Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
1.
Sci Rep ; 13(1): 7742, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173345

RESUMEN

The Brain and Muscle ARNTL-Like 1 protein (BMAL1) forms a heterodimer with either Circadian Locomotor Output Cycles Kaput (CLOCK) or Neuronal PAS domain protein 2 (NPAS2) to act as a master regulator of the mammalian circadian clock gene network. The dimer binds to E-box gene regulatory elements on DNA, activating downstream transcription of clock genes. Identification of transcription factor binding sites and genomic features that correlate to DNA binding by BMAL1 is a challenging problem, given that CLOCK-BMAL1 or NPAS2-BMAL1 bind to several distinct binding motifs (CANNTG) on DNA. Using three different types of tissue-specific machine learning models with features based on (1) DNA sequence, (2) DNA sequence plus DNA shape, and (3) DNA sequence and shape plus histone modifications, we developed an interpretable predictive model of genome-wide BMAL1 binding to E-box motifs and dissected the mechanisms underlying BMAL1-DNA binding. Our results indicated that histone modifications, the local shape of the DNA, and the flanking sequence of the E-box motif are sufficient predictive features for BMAL1-DNA binding. Our models also provide mechanistic insights into tissue specificity of DNA binding by BMAL1.


Asunto(s)
Factores de Transcripción ARNTL , Elementos E-Box , Animales , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Motivos de Nucleótidos , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , ADN/metabolismo , Unión Proteica , Ritmo Circadiano/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Mamíferos/metabolismo
2.
Adv Exp Med Biol ; 1408: 235-249, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37093431

RESUMEN

The organization of a circadian system includes an endogenous pacemaker system, input pathways for environmental synchronizing (entraining) stimuli, and output pathways through which the clock regulates physiological and behavioral processes, for example, the glucose-sensing mechanism in the liver. The liver is the central regulator of metabolism and one of our peripherals clocks. In mammals, central to this pacemaker are the transcription factors Circadian Locomotor Output Cycles Kaput (CLOCK) and BMAL1 (Brain and Muscle ARNT-Like 1). BMAL1 dimerizes with CLOCK, and this heterodimer then binds to the E-box promoter elements (CACGTG) present in clock and clock-controlled genes (CCGs). However, we are just beginning to understand how output pathways and regulatory mechanisms of CCGs are involved in rhythmic physiological processes. Glucokinase (GCK) is a fundamental enzyme in glucose homeostasis, catalyzing the high Km phosphorylation of glucose and allowing its storage. Moreover, gck is a dependent circadian gene. This study aims to determine the contribution of clock genes to hepatic gck expression and to define the specific role of E-box sequences on the circadian regulation of hepatic gck. Results showed that gck expression follows a circadian rhythm in rat hepatocytes in vitro. Accordingly, bmal1 expression induces the glucokinase circadian rhythmic expression in hepatocytes and the analysis of human and rat gck promoters, indicating the presence of E-box regions. Moreover, the basal activity of gck promoter was increased by clock/bmal1 co-transfection but inhibited by Period1/Period2 (per1/per2) co-transfection. Thus, the data suggest that the clock proteins tightly regulate the transcriptional activity of the gck promoter.


Asunto(s)
Factores de Transcripción ARNTL , Elementos E-Box , Ratas , Humanos , Animales , Factores de Transcripción ARNTL/genética , Glucoquinasa , Ritmo Circadiano/fisiología , Glucosa , Regulación de la Expresión Génica , Mamíferos/genética
3.
Plant J ; 108(2): 358-377, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34314535

RESUMEN

The plant pollen wall protects the male gametophyte from various biotic and abiotic stresses. The formation of a unique pollen wall structure and elaborate exine pattern is a well-organized process, which needs coordination between reproductive cells and the neighboring somatic cells. However, molecular mechanisms underlying this process remain largely unknown. Here, we report a rice male-sterile mutant (l94) that exhibits defective pollen exine patterning and abnormal tapetal cell development. MutMap and knockout analyses demonstrated that the causal gene encodes a type-G non-specific lipid transfer protein (OsLTPL94). Histological and cellular analyses established that OsLTPL94 is strongly expressed in the developing microspores and tapetal cells, and its protein is secreted to the plasma membrane. The l94 mutation impeded the secretory ability of OsLTPL94 protein. Further in vivo and in vitro investigations supported the hypothesis that ETERNAL TAPETUM 1 (EAT1), a basic helix-loop-helix transcription factor (bHLH TF), activated OsLTPL94 expression through direct binding to the E-box motif of the OsLTPL94 promoter, which was supported by the positive correlation between the expression of EAT1 and OsLTPL94 in two independent eat1 mutants. Our findings suggest that the secretory OsLTPL94 plays a key role in the coordinated development of tapetum and microspores with the regulation of EAT1.


Asunto(s)
Proteínas Portadoras/metabolismo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Polen/crecimiento & desarrollo , Proteínas Portadoras/genética , Elementos E-Box , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/genética , Oryza/metabolismo , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas
4.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34155099

RESUMEN

Multiple independent sequence variants of the hTERT locus have been associated with telomere length and cancer risks in genome-wide association studies. Here, we identified an intronic variable number tandem repeat, VNTR2-1, as an enhancer-like element, which activated hTERT transcription in a cell in a chromatin-dependent manner. VNTR2-1, consisting of 42-bp repeats with an array of enhancer boxes, cooperated with the proximal promoter in the regulation of hTERT transcription by basic helix-loop-helix transcription factors and maintained hTERT expression during embryonic stem-cell differentiation. Genomic deletion of VNTR2-1 in MelJuSo melanoma cells markedly reduced hTERT transcription, leading to telomere shortening, cellular senescence, and impairment of xenograft tumor growth. Interestingly, VNTR2-1 lengths varied widely in human populations; hTERT alleles with shorter VNTR2-1 were underrepresented in African American centenarians, indicating its role in human aging. Therefore, this polymorphic element is likely a missing link in the telomerase regulatory network and a molecular basis for genetic diversities of telomere homeostasis and age-related disease susceptibilities.


Asunto(s)
Repeticiones de Minisatélite/genética , Polimorfismo Genético , Telomerasa/genética , Activación Transcripcional , Negro o Afroamericano/genética , Anciano de 80 o más Años , Animales , Secuencia de Bases , Diferenciación Celular/genética , Línea Celular , Proliferación Celular/genética , Cromosomas Artificiales Bacterianos/genética , Elementos E-Box/genética , Genoma Humano , Células Madre Embrionarias Humanas/metabolismo , Humanos , Ratones Desnudos , Neoplasias/genética , Neoplasias/patología , Regiones Promotoras Genéticas , Unión Proteica/genética , Eliminación de Secuencia/genética , Homeostasis del Telómero/genética
5.
Mol Cell Biol ; 41(9): e0044920, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34124933

RESUMEN

A desynchronized circadian rhythm in tumors is coincident with aberrant inflammation and dysregulated metabolism. As their interrelationship in cancer etiology is largely unknown, we investigated the link among the three in glioma. The tumor metabolite lactate-mediated increase in the proinflammatory cytokine interleukin-1ß (IL-1ß) was concomitant with elevated levels of the core circadian regulators Clock and Bmal1. Small interfering RNA (siRNA)-mediated knockdown of Bmal1 and Clock decreased (i) lactate dehydrogenase A (LDHA) and IL-1ß levels and (ii) the release of lactate and proinflammatory cytokines. Lactate-mediated deacetylation of Bmal1 and its interaction with Clock regulate IL-1ß levels and vice versa. Site-directed mutagenesis and luciferase reporter assays indicated the functionality of E-box sites on LDHA and IL-1ß promoters. Sequential chromatin immunoprecipitation (ChIP-re-ChIP) revealed that lactate-IL-1ß cross talk positively affects the corecruitment of Clock-Bmal1 to these E-box sites. Clock-Bmal1 enrichment was accompanied by decreased H3K9me3 and increased H3K9ac and RNA polymerase II (Pol II) occupancy. The lactate-IL-1ß-Clock (LIC) loop positively regulated the expression of genes associated with the cell cycle, DNA damage, and cytoskeletal organization involved in glioma progression. TCGA (The Cancer Genome Atlas) data analysis suggested the presence of lactate-IL-1ß cross talk in other cancers. The responsiveness of stomach and cervical cancer cells to lactate inhibition followed the same trend as that exhibited by glioma cells. In addition, components of the LIC loop were found to be correlated with (i) patient survival, (ii) clinically actionable genes, and (iii) anticancer drug sensitivity. Our findings provide evidence for potential cancer-specific axis wiring of IL-1ß and LDHA through Clock-Bmal1, the outcome of which is to fuel an IL-1ß-lactate autocrine loop that drives proinflammatory and oncogenic signals.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Relojes Circadianos , Glioma/metabolismo , Homeostasis , Interleucina-1beta/metabolismo , Ácido Láctico/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/genética , Citocinas/metabolismo , Progresión de la Enfermedad , Elementos E-Box/genética , Epigénesis Genética/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Homeostasis/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-1beta/genética , Lactato Deshidrogenasa 5/genética , Lactato Deshidrogenasa 5/metabolismo , Regiones Promotoras Genéticas , Análisis de Supervivencia
6.
Development ; 148(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34143204

RESUMEN

During retinal development, a large subset of progenitors upregulates the transcription factor Otx2, which is required for photoreceptor and bipolar cell formation. How these retinal progenitor cells initially activate Otx2 expression is unclear. To address this, we investigated the cis-regulatory network that controls Otx2 expression in mice. We identified a minimal enhancer element, DHS-4D, that drove expression in newly formed OTX2+ cells. CRISPR/Cas9-mediated deletion of DHS-4D reduced OTX2 expression, but this effect was diminished in postnatal development. Systematic mutagenesis of the enhancer revealed that three basic helix-loop-helix (bHLH) transcription factor-binding sites were required for its activity. Single cell RNA-sequencing of nascent Otx2+ cells identified the bHLH factors Ascl1 and Neurog2 as candidate regulators. CRISPR/Cas9 targeting of these factors showed that only the simultaneous loss of Ascl1 and Neurog2 prevented OTX2 expression. Our findings suggest that Ascl1 and Neurog2 act either redundantly or in a compensatory fashion to activate the DHS-4D enhancer and Otx2 expression. We observed redundancy or compensation at both the transcriptional and enhancer utilization levels, suggesting that the mechanisms governing Otx2 regulation in the retina are flexible and robust.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Organogénesis/genética , Factores de Transcripción Otx/genética , Retina/metabolismo , Animales , Secuencia de Bases , Elementos E-Box , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Noqueados , Ratones Transgénicos , Motivos de Nucleótidos , Factores de Transcripción Otx/metabolismo , Retina/embriología
7.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34108238

RESUMEN

Galanin receptor1 (GalR1) transcript levels are elevated in the rat ventral periaqueductal gray (vPAG) after chronic mild stress (CMS) and are related to depression-like behavior. To explore the mechanisms underlying the elevated GalR1 expression, we carried out molecular biological experiments in vitro and in animal behavioral experiments in vivo. It was found that a restricted upstream region of the GalR1 gene, from -250 to -220, harbors an E-box and plays a negative role in the GalR1 promoter activity. The transcription factor Scratch2 bound to the E-box to down-regulate GalR1 promoter activity and lower expression levels of the GalR1 gene. The expression of Scratch2 was significantly decreased in the vPAG of CMS rats. Importantly, local knockdown of Scratch2 in the vPAG caused elevated expression of GalR1 in the same region, as well as depression-like behaviors. RNAscope analysis revealed that GalR1 mRNA is expressed together with Scratch2 in both GABA and glutamate neurons. Taking these data together, our study further supports the involvement of GalR1 in mood control and suggests a role for Scratch2 as a regulator of depression-like behavior by repressing the GalR1 gene in the vPAG.


Asunto(s)
Conducta Animal , Depresión/patología , Sustancia Gris Periacueductal/patología , Receptor de Galanina Tipo 1/metabolismo , Factores de Transcripción/metabolismo , Animales , Elementos E-Box/genética , Neuronas GABAérgicas/metabolismo , Regulación de la Expresión Génica , Ácido Glutámico/metabolismo , Células PC12 , Regiones Promotoras Genéticas/genética , Unión Proteica , Ratas , Receptor de Galanina Tipo 1/genética , Estrés Psicológico/complicaciones , Factores de Transcripción/genética , Sitio de Iniciación de la Transcripción
8.
Gene ; 791: 145717, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-33991649

RESUMEN

ZNFO is a Krüppel-associated box (KRAB) containing zinc finger transcription factor, which is exclusively expressed in bovine oocytes. Previous studies have demonstrated that ZNFO possesses an intrinsic transcriptional repressive activity and is essential for early embryonic development in cattle. However, the mechanisms regulating ZNFO transcription remain elusive. In the present study, the core promoter that controls the ZNFO basal transcription was identified. A 1.7 kb 5' regulatory region of the ZNFO gene was cloned and its promoter activity was confirmed by a luciferase reporter assay. A series of 5' deletion in the ZNFO promoter followed by luciferase reporter assays indicated that the core promoter region has to include the sequence located within 57 bp to 31 bp upstream of the transcription start site. Sequence analysis revealed that a putative USF1/USF2 binding site (GGTCACGTGACC) containing an E-box motif (CACGTG) is located within the essential region. Depletion of USF1/USF2 by RNAi and E-box mutation analysis demonstrated that the USF1/USF2 binding site is required for the ZNFO basal transcription. Furthermore, EMSA and super-shift assays indicated that the observed effects are dependent on the specific interactions between USF proteins and the ZNFO core promoter. From these results, it is concluded that USF1 and USF2 are essential for the basal transcription of the ZNFO gene.


Asunto(s)
Oocitos/metabolismo , Factores de Transcripción/genética , Factores Estimuladores hacia 5'/genética , Animales , Secuencia de Bases/genética , Sitios de Unión , Bovinos/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Elementos E-Box/genética , Regulación de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Herencia Materna/genética , Oocitos/fisiología , Oogénesis/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética/genética , Factores Estimuladores hacia 5'/metabolismo , Dedos de Zinc/genética
9.
Biochem J ; 478(4): 911-926, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33527978

RESUMEN

M-cadherin is a skeletal muscle-specific transmembrane protein mediating the cell-cell adhesion of myoblasts during myogenesis. It is expressed in the proliferating satellite cells and highly induced by myogenic regulatory factors (MRFs) during terminal myogenic differentiation. Several conserved cis-elements, including 5 E-boxes, 2 GC boxes, and 1 conserved downstream element (CDE) were identified in the M-cadherin proximal promoter. We found that E-box-3 and -4 close to the transcription initiation site (TIS) mediated most of its transactivation by MyoD, the strongest myogenic MRF. Including of any one of the other E-boxes restored the full activation by MyoD, suggesting an essential collaboration between E-boxes. Stronger activation of M-cadherin promoter than that of muscle creatine kinase (MCK) by MyoD was observed regardless of culture conditions and the presence of E47. Furthermore, MyoD/E47 heterodimer and MyoD ∼ E47 fusion protein achieved similar levels of activation in differentiation medium (DM), suggesting high affinity of MyoD/E47 to E-boxes 3/4 under DM. We also found that GC boxes and CDE positively affected MyoD mediated activation. The CDE element was predicted to be the target of the chromatin-modifying factor Meis1/Pbx1 heterodimer. Knockdown of Pbx1 significantly reduced the expression level of M-cadherin, but increased that of N-cadherin. Using ChIP assay, we further found significant reduction in MyoD recruitment to M-cadherin promoter when CDE was deleted. Taken together, these observations suggest that the chromatin-modifying function of Pbx1/Meis1 is critical to M-cadherin promoter activation before MyoD is recruited to E-boxes to trigger transcription.


Asunto(s)
Cadherinas/genética , Elementos E-Box/genética , Regulación de la Expresión Génica/genética , Desarrollo de Músculos/genética , Regiones Promotoras Genéticas/genética , Animales , Secuencia de Bases , Células Cultivadas , Secuencia Conservada , Fibroblastos , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/fisiología , Proteína MioD/metabolismo , Mioblastos , Factor de Transcripción 1 de la Leucemia de Células Pre-B/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico
10.
FEBS J ; 288(2): 614-639, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32383312

RESUMEN

Circadian disruption influences metabolic health. Metabolism modulates circadian function. However, the mechanisms coupling circadian rhythms and metabolism remain poorly understood. Here, we report that cystathionine ß-synthase (CBS), a central enzyme in one-carbon metabolism, functionally interacts with the core circadian protein cryptochrome 1 (CRY1). In cells, CBS augments CRY1-mediated repression of the CLOCK/BMAL1 complex and shortens circadian period. Notably, we find that mutant CBS-I278T protein, the most common cause of homocystinuria, does not bind CRY1 or regulate its repressor activity. Transgenic CbsZn/Zn  mice, while maintaining circadian locomotor activity period, exhibit reduced circadian power and increased expression of E-BOX outputs. CBS function is reciprocally influenced by CRY1 binding. CRY1 modulates enzymatic activity of the CBS. Liver extracts from Cry1-/- mice show reduced CBS activity that normalizes after the addition of exogenous wild-type (WT) CRY1. Metabolomic analysis of WT, CbsZn/Zn , Cry1-/- , and Cry2-/- samples highlights the metabolic importance of endogenous CRY1. We observed temporal variation in one-carbon and transsulfuration pathways attributable to CRY1-induced CBS activation. CBS-CRY1 binding provides a post-translational switch to modulate cellular circadian physiology and metabolic control.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Cistationina betasintasa/genética , Metaboloma/genética , Procesamiento Proteico-Postraduccional , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Criptocromos/deficiencia , Cistationina betasintasa/metabolismo , Elementos E-Box , Femenino , Células HEK293 , Humanos , Masculino , Redes y Vías Metabólicas/genética , Ratones , Ratones Noqueados , Mutación , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Unión Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal
11.
Development ; 147(24)2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33144399

RESUMEN

Sense organs acquire their distinctive shapes concomitantly with the differentiation of sensory cells and neurons necessary for their function. Although our understanding of the mechanisms controlling morphogenesis and neurogenesis in these structures has grown, how these processes are coordinated remains largely unexplored. Neurogenesis in the zebrafish olfactory epithelium requires the bHLH proneural transcription factor Neurogenin 1 (Neurog1). To address whether Neurog1 also controls morphogenesis, we analysed the migratory behaviour of early olfactory neural progenitors in neurog1 mutant embryos. Our results indicate that the oriented movements of these progenitors are disrupted in this context. Morphogenesis is similarly affected by mutations in the chemokine receptor gene, cxcr4b, suggesting it is a potential Neurog1 target gene. We find that Neurog1 directly regulates cxcr4b through an E-box cluster located just upstream of the cxcr4b transcription start site. Our results suggest that proneural transcription factors, such as Neurog1, directly couple distinct aspects of nervous system development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Morfogénesis/genética , Proteínas del Tejido Nervioso/genética , Neurogénesis/genética , Mucosa Olfatoria/crecimiento & desarrollo , Receptores CXCR4/genética , Proteínas de Pez Cebra/genética , Animales , Elementos E-Box/genética , Embrión no Mamífero , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Mutación/genética , Neuronas/metabolismo , Sitio de Iniciación de la Transcripción , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
12.
Drug Metab Dispos ; 48(8): 681-689, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32527940

RESUMEN

UDP-glucuronosyltransferases (UGTs) are a family of phase II enzymes that play an important role in metabolism and elimination of numerous endo- and xenobiotics. Here, we aimed to characterize diurnal rhythm of Ugt1a9 in mouse liver and to determine the molecular mechanisms underlying the rhythmicity. Hepatic Ugt1a9 mRNA and protein displayed robust diurnal rhythms in wild-type mice with peak levels at zeitgeber time (ZT) 6. Rhythmicity in Ugt1a9 expression was confirmed using synchronized Hepa-1c1c7 cells. We observed time-varying glucuronidation (ZT6 > ZT18) of propofol, a specific Ugt1a9 substrate, consistent with the diurnal pattern of Ugt1a9 protein. Loss of Rev-erbα (a circadian clock component) downregulated the Ugt1a9 expression and blunted its rhythm in mouse liver. Accordingly, propofol glucuronidation was reduced and its dosing time dependency was lost in Rev-erbα -/- mice. Dec2 (a transcription factor) was screened to be the potential intermediate that mediated Rev-erbα regulation of Ugt1a9. We confirmed Rev-erbα as a negative regulator of Dec2 in mice and in Hepa-1c1c7 cells. Based on promoter analysis and luciferase reporter assays, it was found that Dec2 trans-repressed Ugt1a9 via direct binding to an E-box-like motif in the gene promoter. Additionally, regulation of Ugt1a9 by Rev-erbα was Dec2-dependent. In conclusion, Rev-erbα generates and regulates rhythmic Ugt1a9 through periodical inhibition of Dec2, a transcriptional repressor of Ugt1a9. Our study may have implications for understanding of circadian clock-controlled drug metabolism and of metabolism-based chronotherapeutics. SIGNIFICANCE STATEMENT: Hepatic Ugt1a9 displays diurnal rhythmicities in expression and glucuronidation activity in mice. It is uncovered that Rev-erbα generates and regulates rhythmic Ugt1a9 through periodical inhibition of Dec2, a transcriptional repressor of Ugt1a9. The findings may have implications for understanding of circadian clock-controlled drug metabolism and of metabolism-based chronotherapeutics.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Glucurónidos/metabolismo , Glucuronosiltransferasa/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Regulación hacia Abajo , Elementos E-Box/genética , Regulación de la Expresión Génica , Glucuronosiltransferasa/metabolismo , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Noqueados , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Fotoperiodo , Regiones Promotoras Genéticas , Propofol/administración & dosificación , Propofol/farmacocinética , UDP Glucuronosiltransferasa 1A9
13.
Int J Mol Sci ; 21(5)2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32120995

RESUMEN

Super-enhancers (SEs) are clusters of highly active enhancers, regulating cell type-specific and disease-related genes, including oncogenes. The individual regulatory regions within SEs might be simultaneously bound by different transcription factors (TFs) and co-regulators, which together establish a chromatin environment conducting to effective transcription. While cells with distinct TF profiles can have different functions, how different cells control overlapping genetic programs remains a question. In this paper, we show that the construction of estrogen receptor alpha-driven SEs is tissue-specific, both collaborating TFs and the active SE components greatly differ between human breast cancer-derived MCF-7 and endometrial cancer-derived Ishikawa cells; nonetheless, SEs common to both cell lines have similar transcriptional outputs. These results delineate that despite the existence of a combinatorial code allowing alternative SE construction, a single master regulator might be able to determine the overall activity of SEs.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias Endometriales/metabolismo , Endometrio/metabolismo , Elementos de Facilitación Genéticos , Receptor alfa de Estrógeno/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión/genética , Neoplasias de la Mama/genética , Línea Celular Tumoral , Secuenciación de Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Elementos E-Box/genética , Neoplasias Endometriales/genética , Endometrio/citología , Receptor alfa de Estrógeno/genética , Femenino , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células MCF-7 , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética , Transcriptoma
14.
Cancer Med ; 9(5): 1855-1866, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31953923

RESUMEN

Long non-coding RNA (lncRNA) is emerging as a pivotal regulator in tumorigenesis and aggressive progression. Here, we focused on an oncogenic lncRNA, ARAP1 antisense RNA 1 (ARAP1-AS1), which was notably upregulated in cervical cancer (CC) tissues, cell lines and serum. High ARAP1-AS1 expression was closely associated with larger tumor size, advanced FIGO stage as well as lymph node metastasis. Importantly, it was identified as an effective diagnostic and prognostic biomarker for CC. In vitro and in vivo assays showed that knockdown of ARAP1-AS1 inhibited, while overexpression of ARAP1-AS1 promoted CC cell growth and dissemination. Stepwise mechanistic dissection unveiled that ARAP1-AS1 could directly interact with PSF to release PTB, resulting in accelerating the internal ribosome entry site (IRES)-driven translation of proto-oncogene c-Myc, thereby facilitating CC development and progression. Moreover, c-Myc was able to transcriptionally activate ARAP1-AS1 by directly binding to the E-box motif located on ARAP1-AS1 promoter. Taken together, our findings clearly reveal the crucial role of ARAP1-AS1 in CC tumorigenesis and metastasis via regulation of c-Myc translation, targeting ARAP1-AS1 and its related regulatory loop implicates the therapeutic possibility for CC patients.


Asunto(s)
Carcinogénesis/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas c-myc/genética , ARN Largo no Codificante/metabolismo , Neoplasias del Cuello Uterino/genética , Animales , Línea Celular Tumoral , Elementos E-Box/genética , Retroalimentación Fisiológica , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Sitios Internos de Entrada al Ribosoma/genética , Neoplasias Pulmonares/secundario , Ratones , Factor de Empalme Asociado a PTB/metabolismo , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Regiones Promotoras Genéticas/genética , Biosíntesis de Proteínas , Multimerización de Proteína/genética , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Largo no Codificante/genética , Activación Transcripcional , Neoplasias del Cuello Uterino/patología , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Proc Natl Acad Sci U S A ; 116(40): 19911-19916, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527239

RESUMEN

The circadian clock is an endogenous time-keeping system that is ubiquitous in animals and plants as well as some bacteria. In mammals, the clock regulates the sleep-wake cycle via 2 basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain proteins-CLOCK and BMAL1. There is emerging evidence to suggest that heme affects circadian control, through binding of heme to various circadian proteins, but the mechanisms of regulation are largely unknown. In this work we examine the interaction of heme with human CLOCK (hCLOCK). We present a crystal structure for the PAS-A domain of hCLOCK, and we examine heme binding to the PAS-A and PAS-B domains. UV-visible and electron paramagnetic resonance spectroscopies are consistent with a bis-histidine ligated heme species in solution in the oxidized (ferric) PAS-A protein, and by mutagenesis we identify His144 as a ligand to the heme. There is evidence for flexibility in the heme pocket, which may give rise to an additional Cys axial ligand at 20K (His/Cys coordination). Using DNA binding assays, we demonstrate that heme disrupts binding of CLOCK to its E-box DNA target. Evidence is presented for a conformationally mobile protein framework, which is linked to changes in heme ligation and which has the capacity to affect binding to the E-box. Within the hCLOCK structural framework, this would provide a mechanism for heme-dependent transcriptional regulation.


Asunto(s)
Proteínas CLOCK/química , Elementos E-Box , Hemo/química , Transducción de Señal , Factores de Transcripción ARNTL/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Catálisis , Relojes Circadianos , Criptocromos/química , ADN/química , Electrones , Escherichia coli/metabolismo , Humanos , Ligandos , Proteínas del Tejido Nervioso/química , Oxígeno/química , Proteínas Circadianas Period/química , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Transcripción Genética
16.
Elife ; 82019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31294688

RESUMEN

Many physiological processes exhibit circadian rhythms driven by cellular clocks composed of interlinked activating and repressing elements. To investigate temporal regulation in this molecular oscillator, we combined mouse genetic approaches and analyses of interactions of key circadian proteins with each other and with clock gene promoters. We show that transcriptional activators control BRD4-PTEFb recruitment to E-box-containing circadian promoters. During the activating phase of the circadian cycle, the lysine acetyltransferase TIP60 acetylates the transcriptional activator BMAL1 leading to recruitment of BRD4 and the pause release factor P-TEFb, followed by productive elongation of circadian transcripts. We propose that the control of BRD4-P-TEFb recruitment is a novel temporal checkpoint in the circadian clock cycle.


Asunto(s)
Factores de Transcripción ARNTL/genética , Ritmo Circadiano/genética , Lisina Acetiltransferasa 5/genética , Proteínas Nucleares/genética , Transactivadores/genética , Factores de Transcripción/genética , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas CLOCK/genética , Relojes Circadianos/genética , Elementos E-Box/genética , Ratones , Regiones Promotoras Genéticas , Unión Proteica/genética , Activación Transcripcional/genética
17.
Nat Commun ; 10(1): 2563, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31189882

RESUMEN

Non-coding cis-regulatory elements are essential determinants of development, but their exact impacts on behavior and physiology in adults remain elusive. Cis-element-based transcriptional regulation is believed to be crucial for generating circadian rhythms in behavior and physiology. However, genetic evidence supporting this model is based on mutations in the protein-coding sequences of clock genes. Here, we report generation of mutant mice carrying a mutation only at the E'-box cis-element in the promoter region of the core clock gene Per2. The Per2 E'-box mutation abolishes sustainable molecular clock oscillations and renders circadian locomotor activity and body temperature rhythms unstable. Without the E'-box, Per2 messenger RNA and protein expression remain at mid-to-high levels. Our work delineates the Per2 E'-box as a critical nodal element for keeping sustainable cell-autonomous circadian oscillation and reveals the extent of the impact of the non-coding cis-element in daily maintenance of animal locomotor activity and body temperature rhythmicity.


Asunto(s)
Ritmo Circadiano/genética , Elementos E-Box/genética , Proteínas Circadianas Period/genética , Regiones Promotoras Genéticas/genética , Animales , Conducta Animal/fisiología , Temperatura Corporal/fisiología , Células Cultivadas , Fibroblastos , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Cultivo Primario de Células , ARN Mensajero/metabolismo
18.
J Cell Mol Med ; 23(7): 4689-4698, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31099187

RESUMEN

Circadian rhythms are maintained by series of circadian clock proteins, and post-translation modifications of clock proteins significantly contribute to regulating circadian clock. However, the underlying upstream mechanism of circadian genes that are responsible for circadian rhythms in cancer cells remains unknown. PIWIL1 participates in many physiological processes and current discoveries have shown that PIWIL1 is involved in tumorigenesis in various cancers. Here we report that PIWIL1 can suppress circadian rhythms in cancer cells. Mechanistically, by promoting SRC interacting with PI3K, PIWIL1 can activate PI3K-AKT signalling pathway to phosphorylate and inactivate GSK3ß, repressing GSK3ß-induced phosphorylation and ubiquitination of CLOCK and BMAL1. Simultaneously, together with CLOCK/BMAL1 complex, PIWIL1 can bind with E-BOX region to suppress transcriptional activities of clock-controlled genes promoters. Collectively, our findings first demonstrate that PIWIL1 negatively regulates circadian rhythms via two pathways, providing molecular connection between dysfunction of circadian rhythms and tumorigenesis.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Proteínas Argonautas/metabolismo , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteolisis , Proteínas Argonautas/química , Línea Celular Tumoral , Elementos E-Box/genética , Humanos , Modelos Biológicos , Fosforilación , Unión Proteica , Dominios Proteicos , Activación Transcripcional/genética , Ubiquitinación , Familia-src Quinasas/metabolismo
19.
Cells ; 8(5)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31096644

RESUMEN

Barhl1, a mouse homologous gene of Drosophila BarH class homeobox genes, is highly expressed within the inner ear and crucial for the long-term maintenance of auditory hair cells that mediate hearing and balance, yet little is known about the molecular events underlying Barhl1 regulation and function in hair cells. In this study, through data mining and in vitro report assay, we firstly identified Barhl1 as a direct target gene of Atoh1 and one E-box (E3) in Barhl1 3' enhancer is crucial for Atoh1-mediated Barhl1 activation. Then we generated a mouse embryonic stem cell (mESC) line carrying disruptions on this E3 site E-box (CAGCTG) using CRISPR/Cas9 technology and this E3 mutated mESC line is further subjected to an efficient stepwise hair cell differentiation strategy in vitro. Disruptions on this E3 site caused dramatic loss of Barhl1 expression and significantly reduced the number of induced hair cell-like cells, while no affections on the differentiation toward early primitive ectoderm-like cells and otic progenitors. Finally, through RNA-seq profiling and gene ontology (GO) enrichment analysis, we found that this E3 box was indispensable for Barhl1 expression to maintain hair cell development and normal functions. We also compared the transcriptional profiles of induced cells from CDS mutated and E3 mutated mESCs, respectively, and got very consistent results except the Barhl1 transcript itself. These observations indicated that Atoh1-mediated Barhl1 expression could have important roles during auditory hair cell development. In brief, our findings delineate the detail molecular mechanism of Barhl1 expression regulation in auditory hair cell differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Elementos E-Box/genética , Células Ciliadas Auditivas Internas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Proteínas del Tejido Nervioso , Proteínas Represoras , Animales , Diferenciación Celular/genética , Línea Celular , Oído Interno/embriología , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox/genética , Células Ciliadas Auditivas Internas/citología , Audición , Ratones , Células Madre Embrionarias de Ratones/citología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
20.
Sci Transl Med ; 11(484)2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894502

RESUMEN

Inhibiting MYC has long been considered unfeasible, although its key role in human cancers makes it a desirable target for therapeutic intervention. One reason for its perceived undruggability was the fear of catastrophic side effects in normal tissues. However, we previously designed a dominant-negative form of MYC called Omomyc and used its conditional transgenic expression to inhibit MYC function both in vitro and in vivo. MYC inhibition by Omomyc exerted a potent therapeutic impact in various mouse models of cancer, causing only mild, well-tolerated, and reversible side effects. Nevertheless, Omomyc has been so far considered only a proof of principle. In contrast with that preconceived notion, here, we show that the purified Omomyc mini-protein itself spontaneously penetrates into cancer cells and effectively interferes with MYC transcriptional activity therein. Efficacy of the Omomyc mini-protein in various experimental models of non-small cell lung cancer harboring different oncogenic mutation profiles establishes its therapeutic potential after both direct tissue delivery and systemic administration, providing evidence that the Omomyc mini-protein is an effective MYC inhibitor worthy of clinical development.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Péptidos de Penetración Celular/farmacocinética , Péptidos de Penetración Celular/uso terapéutico , ADN/metabolismo , Modelos Animales de Enfermedad , Elementos E-Box/genética , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones Endogámicos C57BL , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/farmacocinética , Fragmentos de Péptidos/uso terapéutico , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/administración & dosificación , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/farmacocinética , Proteínas Proto-Oncogénicas c-myc/farmacología , Proteínas Proto-Oncogénicas c-myc/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA