Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125044

RESUMEN

Eleutherococcus divaricatus (Siebold and Zucc.) S. Y. Hu. has been used in Traditional Chinese Medicine (TCM) due to its anticancer, immunostimulant, and anti-inflammatory activities. However, its mechanism of action and chemical composition are still insufficiently understood and require more advanced research, especially for cases in which anti-inflammatory properties are beneficial. The aim of this study was to evaluate the impact of E. divaricatus root extracts and fractions on proinflammatory serum hyaluronidase and tyrosinase in children diagnosed with acute lymphoblastic leukemia. Antioxidant and anti-melanoma activities were also examined and correlated with metabolomic data. For the first time, we discovered that the ethyl acetate fraction significantly inhibits hyaluronidase activity, with mean group values of 55.82% and 63.8% for aescin used as a control. However, interestingly, the fraction showed no activity against human tyrosinase, and in A375 melanoma cells treated with a doxorubicin fraction, doxorubicin activity decreased. This fraction exhibited the most potent antioxidant activity, which can be attributed to high contents of polyphenols, especially caffeic acid (24 mg/g). The findings suggest an important role of the ethyl acetate fraction in hyaluronidase inhibition, which may additionally indicate its anti-inflammatory property. The results suggest that this fraction can be used in inflammatory-related diseases, although with precautions in cases of patients undergoing chemotherapy.


Asunto(s)
Acetatos , Antioxidantes , Eleutherococcus , Hialuronoglucosaminidasa , Melanoma , Monofenol Monooxigenasa , Extractos Vegetales , Raíces de Plantas , Hialuronoglucosaminidasa/antagonistas & inhibidores , Hialuronoglucosaminidasa/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Raíces de Plantas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Acetatos/química , Eleutherococcus/química , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
2.
Phytochemistry ; 226: 114208, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38972441

RESUMEN

Acanthopanacis cortex (the dried root bark of Acanthopanax gracilistylus W. W. Smith) has been used for the treatment of rheumatic diseases in China for over 2000 years. Four previously undescribed lignans (1-4) and 12 known lignans (5-16) were isolated from Acanthopanacis cortex. In this study, the inhibitory activities of compounds 1-16 against neutrophil elastase (NE), cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) are reported. The results show that compounds 1-16 exhibit weak inhibitory activities against NE and COX-1. However, compounds 2, 6-8 and 13-16 demonstrate better COX-2 inhibitory effects with IC50 values from 0.75 to 8.17 µΜ. These findings provide useful information for the search for natural selective COX-2 inhibitors.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2 , Eleutherococcus , Lignanos , Lignanos/farmacología , Lignanos/química , Lignanos/aislamiento & purificación , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/aislamiento & purificación , Eleutherococcus/química , Estructura Molecular , Ciclooxigenasa 2/metabolismo , Relación Estructura-Actividad , Ciclooxigenasa 1/metabolismo , Elastasa de Leucocito/antagonistas & inhibidores , Elastasa de Leucocito/metabolismo , Relación Dosis-Respuesta a Droga , Corteza de la Planta/química , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Raíces de Plantas/química
3.
Poult Sci ; 103(7): 103807, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713991

RESUMEN

This study aimed to evaluate the effect of low molecular weight Acanthopanax polysaccharides on simulated digestion, probiotics, and intestinal flora of broilers in vitro. The experiments were carried out by H2O2-Vc degradation of Acanthopanax polysaccharides, in vitro simulated digestion to evaluate the digestive performance of polysaccharides with different molecular weights, in vitro probiotic evaluation of the probiotic effect of polysaccharides on lactobacilli and bifidobacteria, in vitro anaerobic fermentation and high-throughput sequencing of 16S rRNA genes to study the impact of Acanthopanax polysaccharides on the intestinal flora of broilers, and the effect of Acanthopanax polysaccharides on the short-chain fatty acids of intestines were determined by GC-MS method. The results showed that the molecular weight of Acanthopanax polysaccharide (ASPS) was 9,543 Da, and the molecular weights of polysaccharides ASPS-1 and ASPS-2 were reduced to 4,288 Da and 3,822 Da after degradation, and the particle sizes, PDIs, and viscosities were also significantly decreased. ASPS-1 has anti-digestive properties and better in vitro probiotic properties. The addition of ASPS-1 regulates the structure of intestinal microorganisms by regulating fecalibacterium to produce short-chain fatty acids, promoting the colonization of beneficial bacteria such as fecalibacterium, paraprevotella and diminishing the prevalence of detrimental bacteria such as Fusobacteria. Interestingly the ASPS-1 group found higher levels of Paraprevotella, which degraded trypsin in the gut, reducing inflammation, acted as a gut protector, and was influential in increasing the levels of acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, and total SCFAs in the fermented feces. Therefore, the degraded ASPS-1 can better regulate the structure of intestinal flora and promote the production of SCFAs, creating possibilities for its use as a potential prebiotic, which is conducive to the intestinal health of poultry.


Asunto(s)
Pollos , Digestión , Eleutherococcus , Heces , Fermentación , Microbioma Gastrointestinal , Polisacáridos , Prebióticos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Pollos/microbiología , Eleutherococcus/química , Polisacáridos/farmacología , Polisacáridos/metabolismo , Prebióticos/administración & dosificación , Prebióticos/análisis , Heces/microbiología , Digestión/efectos de los fármacos , Alimentación Animal/análisis , Dieta/veterinaria , Ácidos Grasos Volátiles/metabolismo
4.
Phytochemistry ; 223: 114133, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38710375

RESUMEN

Five undescribed elesesterpenes L-U, along with nine known 3,4-seco-lupane-type triterpenoids were isolated from the leaves of Eleutherococcus sessiliflorus (Rupr. & Maxim.) S. Y. Hu. Elesesterpene L-S, and U were lupane-type triterpenoids, whereas elesesterpene T was an oleanane-type triterpenoid, probably artifact, as suggested by LC-MS analysis. Out of the nine known compounds, five were initially identified in E. sessiliflorus. Moreover, their structures were definitively determined using spectroscopic analyses, and the absolute configurations of elesesterpenes L-M and sachunogenin 3-O-glucoside were clarified using X-ray crystallographic techniques. The absolute configuration of elesesterpene T was determined by measuring and calculating its ECD. In addition, all compounds were tested to examine their ability to inhibit the proliferation of HFLS-RA cells induced by TNF-α in vitro. Elesesterpene M, chiisanogenin, chiisanoside, and 3-methylisochiisanoside significantly inhibited HFLS-RA proliferation.


Asunto(s)
Proliferación Celular , Eleutherococcus , Hojas de la Planta , Triterpenos , Factor de Necrosis Tumoral alfa , Eleutherococcus/química , Hojas de la Planta/química , Triterpenos/farmacología , Triterpenos/química , Triterpenos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Humanos , Estructura Molecular , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Relación Estructura-Actividad , Línea Celular , Relación Dosis-Respuesta a Droga
5.
Fitoterapia ; 175: 105956, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604261

RESUMEN

ATP citrate lyase (ACLY) is a key enzyme in glucolipid metabolism, and abnormally high expression of ACLY occurs in many diseases, including cancers, dyslipidemia and cardiovascular diseases. ACLY inhibitors are prospective treatments for these diseases. However, the scaffolds of ACLY inhibitors are insufficient with weak activity. The discovery of inhibitors with structural novelty and high activity continues to be a research hotpot. Acanthopanax senticosus (Rupr. & Maxim.) Harms is used for cardiovascular disease treatment, from which no ACLY inhibitors have ever been found. In this work, we discovered three novel ACLY inhibitors, and the most potent one was isochlorogenic acid C (ICC) with an IC50 value of 0.14 ± 0.04 µM. We found dicaffeoylquinic acids with ortho-dihydroxyphenyl groups were important features for inhibition by studying ten phenolic acids. We further investigated interactions between the highly active compound ICC and ACLY. Thermal shift assay revealed that ICC could directly bind to ACLY and improve its stability in the heating process. Enzymatic kinetic studies indicated ICC was a noncompetitive inhibitor of ACLY. Our work discovered novel ACLY inhibitors, provided valuable structure-activity patterns and deepened knowledge on the interactions between this targe tand its inhibitors.


Asunto(s)
ATP Citrato (pro-S)-Liasa , Eleutherococcus , Eleutherococcus/química , Estructura Molecular , ATP Citrato (pro-S)-Liasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/química , Ácido Clorogénico/farmacología , Ácido Clorogénico/aislamiento & purificación , Ácido Clorogénico/química , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Fitoquímicos/química , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacología , Ácido Quínico/aislamiento & purificación , Ácido Quínico/química , Hidroxibenzoatos/farmacología , Hidroxibenzoatos/aislamiento & purificación , Hidroxibenzoatos/química , Relación Estructura-Actividad
6.
Food Funct ; 15(7): 3791-3809, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38511300

RESUMEN

Acanthopanax senticosus leaves, widely used as a vegetable and tea, are reported to be beneficial in treating neurological disorders. At present, their anti-fatigue effect remains to be established. In this study, we analyzed the composition of the extracts from A. senticosus leaves and confirmed their antioxidant and anti-inflammatory properties at the cellular level. In mice subjected to exhaustive running on a treadmill, supplementation with A. senticosus leaf extracts enhanced exercise performance and alleviated fatigue via the reversal of exercise-induced 5-HT elevation, metabolic waste accumulation, organ damage, and glucose metabolism-related gene expression. The collective findings from microbiome and metabolomic analyses indicate that A. senticosus leaf extracts increase α-diversity, regulate microbial composition, and reverse exercise-mediated disruption of carbohydrate, creatine, amino acid, and trimethylamine metabolism. This study provides preliminary evidence for the utility of A. senticosus leaves as a promising anti-fatigue food and offers insights into the underlying mechanism.


Asunto(s)
Eleutherococcus , Extractos Vegetales , Ratones , Animales , Extractos Vegetales/química , Eleutherococcus/química , Fatiga/tratamiento farmacológico , Antioxidantes , Metaboloma
7.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396710

RESUMEN

Fruits are very important dietary components and a source of biologically active compounds used in nutritional pharmacology. Particularly due to the presence of polyphenolic compounds, fruits play an important role in the prevention of diseases of civilization. Therefore, it is important to study the phytochemicals and biological activity of fruits, especially those with a long-standing use in ethnomedicine. In this study, we determined the chemical profile and biological activity of a methanolic extract of the Eleutherococcus divaricatus fruits. Amongst nine polyphenols studied, only chlorogenic acid, protocatechuic acid, and eleutheroside E have been detected. The extract showed a weak anti-hyaluronidase activity from bovine testicular in a range of 9.06-37.70% and quite high for human serum hyaluronidase from children diagnosed with acute leukemia in a range of 76-86%. A weak anti-tyrosinase activity was obtained in a range of 2.94-12.46%. Moreover, the extract showed antioxidant properties against DPPH radical, ABTS radical, and O2•-. In addition, the antioxidant activity of the extract was evaluated by FRAP assay and Fe2+ ion chelation assay. These preliminary studies partially justify the traditional use of the plant in inflammatory- and immune-related diseases, in which hyaluronidase and free radicals can participate. A difference in human serum hyaluronidase inhibition may result from the inter-patient variability. Regardless of that, the results mean that polyphenolic compounds may stimulate activity of hyaluronidase, as well as to protect cells from the oxidative damages. However, further studies in ex vivo and in vivo models are needed, including blood isolated from a larger number of patients.


Asunto(s)
Antioxidantes , Eleutherococcus , Niño , Humanos , Animales , Bovinos , Antioxidantes/química , Frutas/química , Eleutherococcus/química , Hialuronoglucosaminidasa , Extractos Vegetales/química , Suero
8.
J Ethnopharmacol ; 319(Pt 3): 117349, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38380572

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acanthopanax senticosus (Rupr. & Maxim.) Harms (AS), also known as Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. or Siberian ginseng, has a rich history of use as an adaptogen, a substance believed to increase the body's resistance to stress, fatigue, and infectious diseases. As a traditional Chinese medicine, AS is popular for its cardioprotective effects which can protect the cardiovascular system from hazardous conditions. Doxorubicin (DOX), on the other hand, is a first-line chemotherapeutic agent against a variety of cancers, including breast cancer, lung cancer, gastric cancer, and leukemia, etc. Despite its effectiveness, the clinical use of DOX is limited by its side effects, the most serious of which is cardiotoxicity. Considering AS could be applied as an adjuvant to anticancer agents, the combination of AS and DOX might exert synergistic effects on certain malignancies with mitigated cardiotoxicity. Given this, it is necessary and meaningful to confirm whether AS would neutralize the DOX-induced cardiotoxicity and its underlying molecular mechanisms. AIM OF THE STUDY: This paper aims to validate the cardioprotective effects of AS against DOX-induced myocardial injury (MI) while deciphering the molecular mechanisms underlying such effects. MATERIALS AND METHODS: Firstly, the cardioprotective effects of AS against DOX-induced MI were confirmed both in vitro and in vivo. Secondly, serum pharmacochemistry and network pharmacology were orchestrated to explore the in vivo active compounds of AS and predict their ways of functioning in the treatment of DOX-induced MI. Finally, the predicted mechanisms were validated by Western blot analysis during in vivo experiments. RESULTS: The results demonstrated that AS possessed excellent antioxidative ability, and could alleviate the apoptosis of H9C2 cells and the damage to mitochondria induced by DOX. In vivo experiments indicated that AS could restore the conduction abnormalities and ameliorate histopathological changes according to the electrocardiogram and cardiac morphology. Meanwhile, it markedly downregulated the inflammatory factors (TNF-α, IL-6, and IL-1ß), decreased plasma ALT, AST, LDH, CK, CK-MB, and MDA levels, as well as increased SOD and GSH levels compared to the model group, which collectively substantiate the effectiveness of AS. Afterward, 14 compounds were identified from different batches of AS-dosed serum and selected for mechanism prediction through HPLC-HRMS analysis and network pharmacology. Consequently, the MAPKs and caspase cascade were confirmed as primary targets among which the interplay between the JNK/Caspase 3 feedback loop and the phosphorylation of ERK1/2 were highlighted. CONCLUSIONS: In conclusion, the integrated approach employed in this paper illuminated the molecular mechanism of AS against DOX-induced MI, whilst providing a valuable strategy to elucidate the therapeutic effects of complicated TCM systems more reliably and efficiently.


Asunto(s)
Antineoplásicos , Eleutherococcus , Neoplasias , Humanos , Eleutherococcus/química , Cardiotoxicidad/tratamiento farmacológico , Farmacología en Red , Doxorrubicina/farmacología , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Estrés Oxidativo , Apoptosis
9.
Sci Rep ; 14(1): 110, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167633

RESUMEN

Non-alcoholic fatty liver disease is a common liver disease worldwide, and is associated with dysregulation of lipid metabolism, leading to inflammation and fibrosis. Acanthopanax senticosus Harms (ASH) is widely used in traditional medicine as an adaptogen food. We examined the effect of ASH on steatohepatitis using a high-fat diet mouse model. Mice were fed a choline-deficient, L-amino acid-defined, high-fat diet with ASH extract (ASHE). After 6 weeks, liver RNA transcriptome sequencing (RNA-Seq) was performed, followed by Ingenuity Pathway Analysis (IPA). Our findings revealed that mice fed a high-fat diet with 5% ASHE exhibited significantly reduced liver steatosis. These mice also demonstrated alleviated inflammation and reduced fibrosis in the liver. IPA of RNA-Seq indicated that hepatocyte nuclear factor 4 alpha (HNF4 alpha), a transcription factor, was the activated upstream regulator (P-value 0.00155, z score = 2.413) in the liver of ASHE-fed mice. Adenosine triphosphate binding cassette transporter 8 and carboxylesterase 2, downstream targets of HNF4 alpha pathway, were upregulated. Finally, ASHE-treated HepG2 cells exposed to palmitate exhibited significantly decreased lipid droplet contents. Our study provides that ASHE can activate HNF4 alpha pathway and promote fat secretion from hepatocytes, thereby serving as a prophylactic treatment for steatohepatitis in mice.


Asunto(s)
Eleutherococcus , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Eleutherococcus/química , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Inflamación/patología , Modelos Animales de Enfermedad , Fibrosis , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...