genes.


Asunto(s)
Melatonina , Oryza , Melatonina/farmacología , Melatonina/metabolismo , Sequías , Oryza/metabolismo , Resistencia a la Sequía , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Fisiológico/genética , Electrólitos/metabolismo , Agua/metabolismo
3.
PLoS One ; 19(1): e0294926, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38166023

RESUMEN

Hypertension leads to water-electrolyte disturbances and end-organ damage. Betaine is an osmolyte protecting cells against electrolyte imbalance and osmotic stress, particularly in the kidneys. This study aimed to evaluate tissue levels and hemodynamic and renal effects of betaine in normotensive and hypertensive rats. Betaine levels were assessed using high-performance liquid chromatography-mass spectrometry (HPLC-MS) in normotensive rats (Wistar-Kyoto, WKYs) and Spontaneously Hypertensive rats (SHRs), a model of genetic hypertension. Acute effects of IV betaine on blood pressure, heart rate, and minute diuresis were evaluated. Gene and protein expression of chosen kidney betaine transporters (SLC6a12 and SLC6a20) were assessed using real-time PCR and Western blot. Compared to normotensive rats, SHRs showed significantly lower concentration of betaine in blood serum, the lungs, liver, and renal medulla. These changes were associated with higher urinary excretion of betaine in SHRs (0.20 ± 0.04 vs. 0.09 ± 0.02 mg/ 24h/ 100g b.w., p = 0.036). In acute experiments, betaine increased diuresis without significantly affecting arterial blood pressure. The diuretic response was greater in SHRs than in WKYs. There were no significant differences in renal expression of betaine transporters between WKYs and SHRs. Increased renal excretion of betaine contributes to decreased concentration of the protective osmolyte in tissues of hypertensive rats. These findings pave the way for studies evaluating a causal relation between depleted betaine and hypertensive organ damage, including kidney injury.


Asunto(s)
Betaína , Hipertensión , Ratas , Animales , Betaína/farmacología , Betaína/metabolismo , Ratas Endogámicas WKY , Diuréticos/farmacología , Eliminación Renal , Hipertensión/genética , Riñón/metabolismo , Ratas Endogámicas SHR , Presión Sanguínea , Electrólitos/metabolismo
4.
Hypertension ; 81(3): 490-500, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38084591

RESUMEN

Homeostasis of fluid and electrolytes is a tightly controlled physiological process. Failure of this process is a hallmark of hypertension, chronic kidney disease, heart failure, and other acute and chronic diseases. While the kidney remains the major player in the control of whole-body fluid and electrolyte homeostasis, recent discoveries point toward more peripheral mechanisms leading to sodium storage in tissues, such as skin and muscle, and a link between this sodium and a range of diseases, including the conditions above. In this review, we describe multiple facets of sodium and fluid balance from traditional concepts to novel discoveries. We examine the differences between acute disruption of sodium balance and the longer term adaptation in chronic disease, highlighting areas that cannot be explained by a kidney-centric model alone. The theoretical and methodological challenges of more recently proposed models are discussed. We acknowledge the different roles of extracellular and intracellular spaces and propose an integrated model that maintains fluid and electrolyte homeostasis and can be distilled into a few elemental players: the microvasculature, the interstitium, and tissue cells. Understanding their interplay will guide a more precise treatment of conditions characterized by sodium excess, for which primary aldosteronism is presented as a prototype.


Asunto(s)
Hipertensión , Sodio , Humanos , Sodio/metabolismo , Equilibrio Hidroelectrolítico/fisiología , Riñón/metabolismo , Electrólitos/metabolismo , Enfermedad Crónica
5.
J Control Release ; 365: 435-447, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37996054

RESUMEN

Dermal absorption of weak electrolytes applied to skin from pharmaceutical and cosmetic compositions is an important consideration for both their efficacy and skin safety. We developed a mechanistic, physics-based framework that simulates this process for leave on applications following solvent deposition. We incorporated this framework into our finite dose computational skin permeation model previously tested with nonelectrolytes to generate quantitative predictions for weak electrolytes. To test the model, we analyzed experimental data from an in vitro human skin permeation study of a weak acid (benzoic acid) and a weak base (propranolol) and their sodium and hydrochloride salts from simple, ethanol/water vehicles as a function of dose and ionization state. Key factors controlling absorption are the pH and buffer capacity of the dose solution, the dissolution rate of precipitated solids into a lipid boundary layer and the rate of conversion of the deposited solid to its conjugate form as the nonionized component permeates and (sometimes) evaporates from the skin surface. The resulting framework not only describes the current test data but has the potential to predict the absorption of other weak electrolytes following topical application.


Asunto(s)
Cosméticos , Absorción Cutánea , Humanos , Solventes/química , Piel/metabolismo , Electrólitos/metabolismo
6.
Vet Res Commun ; 48(2): 811-826, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37930611

RESUMEN

Deltamethrin (DM) is one of the extensively used pyrethroids for controlling ectoparasites. Unfortunately, DM is highly toxic to fish as it primarily targets the sodium channels of the plasma membrane thereby affecting their cardiac and nervous systems. The present study investigated the protective efficacy of Shatavari (Asparagus racemosus) against DM-induced cardiotoxicity in Nile tilapia (Oreochromis niloticus). The fish were segregated into nine groups having 36 fish/group maintained in triplicates exposed to DM (1 µg/L) and fed with a diet containing three different concentrations (10 g, 20 g, and 30 g/kg feed) of aqueous extract of A. racemosus (ARE) for 21 days. DM caused significant alterations in the blood and serum parameters, and expression of cardiac and apoptotic genes compared to the control group. The ARE cotreatment significantly reduced the increase in serum transaminases, creatine kinase, and lactate dehydrogenase levels induced by DM. ARE facilitated the regain of electrolyte (sodium, potassium, chloride) homeostasis and antioxidants such as catalase, superoxide dismutase, glutathione peroxidase, and glutathione in DM-exposed fish. The cardiac histology exhibited loose separation of the cardiomyocytes and myofibrillar loss in the DM group which was ameliorated in the DM-ARE cotreatment group. Significant modulations were observed in the expression of cardiac-specific genes (gata4, myh6, tnT, cox1) and apoptosis signaling genes and proteins (HSP70, bax, bcl-2, caspase3), in the cotreatment group compared to the DM-exposed group. The current study suggests that ARE possesses potential cardioprotective properties that are effective in mitigating the toxic effects induced by DM via ameliorating oxidative stress, electrolyte imbalance, and apoptosis in tilapia.


Asunto(s)
Cíclidos , Hematología , Nitrilos , Piretrinas , Animales , Cíclidos/genética , Cíclidos/metabolismo , Antioxidantes/farmacología , Dieta , Estrés Oxidativo , Electrólitos/metabolismo , Electrólitos/farmacología , Expresión Génica , Suplementos Dietéticos , Alimentación Animal/análisis
7.
Am J Physiol Renal Physiol ; 325(2): F177-F187, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37318990

RESUMEN

High K+ supplementation is correlated with a lower risk of the composite of death, major cardiovascular events, and ameliorated blood pressure, but the exact mechanisms have not been established. Inwardly rectifying K+ (Kir) channels expressed in the basolateral membrane of the distal nephron play an essential role in maintaining electrolyte homeostasis. Mutations in this channel family have been shown to result in strong disturbances in electrolyte homeostasis, among other symptoms. Kir7.1 is a member of the ATP-regulated subfamily of Kir channels. However, its role in renal ion transport and its effect on blood pressure have yet to be established. Our results indicate the localization of Kir7.1 to the basolateral membrane of aldosterone-sensitive distal nephron cells. To examine the physiological implications of Kir7.1, we generated a knockout of Kir7.1 (Kcnj13) in Dahl salt-sensitive (SS) rats and deployed chronic infusion of a specific Kir7.1 inhibitor, ML418, in the wild-type Dahl SS strain. Knockout of Kcnj13 (Kcnj13-/-) resulted in embryonic lethality. Heterozygous Kcnj13+/- rats revealed an increase in K+ excretion on a normal-salt diet but did not exhibit a difference in blood pressure development or plasma electrolytes after 3 wk of a high-salt diet. Wild-type Dahl SS rats exhibited increased renal Kir7.1 expression when dietary K+ was increased. K+ supplementation also demonstrated that Kcnj13+/- rats excreted more K+ on normal salt. The development of hypertension was not different when rats were challenged with high salt for 3 wk, although Kcnj13+/- rats excrete less Na+. Interestingly, chronic infusion of ML418 significantly increased Na+ and Cl- excretion after 14 days of high salt but did not alter salt-induced hypertension development. Here, we found that reduction of Kir7.1 function, either through genetic ablation or pharmacological inhibition, can influence renal electrolyte excretion but not to a sufficient degree to impact the development of SS hypertension.NEW & NOTEWORTHY To investigate the role of the Kir7.1 channel in salt-sensitive hypertension, its function was examined using complementary genetic and pharmacological approaches. The results revealed that although reducing Kir7.1 expression had some impact on maintaining K+ and Na+ balance, it did not lead to a significant change in the development or magnitude of salt-induced hypertension. Hence, it is probable that Kir7.1 works in conjunction with other basolateral K+ channels to fine-tune membrane potential.


Asunto(s)
Hipertensión , Canales de Potasio de Rectificación Interna , Animales , Ratas , Ratas Endogámicas Dahl , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Hipertensión/genética , Hipertensión/metabolismo , Riñón/metabolismo , Presión Sanguínea/fisiología , Sodio/metabolismo , Cloruro de Sodio Dietético/metabolismo , Cloruro de Sodio/metabolismo , Electrólitos/metabolismo
8.
Mol Biol Rep ; 50(8): 6729-6737, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37382776

RESUMEN

BACKGROUND: Unexplained infertility could arise from a defect in the cervix. However, the contribution of abnormal cervical fluid microenvironment to this problem still needs to be identified. Therefore, this study identifies the changes in the cervical fluid microenvironment, i.e., pH, electrolytes and osmolarity as well as expression of ion transporters in the cervix including ENaC, CFTR and AQP in fertile women and in women suffering from primary unexplained infertility. METHODS: Fertile women and women with unexplained infertility but having regular 28-day menstrual cycles were chosen in this study, Day-22 serum progesterone levels were determined. In the meantime, serum FSH and LH levels were determined on day 2 while, cervical flushing was performed at day 14 to analyse changes in the cervical fluid pH, osmolarity, Na+ and Cl- levels. Meanwhile, cells retrieved from cervical fluid were subjected to mRNA expression and protein distribution analysis for CFTR, AQP and ENaC by qPCR and immunofluorescence, respectively. RESULTS: No significant changes in serum progesterone, FSH and LH levels were observed between the two groups. However, cervical fluid pH, osmolarity, Na+ and Cl- levels were significantly lower in primary unexplained infertile group when compared to fertile group. Expression of CFTR and AQP (AQP 1, AQP 2, AQP 5 and AQP 7) in endocervical cells was lower and expression of ß-ENaC was higher in primary unexplained infertile women (p < 0.05 when compared to fertile group). CONCLUSIONS: Alterations in the cervical fluid microenvironment linked to the defective ion transporter expression in the cervix might contribute towards the unfavourable condition that accounts for unexplained infertility in women.


Asunto(s)
Cuello del Útero , Infertilidad Femenina , Humanos , Femenino , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Progesterona , Electrólitos/metabolismo , Sodio/metabolismo , Hormona Folículo Estimulante/metabolismo , Concentración de Iones de Hidrógeno
9.
Curr Opin Nephrol Hypertens ; 32(5): 467-475, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37382185

RESUMEN

PURPOSE OF REVIEW: Women experience unique life events, for example, pregnancy and lactation, that challenge renal regulation of electrolyte homeostasis. Recent analyses of nephron organization in female vs. male rodent kidneys, revealed distinct sexual dimorphisms in electrolyte transporter expression, abundance, and activity. This review aims to provide an overview of electrolyte transporters' organization and operation in female compared with the commonly studied male kidney, and the (patho)physiologic consequences of the differences. RECENT FINDINGS: When electrolyte transporters are assessed in kidney protein homogenates from both sexes, relative transporter abundance ratios in females/males are less than one along proximal tubule and greater than one post macula densa, which is indicative of a 'downstream shift' in fractional reabsorption of electrolytes in females. This arrangement improves the excretion of a sodium load, challenges potassium homeostasis, and is consistent with the lower blood pressure and greater pressure natriuresis observed in premenopausal women. SUMMARY: We summarize recently reported new knowledge about sex differences in renal transporters: abundance and expression along nephron, implications for regulation by Na + , K + and angiotensin II, and mathematical models of female nephron function.


Asunto(s)
Riñón , Caracteres Sexuales , Femenino , Masculino , Humanos , Riñón/metabolismo , Nefronas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Sodio/metabolismo , Electrólitos/metabolismo
10.
Biochim Biophys Acta Bioenerg ; 1864(4): 148985, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37236292

RESUMEN

There is currently a high demand for energy production worldwide, mainly producing renewable and sustainable energy. Bio-sensitized solar cells (BSCs) are an excellent option in this field due to their optical and photoelectrical properties developed in recent years. One of the biosensitizers that shows promise in simplicity, stability and quantum efficiency is bacteriorhodopsin (bR), a photoactive, retinal-containing membrane protein. In the present work, we have utilized a mutant of bR, D96N, in a photoanode-sensitized TiO2 solar cell, integrating low-cost, carbon-based components, including a cathode composed of PEDOT (poly(3,4-ethylenedioxythiophene) functionalized with multi-walled carbon nanotubes (CNT) and a hydroquinone/benzoquinone (HQ/BQ) redox electrolyte. The photoanode and cathode were characterized morphologically and chemically (SEM, TEM, and Raman). The electrochemical performance of the bR-BSCs was investigated using linear sweep voltammetry (LSV), open circuit potential decay (VOC), and impedance spectroscopic analysis (EIS). The champion device yielded a current density (JSC) of 1.0 mA/cm2, VOC of -669 mV, a fill factor of ~24 %, and a power conversion efficiency (PCE) of 0.16 %. This bR device is one of the first bio-based solar cells utilizing carbon-based alternatives for the photoanode, cathode, and electrolyte. This may decrease the cost and significantly improve the device's sustainability.


Asunto(s)
Bacteriorodopsinas , Nanotubos de Carbono , Energía Solar , Bacteriorodopsinas/metabolismo , Nanotubos de Carbono/química , Electrodos , Electrólitos/metabolismo
11.
Phys Med Biol ; 68(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37084738

RESUMEN

Objective. In the presence of oscillatory electric fields, the motion of electrolyte ions in biological tissues is often limited by the confinement created by cell and organelle walls. This confinement induces the organization of the ions into dynamic double layers. This work determines the contribution of these double layers to the bulk conductivity and permittivity of tissues.Approach. Tissues are modeled as repeated units of electrolyte regions separated by dielectric walls. Within the electrolyte regions, a coarse-grained model is used to describe the associated ionic charge distribution. The model emphasizes the role of the displacement current in addition to the ionic current and enables the evaluation of macroscopic conductivities and permittivities.Main results. We obtain analytical expressions for the bulk conductivity and permittivity as a function of the frequency of the oscillatory electric field. These expressions explicitly include the geometric information of the repeated structure and the contribution of the dynamic double layers. The low-frequency limit of the conductivity expression yields a result predicted by the Debye permittivity form. The model also provides a microscopic interpretation of the Maxwell-Wagner effect.Significance. The results obtained contribute to the interpretation of the macroscopic measurements of electrical properties of tissues in terms of their microscopic structure. The model enables a critical assessment of the justification for the use of macroscopic models to analyze the transmission of electrical signals through tissues.


Asunto(s)
Electrólitos , Electrólitos/metabolismo , Iones , Conductividad Eléctrica
12.
Vestn Oftalmol ; 139(1): 106-113, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-36924522

RESUMEN

Tear production is a complex multi-step process that can be arbitrarily divided into three stages: «primary¼ secretion by the acinar cells of the main lacrimal glands, formation of «secondary¼ lacrimal fluid in the ducts of the main lacrimal glands, and «tertiary¼ modification of the tear composition in the conjunctival sac. This article highlights mechanisms of water and electrolytes secretion in the process of tear fluid production and describes the particularities of distribution of the membrane transport proteins in the lacrimal gland and the ocular surface.


Asunto(s)
Aparato Lagrimal , Lágrimas , Humanos , Lágrimas/metabolismo , Electrólitos/metabolismo
13.
J Cyst Fibros ; 22 Suppl 1: S12-S16, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36621372

RESUMEN

Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP- and protein kinase A (PKA)-regulated channel, expressed on the luminal surface of secretory and absorptive epithelial cells. CFTR has a complex, cell-specific regulatory network playing a major role in cAMP- and Ca2+-activated secretion of electrolytes. It secretes intracellular Cl- and bicarbonate and regulates absorption of electrolytes by differentially controlling the activity of the epithelial Na+ channel (ENaC) in colon, airways, and sweat ducts. The CFTR gene expression is regulated by cell-specific, time-dependent mechanisms reviewed elsewhere [1]. This review will focus on the transcriptional, post-transcriptional, and translational regulation of CFTR by cAMP-PKA, non-coding (nc)RNAs, and TGF-ß signaling pathways in cystic fibrosis (CF) cells.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Transducción de Señal , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Electrólitos/metabolismo , Canales Epiteliales de Sodio/metabolismo
14.
Biomed Res ; 44(1): 31-40, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36682798

RESUMEN

Intestinal transport of electrolytes is regulated by the enteric nervous system. Acetylcholine (ACh) is considered the most important neurotransmitter for electrolyte transport in the colon. However, electrolyte transport regulated by ACh is not fully understood in the colon. We investigated the regulation of electrogenic electrolyte transport by cholinergic agonists in the mouse colon by measuring the short-circuit current (Isc) using an Ussing chamber system. Muscarinic stimulation induced transient electrogenic Cl- secretion, and nicotinic stimulation induced electrogenic K+ secretion to the apical side in the normal mouse colon, and these effects were reduced in the colon of mice with food allergy (FA). Administration of prednisolone to mice with FA suppressed mild inflammation in the colon and allergic symptoms and thereby ameliorated the disruption of electrogenic electrolyte transport induced not only by cholinergic pathway activation but also by electrical field stimulation and intracellular cAMP signaling pathway activation in the colon. These results suggest that the electrogenic electrolyte transport function in the colon is impaired by FA-induced colonic inflammation and that the suppression of inflammation ameliorates the dysfunction of electrogenic electrolyte transport in the colon of mice with FA.


Asunto(s)
Electrólitos , Sistema Nervioso Entérico , Ratones , Animales , Electrólitos/metabolismo , Electrólitos/farmacología , Agonistas Colinérgicos/farmacología , Agonistas Colinérgicos/metabolismo , Sistema Nervioso Entérico/fisiología , Acetilcolina/farmacología , Acetilcolina/metabolismo , Colon/metabolismo , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Cloruros/metabolismo , Cloruros/farmacología
15.
Biomolecules ; 13(1)2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36671562

RESUMEN

The renal collecting duct is known to play a critical role in many physiological processes, including systemic water-electrolyte homeostasis, acid-base balance, and the salt sensitivity of blood pressure. ClC-K2 (ClC-Kb in humans) is a Cl--permeable channel expressed on the basolateral membrane of several segments of the renal tubule, including the collecting duct intercalated cells. ClC-Kb mutations are causative for Bartters' syndrome type 3 manifested as hypotension, urinary salt wasting, and metabolic alkalosis. However, little is known about the significance of the channel in the collecting duct with respect to the normal physiology and pathology of Bartters' syndrome. In this review, we summarize the available experimental evidence about the signaling determinants of ClC-K2 function and the regulation by systemic and local factors as well as critically discuss the recent advances in understanding the collecting-duct-specific roles of ClC-K2 in adaptations to changes in dietary Cl- intake and maintaining systemic acid-base homeostasis.


Asunto(s)
Síndrome de Bartter , Riñón , Humanos , Riñón/metabolismo , Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Membrana Celular , Electrólitos/metabolismo
16.
FASEB J ; 37(1): e22696, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36520027

RESUMEN

Mutations or deletions in transcription factor hepatocyte nuclear factor 1 homeobox ß (HNF1ß) cause renal cysts and/or malformation, maturity-onset diabetes of the young and electrolyte disturbances. Here, we applied a comprehensive bioinformatic approach on ChIP-seq, RNA-seq, and gene expression array studies to identify novel transcriptional targets of HNF1ß explaining the kidney phenotype of HNF1ß patients. We identified BAR/IMD Domain Containing Adaptor Protein 2 Like 2 (BAIAP2L2), as a novel transcriptional target of HNF1ß and validated direct transcriptional activation of the BAIAP2L2 promoter by a reporter luciferase assay. Using mass spectrometry analysis, we show that BAIAP2L2 binds to other members of the I-BAR domain-containing family: BAIAP2 and BAIAP2L1. Subsequently, the role of BAIAP2L2 in maintaining epithelial cell integrity in the kidney was assessed using Baiap2l2 knockout cell and mouse models. Kidney epithelial cells lacking functional BAIAP2L2 displayed normal F-actin distribution at cell-cell contacts and formed polarized three-dimensional spheroids with a lumen. In vivo, Baiap2l2 knockout mice displayed normal kidney and colon tissue morphology and serum and urine electrolyte concentrations were not affected. Altogether, our study is the first to characterize the function of BAIAP2L2 in the kidney in vivo and we report that mice lacking BAIAP2L2 exhibit normal electrolyte homeostasis and tissue morphology under physiological conditions.


Asunto(s)
Quistes , Enfermedades Renales Quísticas , Animales , Humanos , Ratones , Quistes/genética , Quistes/metabolismo , Electrólitos/metabolismo , Riñón/metabolismo , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Ratones Noqueados , Factores de Transcripción/metabolismo , Activación Transcripcional
17.
Am J Physiol Renal Physiol ; 324(2): F211-F224, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36546837

RESUMEN

Mutations in the hepatocyte nuclear factor (HNF)1ß gene (HNF1B) cause autosomal dominant tubulointerstitial kidney disease, a rare and heterogeneous disease characterized by renal cysts and/or malformation, maturity-onset diabetes of the young, hypomagnesemia, and hypokalemia. The electrolyte disturbances may develop in the distal part of the nephron, which is important for fine-tuning of Mg2+ and Ca2+ reabsorption. Therefore, we aimed to study the transcriptional network directed by HNF1ß in the distal part of the nephron. We combined HNF1ß chromatin immunoprecipitation-sequencing and mRNA expression data to identify direct targets of HNF1ß in a renal distal convoluted tubule cell line (mpkDCT). Gene Ontology term pathway analysis demonstrated enrichment of cell polarity, cell-cell junction, and cytoskeleton pathways in the dataset. Genes directly and indirectly regulated by HNF1ß within these pathways included members of the apical and basolateral polarity complexes including Crumbs protein homolog 3 (Crb3), partitioning defective 6 homolog-ß (Pard6b), and LLGL Scribble cell polarity complex component 2 (Llgl2). In monolayers of mouse inner medullary collecting duct 3 cells expressing dominant negative Hnf1b, tight junction integrity was compromised, as observed by reduced transepithelial electrical resistance values and increased permeability for fluorescein (0.4 kDa) compared with wild-type cells. Expression of dominant negative Hnf1b also led to a decrease in height (30%) and an increase in surface (58.5%) of cells grown on membranes. Moreover, three-dimensional spheroids formed by cells expressing dominant negative Hnf1b were reduced in size compared with wild-type spheroids (30%). Together, these findings demonstrate that HNF1ß directs a transcriptional network regulating tight junction integrity and cell structure in the distal part of the nephron.NEW & NOTEWORTHY Genetic defects in transcription factor hepatocyte nuclear factor (HNF)1ß cause a heterogeneous disease characterized by electrolyte disturbances, kidney cysts, and diabetes. By combining RNA-sequencing and HNF1ß chromatin immunoprecipitation-sequencing data, we identified new HNF1ß targets that were enriched for cell polarity pathways. Newly discovered targets included members of polarity complexes Crb3, Pard6b, and Llgl2. Functional assays in kidney epithelial cells demonstrated decreased tight junction integrity and a loss of typical cuboidal morphology in mutant Hnf1b cells.


Asunto(s)
Redes Reguladoras de Genes , Factores de Transcripción , Ratones , Animales , Factores de Transcripción/metabolismo , Uniones Estrechas/metabolismo , Riñón/metabolismo , Células Epiteliales/metabolismo , Factores Nucleares del Hepatocito/genética , Factores Nucleares del Hepatocito/metabolismo , Electrólitos/metabolismo , Factor Nuclear 1-beta del Hepatocito/genética
18.
Plant Cell Environ ; 46(3): 991-1003, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36578264

RESUMEN

Iron (Fe) is an essential micronutrient, and deficiency in available Fe is one of the most important limiting factors for plant growth. In some species including Medicago truncatula, Fe deficiency results in accumulation of riboflavin, a response associated with Fe acquisition. However, how the plant's Fe status is integrated to tune riboflavin biosynthesis and how riboflavin levels affect Fe acquisition and utilization remains largely unexplored. We report that protein kinase CIPK12 regulates ferric reduction by accumulation of riboflavin and its derivatives in roots of M. truncatula via physiological and molecular characterization of its mutants and over-expressing materials. Mutations in CIPK12 enhance Fe accumulation and improve photosynthetic efficiency, whereas overexpression of CIPK12 shows the opposite phenotypes. The Calcineurin B-like proteins CBL3 and CBL8 interact with CIPK12, which negatively regulates the expression of genes encoding key enzymes in the riboflavin biosynthesis pathway. CIPK12 negatively regulates Fe acquisition by suppressing accumulation of riboflavin and its derivatives in roots, which in turn influences ferric reduction activity by riboflavin-dependent electron transport under Fe deficiency. Our findings uncover a new regulatory mechanism by which CIPK12 regulates riboflavin biosynthesis and Fe-deficiency responses in plants.


Asunto(s)
Deficiencias de Hierro , Medicago truncatula , Medicago truncatula/metabolismo , Proteínas Quinasas/metabolismo , Riboflavina/genética , Riboflavina/metabolismo , Hierro/metabolismo , Electrólitos/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Nephrol Dial Transplant ; 38(7): 1583-1590, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35945648

RESUMEN

Tubular transport is a key function of the kidney to maintain electrolyte and acid-base homeostasis. Urinary extracellular vesicles (uEVs) harbor water, electrolyte, and acid-base transporters expressed at the apical plasma membrane of tubular epithelial cells. Within the uEV proteome, the correlations between kidney and uEV protein abundances are strongest for tubular transporters. Therefore, uEVs offer a noninvasive approach to probing tubular transport in health and disease. Here, we review how kidney tubular physiology is reflected in uEVs and, conversely, how uEVs may modify tubular transport. Clinically, uEV tubular transporter profiling has been applied to rare diseases, such as inherited tubulopathies, but also to more common conditions, such as hypertension and kidney disease. Although uEVs hold the promise to advance the diagnosis of kidney disease to the molecular level, several biological and technical complexities must still be addressed. The future will tell whether uEV analysis will mainly be a powerful tool to study tubular physiology in humans or whether it will move forward to become a diagnostic bedside test.


Asunto(s)
Vesículas Extracelulares , Enfermedades Renales , Humanos , Vesículas Extracelulares/metabolismo , Riñón/metabolismo , Enfermedades Renales/diagnóstico , Enfermedades Renales/metabolismo , Electrólitos/metabolismo , Proteoma/metabolismo , Biomarcadores/metabolismo
20.
Sci Rep ; 12(1): 14732, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042344

RESUMEN

Coronavirus disease 2019 (COVID-19) can be fatal in severe cases. Accordingly, predicting the severity and prognosis of the disease is valuable. This study examined the role of electrolyte imbalances in predicting the severity of COVID-19. In this cross-sectional study, 169 hospitalized patients with COVID-19 were included and categorized into three groups based on the severity of the disease (moderate, severe, and critical). Serum levels of electrolytes (calcium [Ca], phosphorus [P], sodium [Na], potassium [k], and magnesium [Mg]), inflammatory markers (D-dimer, C-reactive protein [CRP], ferritin, and lactate dehydrogenase [LDH]), and 25OHVitamin D were measured. The mean age of patients was 53 years, and 54% were male. They had moderate, severe, and critical illnesses in 22%, 47%, and 31%, respectively. CRP, D-dimer, and ferritin increased with the severity of the disease. The lower median values of Mg, Na, 25OHVitamin D, Ca, LDH, and higher median lymphocyte counts were observed in the moderate vs. the severe group (P < 0.05). These parameters have acceptable sensitivity and specificity at the suggested cut-off level to discriminate the moderate and critical cases. Serum parameters introduced in this study are appropriate for differentiating between critical and moderate cases. The electrolyte imbalance can predict critical patients.


Asunto(s)
COVID-19 , Proteína C-Reactiva/metabolismo , COVID-19/diagnóstico , Estudios Transversales , Electrólitos/metabolismo , Femenino , Ferritinas , Humanos , L-Lactato Deshidrogenasa/metabolismo , Masculino , Persona de Mediana Edad , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA