Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105737, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336292

RESUMEN

Transcription is a tightly regulated, complex, and essential cellular process in all living organisms. Transcription is comprised of three steps, transcription initiation, elongation, and termination. The distinct transcription initiation and termination mechanisms of eukaryotic RNA polymerases I, II, and III (Pols I, II, and III) have long been appreciated. Recent methodological advances have empowered high-resolution investigations of the Pols' transcription elongation mechanisms. Here, we review the kinetic similarities and differences in the individual steps of Pol I-, II-, and III-catalyzed transcription elongation, including NTP binding, bond formation, pyrophosphate release, and translocation. This review serves as an important summation of Saccharomyces cerevisiae (yeast) Pol I, II, and III kinetic investigations which reveal that transcription elongation by the Pols is governed by distinct mechanisms. Further, these studies illustrate how basic, biochemical investigations of the Pols can empower the development of chemotherapeutic compounds.


Asunto(s)
Quimioterapia , ARN Polimerasa III , ARN Polimerasa II , ARN Polimerasa I , Saccharomyces cerevisiae , Elongación de la Transcripción Genética , Biocatálisis/efectos de los fármacos , Cinética , ARN Polimerasa I/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae/enzimología , Elongación de la Transcripción Genética/efectos de los fármacos
2.
Biochim Biophys Acta Gene Regul Mech ; 1864(3): 194691, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33556624

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, with an estimated global prevalence of 1 in 4 individuals. Aberrant transcriptional control of gene expression is central to the pathophysiology of metabolic diseases. However, the molecular mechanisms leading to gene dysregulation are not well understood. Histone modifications play important roles in the control of transcription. Acetylation of histone 3 at lysine 9 (H3K9ac) is associated with transcriptional activity and is implicated in transcript elongation by controlling RNA polymerase II (RNAPII) pause-release. Hence, changes in this histone modification may shed information on novel pathways linking transcription control and metabolic dysfunction. Here, we carried out genome-wide analysis of H3K9ac in the liver of mice fed a control or a high-fat diet (an animal model of NAFLD), and asked whether this histone mark associates with changes in gene expression. We found that over 70% of RNAPII peaks in promoter-proximal regions overlapped with H3K9ac, consistent with a role of H3K9ac in the regulation of transcription. When comparing high-fat with control diet, approximately 17% of the differentially expressed genes were associated with changes in H3K9ac in their promoters, showing a strong correlation between changes in H3K9ac signal and gene expression. Overall, our data indicate that in response to a high-fat diet, dysregulated gene expression of a subset of genes may be attributable to changes in transcription elongation driven by H3K9ac. Our results point at an added mechanism of gene regulation that may be important in the development of metabolic diseases.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Regiones Promotoras Genéticas , Elongación de la Transcripción Genética/efectos de los fármacos , Acetilación/efectos de los fármacos , Animales , Histonas/genética , Masculino , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología
3.
Cancer Res ; 81(7): 1719-1731, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33472893

RESUMEN

Chromosomal instability (CIN) is a driver of clonal diversification and intratumor heterogeneity, providing genetic diversity that contributes to tumor progression. It is estimated that approximately 80% of solid cancers, including non-small cell lung cancer (NSCLC), exhibit features of CIN, which affects tumor growth and response to therapy. However, the molecular mechanisms connecting CIN to tumor progression are still poorly understood. Through an RNAi screen performed on genes involved in CIN and overexpressed in human lung adenocarcinoma samples, we identified the cytoskeleton-associated protein 2-like (CKAP2L) as a potential oncogene that promotes lung cancer proliferation and growth in vitro and in vivo. Mechanistically, CKAP2L directly interacted with RNA Pol II and regulated transcription elongation of key genes involved in spindle assembly checkpoint, chromosome segregation, cell cycle, and E2F signaling. Furthermore, depletion of CKAP2L increased the sensitivity of NSCLC cells to alvocidib, a pan-CDK inhibitor, leading to a significant reduction of cell proliferation and an increase in cell death. Altogether, these findings shed light on the molecular mechanisms through which CKAP2L, a protein involved in CIN, promotes cancer progression and suggest that its inhibition represents a novel therapeutic strategy in NSCLC. SIGNIFICANCE: These findings demonstrate the oncogenic function of CKAP2L through regulation of transcription elongation and suggest that targeting CKAP2L could enhance therapeutic response in patients with NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas del Citoesqueleto/fisiología , Neoplasias Pulmonares/patología , Elongación de la Transcripción Genética , Células A549 , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/uso terapéutico , Elongación de la Transcripción Genética/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Sci Rep ; 9(1): 17369, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31758083

RESUMEN

Cyclin-dependent kinase 9 (CDK9), one crucial molecule in promoting the transition from transcription pausing to elongation, is a critical modulator of cell survival and death. However, the pathological function of CDK9 in bacterial inflammatory diseases has never been explored. CDK9 inhibition or knock-down attenuated Porphyromonas gingivalis-triggered inflammatory gene expression. Gene-expression microarray analysis of monocytes revealed that knock-down of CDK9 not only affected inflammatory responses, but also impacted cell death network, especially the receptor-interacting protein kinase 3 (RIPK3)-mixed lineage kinase domain-like (MLKL)-mediated necroptosis after P. gingivalis infection. Inhibition of CDK9 significantly decreased necroptosis with downregulation of both MLKL and phosphorylated MLKL. By regulating caspase-8 and cellular FLICE inhibitory protein (cFLIP), key molecules in regulating cell survival and death, CDK9 affected not only the classic RIPK1-RIPK3-mediated necroptosis, but also the alternate TIR-domain-containing adapter-inducing interferon-ß-RIPK3-mediated necroptosis. CDK9 inhibition dampened pro-inflammatory gene production in the acute infection process in the subcutaneous chamber model in vivo. Moreover, CDK9 inhibition contributed to the decreased periodontal bone loss and inflammatory response induced by P. gingivalis in the periodontal micro-environment. In conclusion, by modulating the RIPK3-MLKL-mediated necroptosis, CDK9 inhibition provided a novel mechanism to impact the progress of bacterial infection in the periodontal milieu.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/fisiología , Necroptosis/genética , Periodontitis/genética , Proteínas Quinasas/fisiología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/fisiología , Adulto , Animales , Infecciones por Bacteroidaceae/complicaciones , Infecciones por Bacteroidaceae/genética , Infecciones por Bacteroidaceae/metabolismo , Infecciones por Bacteroidaceae/patología , Estudios de Casos y Controles , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/metabolismo , Progresión de la Enfermedad , Inhibidores Enzimáticos/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Periodontitis/metabolismo , Periodontitis/microbiología , Periodontitis/patología , Porphyromonas gingivalis/fisiología , Proteínas Quinasas/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Células THP-1 , Elongación de la Transcripción Genética/efectos de los fármacos
5.
EMBO J ; 38(16): e102003, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31313851

RESUMEN

Many eukaryotic proteins are regulated by modification with the ubiquitin-like protein small ubiquitin-like modifier (SUMO). This linkage is reversed by SUMO proteases, of which there are two in Saccharomyces cerevisiae, Ulp1 and Ulp2. SUMO-protein conjugation regulates transcription, but the roles of SUMO proteases in transcription remain unclear. We report that Ulp2 is recruited to transcriptionally active genes to control local polysumoylation. Mutant ulp2 cells show impaired association of RNA polymerase II (RNAPII) with, and diminished expression of, constitutively active genes and the inducible CUP1 gene. Ulp2 loss sensitizes cells to 6-azauracil, a hallmark of transcriptional elongation defects. We also describe a novel chromatin regulatory mechanism whereby histone-H2B ubiquitylation stimulates histone sumoylation, which in turn appears to inhibit nucleosome association of the Ctk1 kinase. Ctk1 phosphorylates serine-2 (S2) in the RNAPII C-terminal domain (CTD) and promotes transcript elongation. Removal of both ubiquitin and SUMO from histones is needed to overcome the impediment to S2 phosphorylation. These results suggest sequential ubiquitin-histone and SUMO-histone modifications recruit Ulp2, which removes polySUMO chains and promotes RNAPII transcription elongation.


Asunto(s)
Endopeptidasas/metabolismo , Histonas/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/metabolismo , Elongación de la Transcripción Genética , Endopeptidasas/genética , Regulación Fúngica de la Expresión Génica , Metalotioneína/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Sumoilación , Elongación de la Transcripción Genética/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Uracilo/análogos & derivados , Uracilo/farmacología
6.
Genes Dev ; 33(13-14): 871-885, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31171704

RESUMEN

Aberrant translation initiation at non-AUG start codons is associated with multiple cancers and neurodegenerative diseases. Nevertheless, how non-AUG translation may be regulated differently from canonical translation is poorly understood. Here, we used start codon-specific reporters and ribosome profiling to characterize how translation from non-AUG start codons responds to protein synthesis inhibitors in human cells. These analyses surprisingly revealed that translation of multiple non-AUG-encoded reporters and the endogenous GUG-encoded DAP5 (eIF4G2/p97) mRNA is resistant to cycloheximide (CHX), a translation inhibitor that severely slows but does not completely abrogate elongation. Our data suggest that slowly elongating ribosomes can lead to queuing/stacking of scanning preinitiation complexes (PICs), preferentially enhancing recognition of weak non-AUG start codons. Consistent with this model, limiting PIC formation or scanning sensitizes non-AUG translation to CHX. We further found that non-AUG translation is resistant to other inhibitors that target ribosomes within the coding sequence but not those targeting newly initiated ribosomes. Together, these data indicate that ribosome queuing enables mRNAs with poor initiation context-namely, those with non-AUG start codons-to be resistant to pharmacological translation inhibitors at concentrations that robustly inhibit global translation.


Asunto(s)
Codón Iniciador/genética , Resistencia a Múltiples Medicamentos/genética , Ribosomas/genética , Elongación de la Transcripción Genética/efectos de los fármacos , Cicloheximida/farmacología , Factor 4G Eucariótico de Iniciación/genética , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros/genética , Células HEK293 , Células HeLa , Humanos , Inhibidores de la Síntesis de la Proteína/farmacología
7.
Cell ; 175(3): 766-779.e17, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30340042

RESUMEN

The super elongation complex (SEC) is required for robust and productive transcription through release of RNA polymerase II (Pol II) with its P-TEFb module and promoting transcriptional processivity with its ELL2 subunit. Malfunction of SEC contributes to multiple human diseases including cancer. Here, we identify peptidomimetic lead compounds, KL-1 and its structural homolog KL-2, which disrupt the interaction between the SEC scaffolding protein AFF4 and P-TEFb, resulting in impaired release of Pol II from promoter-proximal pause sites and a reduced average rate of processive transcription elongation. SEC is required for induction of heat-shock genes and treating cells with KL-1 and KL-2 attenuates the heat-shock response from Drosophila to human. SEC inhibition downregulates MYC and MYC-dependent transcriptional programs in mammalian cells and delays tumor progression in a mouse xenograft model of MYC-driven cancer, indicating that small-molecule disruptors of SEC could be used for targeted therapy of MYC-induced cancer.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Experimentales/tratamiento farmacológico , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas Represoras/metabolismo , Elongación de la Transcripción Genética/efectos de los fármacos , Factores de Elongación Transcripcional/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Drosophila , Femenino , Células HCT116 , Células HEK293 , Respuesta al Choque Térmico , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Polimerasa II/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
8.
Genes Dev ; 32(17-18): 1215-1225, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30150253

RESUMEN

Paused RNA polymerase II (Pol II) that piles up near most human promoters is the target of mechanisms that control entry into productive elongation. Whether paused Pol II is a stable or dynamic target remains unresolved. We report that most 5' paused Pol II throughout the genome is turned over within 2 min. This process is revealed under hypertonic conditions that prevent Pol II recruitment to promoters. This turnover requires cell viability but is not prevented by inhibiting transcription elongation, suggesting that it is mediated at the level of termination. When initiation was prevented by triptolide during recovery from high salt, a novel preinitiated state of Pol II lacking the pausing factor Spt5 accumulated at transcription start sites. We propose that Pol II occupancy near 5' ends is governed by a cycle of ongoing assembly of preinitiated complexes that transition to pause sites followed by eviction from the DNA template. This model suggests that mechanisms regulating the transition to productive elongation at pause sites operate on a dynamic population of Pol II that is turning over at rates far higher than previously suspected. We suggest that a plausible alternative to elongation control via escape from a stable pause is by escape from premature termination.


Asunto(s)
Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Iniciación de la Transcripción Genética , Diterpenos/farmacología , Compuestos Epoxi/farmacología , Células HCT116 , Humanos , Soluciones Isotónicas , Fenantrenos/farmacología , Solución Salina Hipertónica , Elongación de la Transcripción Genética/efectos de los fármacos , Iniciación de la Transcripción Genética/efectos de los fármacos
9.
J Biol Chem ; 293(19): 7189-7194, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29550768

RESUMEN

RNA polymerase II (Pol II) is the central enzyme that transcribes eukaryotic protein-coding genes to produce mRNA. The mushroom toxin α-amanitin binds Pol II and inhibits transcription at the step of RNA chain elongation. Pol II from yeast binds α-amanitin with micromolar affinity, whereas metazoan Pol II enzymes exhibit nanomolar affinities. Here, we present the high-resolution cryo-EM structure of α-amanitin bound to and inhibited by its natural target, the mammalian Pol II elongation complex. The structure revealed that the toxin is located in a pocket previously identified in yeast Pol II but forms additional contacts with metazoan-specific residues, which explains why its affinity to mammalian Pol II is ∼3000 times higher than for yeast Pol II. Our work provides the structural basis for the inhibition of mammalian Pol II by the natural toxin α-amanitin and highlights that cryo-EM is well suited to studying interactions of a small molecule with its macromolecular target.


Asunto(s)
Alfa-Amanitina/química , Inhibidores Enzimáticos/química , ARN Polimerasa II/antagonistas & inhibidores , ARN Polimerasa II/química , Elongación de la Transcripción Genética/efectos de los fármacos , Alfa-Amanitina/farmacología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Microscopía por Crioelectrón , Inhibidores Enzimáticos/farmacología , Enlace de Hidrógeno , Conformación Proteica , Homología de Secuencia de Aminoácido , Porcinos
10.
Mol Microbiol ; 108(5): 495-504, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29575154

RESUMEN

Transcription and translation are coupled processes in bacteria. A role of transcription elongation cofactor NusG in coupling has been suggested by in vitro structural studies. NMR revealed association of the NusG carboxy-terminal domain with S10 (NusE), implying a direct role for NusG as a bridge linking RNAP and the lead ribosome. Here we present the first in vitro and in vivo evidence of full-length NusG association with mature 70S ribosomes. Binding did not require accessory factors in vitro. Mutating the NusG:S10 binding interface at NusG F165 or NusE M88 and D97 residues weakened NusG:S10 association in vivo and completely abolished it in vitro, supporting the specificity of this interaction. Mutations in the binding interface increased sensitivity to chloramphenicol. This phenotype was suppressed by rpoB*35, an RNAP mutation that reduces replisome-RNAP clashes. We propose that weakened NusG:S10 interaction leads to uncoupling when translation is inhibited, with resulting RNAP backtracking, replication blocks and formation of lethal DNA double-strand breaks.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Factores de Elongación de Péptidos/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción/metabolismo , Terminación de la Transcripción Genética , Aminoglicósidos/farmacología , Antibacterianos/farmacología , Sitios de Unión , Cloranfenicol/farmacología , Roturas del ADN de Doble Cadena , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutación , Factores de Elongación de Péptidos/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Elongación de la Transcripción Genética/efectos de los fármacos , Factores de Transcripción/genética , Terminación de la Transcripción Genética/efectos de los fármacos
11.
Cell Rep ; 20(12): 2833-2845, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28930680

RESUMEN

Kinase inhibitors represent the backbone of targeted cancer therapy, yet only a limited number of oncogenic drivers are directly druggable. By interrogating the activity of 1,505 kinase inhibitors, we found that BRD4-NUT-rearranged NUT midline carcinoma (NMC) cells are specifically killed by CDK9 inhibition (CDK9i) and depend on CDK9 and Cyclin-T1 expression. We show that CDK9i leads to robust induction of apoptosis and of markers of DNA damage response in NMC cells. While both CDK9i and bromodomain inhibition over time result in reduced Myc protein expression, only bromodomain inhibition induces cell differentiation and a p21-induced cell-cycle arrest in these cells. Finally, RNA-seq and ChIP-based analyses reveal a BRD4-NUT-specific CDK9i-induced perturbation of transcriptional elongation. Thus, our data provide a mechanistic basis for the genotype-dependent vulnerability of NMC cells to CDK9i that may be of relevance for the development of targeted therapies for NMC patients.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias/enzimología , Neoplasias/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Ciclina T/metabolismo , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/metabolismo , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Neoplasias/genética , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Inhibidores de Proteínas Quinasas/química , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos
12.
Mol Cell Biol ; 37(19)2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28694331

RESUMEN

Chronic hepatitis B virus (HBV) infection can lead to liver cirrhosis and hepatocellular carcinoma. HBV reactivation during or after chemotherapy is a potentially fatal complication for cancer patients with chronic HBV infection. Transcription of HBV is a critical intermediate step of the HBV life cycle. However, factors controlling HBV transcription remain largely unknown. Here, we found that different P-TEFb complexes are involved in the transcription of the HBV viral genome. Both BRD4 and the super elongation complex (SEC) bind to the HBV genome. The treatment of bromodomain inhibitor JQ1 stimulates HBV transcription and increases the occupancy of BRD4 on the HBV genome, suggesting the bromodomain-independent recruitment of BRD4 to the HBV genome. JQ1 also leads to the increased binding of SEC to the HBV genome, and SEC is required for JQ1-induced HBV transcription. These findings reveal a novel mechanism by which the HBV genome hijacks the host P-TEFb-containing complexes to promote its own transcription. Our findings also point out an important clinical implication, that is, the potential risk of HBV reactivation during therapy with a BRD4 inhibitor, such as JQ1 or its analogues, which are a potential treatment for acute myeloid leukemia.


Asunto(s)
ADN Circular/genética , ADN Viral/genética , Virus de la Hepatitis B/fisiología , Proteínas Nucleares/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción/metabolismo , Azepinas/farmacología , Proteínas de Ciclo Celular , ADN Circular/metabolismo , ADN Viral/metabolismo , Células HeLa , Células Hep G2 , Virus de la Hepatitis B/genética , Humanos , Unión Proteica , Elongación de la Transcripción Genética/efectos de los fármacos , Factores de Elongación Transcripcional , Triazoles/farmacología , Activación Viral
13.
Mol Cell ; 67(1): 5-18.e19, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28673542

RESUMEN

Processive elongation of RNA Polymerase II from a proximal promoter paused state is a rate-limiting event in human gene control. A small number of regulatory factors influence transcription elongation on a global scale. Prior research using small-molecule BET bromodomain inhibitors, such as JQ1, linked BRD4 to context-specific elongation at a limited number of genes associated with massive enhancer regions. Here, the mechanistic characterization of an optimized chemical degrader of BET bromodomain proteins, dBET6, led to the unexpected identification of BET proteins as master regulators of global transcription elongation. In contrast to the selective effect of bromodomain inhibition on transcription, BET degradation prompts a collapse of global elongation that phenocopies CDK9 inhibition. Notably, BRD4 loss does not directly affect CDK9 localization. These studies, performed in translational models of T cell leukemia, establish a mechanism-based rationale for the development of BET bromodomain degradation as cancer therapy.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Proteínas Nucleares/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Antineoplásicos/farmacología , Proteínas de Ciclo Celular , Quinasa 9 Dependiente de la Ciclina/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Regulación Leucémica de la Expresión Génica , Células HCT116 , Células HEK293 , Humanos , Células Jurkat , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Complejos Multiproteicos , Proteínas Nucleares/genética , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Estabilidad Proteica , Proteolisis , ARN Polimerasa II/metabolismo , Factores de Tiempo , Elongación de la Transcripción Genética/efectos de los fármacos , Factores de Transcripción/genética , Transfección , Ubiquitina-Proteína Ligasas , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Biochemistry ; 56(24): 3008-3018, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28514164

RESUMEN

The most common, oxidatively generated lesion in cellular DNA is 8-oxo-7,8-dihydroguanine, which can be oxidized further to yield highly mutagenic spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) in DNA. In human cell-free extracts, both lesions can be excised by base excision repair and global genomic nucleotide excision repair. However, it is not known if these lesions can be removed by transcription-coupled DNA repair (TCR), a pathway that clears lesions from DNA that impede RNA synthesis. To determine if Sp or Gh impedes transcription, which could make each a viable substrate for TCR, either an Sp or a Gh lesion was positioned on the transcribed strand of DNA under the control of a promoter that supports transcription by human RNA polymerase II. These constructs were incubated in HeLa nuclear extracts that contained active RNA polymerase II, and the resulting transcripts were resolved by denaturing polyacrylamide gel electrophoresis. The structurally rigid Sp strongly blocks transcription elongation, permitting 1.6 ± 0.5% nominal lesion bypass. In contrast, the conformationally flexible Gh poses less of a block to human RNAPII, allowing 9 ± 2% bypass. Furthermore, fractional lesion bypass for Sp and Gh is minimally affected by glycosylase activity found in the HeLa nuclear extract. These data specifically suggest that both Sp and Gh may well be susceptible to TCR because each poses a significant block to human RNA polymerase II progression. A more general principle is also proposed: Conformational flexibility may be an important structural feature of DNA lesions that enhances their transcriptional bypass.


Asunto(s)
Guanidinas/farmacología , Guanosina/análogos & derivados , Hidantoínas/farmacología , ARN Polimerasa II/antagonistas & inhibidores , Compuestos de Espiro/farmacología , Elongación de la Transcripción Genética/efectos de los fármacos , Daño del ADN , Reparación del ADN , Guanidinas/síntesis química , Guanidinas/química , Guanosina/síntesis química , Guanosina/química , Guanosina/farmacología , Células HeLa , Humanos , Hidantoínas/síntesis química , Hidantoínas/química , Conformación Molecular , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Compuestos de Espiro/síntesis química , Compuestos de Espiro/química , Relación Estructura-Actividad
15.
Nat Chem Biol ; 13(5): 501-507, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28263964

RESUMEN

Pharmacological perturbation is a powerful tool for understanding mRNA synthesis, but identification of the specific steps of this multi-step process that are targeted by small molecules remains challenging. Here we applied strand-specific total RNA sequencing (RNA-seq) to identify and distinguish specific pharmacological effects on transcription and pre-mRNA processing in human cells. We found unexpectedly that the natural product isoginkgetin, previously described as a splicing inhibitor, inhibits transcription elongation. Compared to well-characterized elongation inhibitors that target CDK9, isoginkgetin caused RNA polymerase accumulation within a broader promoter-proximal band, indicating that elongation inhibition by isoginkgetin occurs after release from promoter-proximal pause. RNA-seq distinguished isoginkgetin and CDK9 inhibitors from topoisomerase I inhibition, which alters elongation across gene bodies. We were able to detect these and other specific defects in mRNA synthesis at low sequencing depth using simple metagene-based metrics. These metrics now enable total-RNA-seq-based screening for high-throughput identification of pharmacological effects on individual stages of mRNA synthesis.


Asunto(s)
Biflavonoides/farmacología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Análisis de Secuencia de ARN , Elongación de la Transcripción Genética/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , ARN Mensajero/análisis , ARN Mensajero/metabolismo
16.
J Biol Chem ; 291(50): 26177-26187, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27799305

RESUMEN

The persistence of HIV in resting memory CD4+ T cells at a latent state is considered as the major barrier on the path to achieve a cure for HIV. Proteasome inhibitors (PIs) were previously reported as latency reversing agents (LRAs) but the mechanism underlying this function is yet unclear. Here we demonstrate that PIs reactivate latent HIV ex vivo without global T cell activation, and may facilitate host innate immune responses. Mechanistically, latent HIV reactivation induced by PIs is mediated by heat shock factor 1 (HSF1) via the recruitment of the heat shock protein (HSP) 90-positive transcriptional elongation factor b (p-TEFb) complex. Specifically, HSP90 downstream HSF1 gives positive feedback to the reactivation process through binding to cyclin-dependent kinase 9 (CDK9) and preventing it from undergoing degradation by the proteasome. Overall, these findings suggest proteasome inhibitors as potential latency reversing agents. In addition, HSF1/HSP90 involved in HIV transcription elongation, may serve as therapeutic targets in HIV eradication.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Quinasa 9 Dependiente de la Ciclina/metabolismo , VIH-1/fisiología , Proteínas HSP90 de Choque Térmico/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Activación Viral/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Linfocitos T CD4-Positivos/virología , Quinasa 9 Dependiente de la Ciclina/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Factores de Transcripción del Choque Térmico , Humanos , Masculino , Complejo de la Endopetidasa Proteasomal/genética , Elongación de la Transcripción Genética/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Viral/fisiología , Latencia del Virus/fisiología
17.
Am J Physiol Lung Cell Mol Physiol ; 311(6): L1183-L1201, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27793799

RESUMEN

Chronic epithelial injury triggers a TGF-ß-mediated cellular transition from normal epithelium into a mesenchymal-like state that produces subepithelial fibrosis and airway remodeling. Here we examined how TGF-ß induces the mesenchymal cell state and determined its mechanism. We observed that TGF-ß stimulation activates an inflammatory gene program controlled by the NF-κB/RelA signaling pathway. In the mesenchymal state, NF-κB-dependent immediate-early genes accumulate euchromatin marks and processive RNA polymerase. This program of immediate-early genes is activated by enhanced expression, nuclear translocation, and activating phosphorylation of the NF-κB/RelA transcription factor on Ser276, mediated by a paracrine signal. Phospho-Ser276 RelA binds to the BRD4/CDK9 transcriptional elongation complex, activating the paused RNA Pol II by phosphorylation on Ser2 in its carboxy-terminal domain. RelA-initiated transcriptional elongation is required for expression of the core epithelial-mesenchymal transition transcriptional regulators SNAI1, TWIST1, and ZEB1 and mesenchymal genes. Finally, we observed that pharmacological inhibition of BRD4 can attenuate experimental lung fibrosis induced by repetitive TGF-ß challenge in a mouse model. These data provide a detailed mechanism for how activated NF-κB and BRD4 control epithelial-mesenchymal transition initiation and transcriptional elongation in model airway epithelial cells in vitro and in a murine pulmonary fibrosis model in vivo. Our data validate BRD4 as an in vivo target for the treatment of pulmonary fibrosis associated with inflammation-coupled remodeling in chronic lung diseases.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , FN-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Fibrosis Pulmonar/genética , Elongación de la Transcripción Genética , Factores de Transcripción/metabolismo , Animales , Proteínas de Ciclo Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Inmunoprecipitación de Cromatina , Quinasa 9 Dependiente de la Ciclina/metabolismo , Epigénesis Genética/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Genes Inmediatos-Precoces , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Pulmón/citología , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Elongación de la Transcripción Genética/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología
18.
Mol Cell ; 63(3): 433-44, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27477907

RESUMEN

During transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This method of irreversible inactivation recapitulates both the lethal phenotype and the key molecular signatures that result from genetically disrupting Kin28 function in vivo. Inactivating Kin28 impacts promoter release to differing degrees and reveals a "checkpoint" during the transition to productive elongation. While promoter-proximal pausing is not observed in budding yeast, inhibition of Kin28 attenuates elongation-licensing signals, resulting in Pol II accumulation at the +2 nucleosome and reduced transition to productive elongation. Furthermore, upon inhibition, global stabilization of mRNA masks different degrees of reduction in nascent transcription. This study resolves long-standing controversies on the role of Kin28 in transcription and provides a rational approach to irreversibly inhibit other kinases in vivo.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Ingeniería de Proteínas , Estabilidad del ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Elongación de la Transcripción Genética , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/genética , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Humanos , Modelos Moleculares , Mutación , Nucleosomas/enzimología , Nucleosomas/genética , Fosforilación , Regiones Promotoras Genéticas , Conformación Proteica , Inhibidores de Proteínas Quinasas/farmacología , Estabilidad del ARN/efectos de los fármacos , ARN de Hongos/efectos de los fármacos , ARN de Hongos/genética , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad , Factores de Tiempo , Elongación de la Transcripción Genética/efectos de los fármacos , Quinasa Activadora de Quinasas Ciclina-Dependientes
19.
Nucleic Acids Res ; 44(14): 6853-67, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27353326

RESUMEN

The association of DSIF and NELF with initiated RNA Polymerase II (Pol II) is the general mechanism for inducing promoter-proximal pausing of Pol II. However, it remains largely unclear how the paused Pol II is released in response to stimulation. Here, we show that the release of the paused Pol II is cooperatively regulated by multiple P-TEFbs which are recruited by bromodomain-containing protein Brd4 and super elongation complex (SEC) via different recruitment mechanisms. Upon stimulation, Brd4 recruits P-TEFb to Spt5/DSIF via a recruitment pathway consisting of Med1, Med23 and Tat-SF1, whereas SEC recruits P-TEFb to NELF-A and NELF-E via Paf1c and Med26, respectively. P-TEFb-mediated phosphorylation of Spt5, NELF-A and NELF-E results in the dissociation of NELF from Pol II, thereby transiting transcription from pausing to elongation. Additionally, we demonstrate that P-TEFb-mediated Ser2 phosphorylation of Pol II is dispensable for pause release. Therefore, our studies reveal a co-regulatory mechanism of Brd4 and SEC in modulating the transcriptional pause release by recruiting multiple P-TEFbs via a Mediator- and Paf1c-coordinated recruitment network.


Asunto(s)
Factor B de Elongación Transcripcional Positiva/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Acetamidas/farmacología , Proteínas de Ciclo Celular , Células HCT116 , Células HeLa , Humanos , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Elongación de la Transcripción Genética/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/metabolismo
20.
Dev Biol ; 416(2): 361-72, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27343897

RESUMEN

Regulation of gene expression at the level of transcriptional elongation has been shown to be important in stem cells and tumour cells, but its role in the whole animal is only now being fully explored. Neural crest cells (NCCs) are a multipotent population of cells that migrate during early development from the dorsal neural tube throughout the embryo where they differentiate into a variety of cell types including pigment cells, cranio-facial skeleton and sensory neurons. Specification of NCCs is both spatially and temporally regulated during embryonic development. Here we show that components of the transcriptional elongation regulatory machinery, CDK9 and CYCLINT1 of the P-TEFb complex, are required to regulate neural crest specification. In particular, we show that expression of the proto-oncogene c-Myc and c-Myc responsive genes are affected. Our data suggest that P-TEFb is crucial to drive expression of c-Myc, which acts as a 'gate-keeper' for the correct temporal and spatial development of the neural crest.


Asunto(s)
Ciclina T/genética , Quinasa 9 Dependiente de la Ciclina/genética , Regulación del Desarrollo de la Expresión Génica , Genes myc , Cresta Neural/embriología , Factor B de Elongación Transcripcional Positiva/genética , Elongación de la Transcripción Genética , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Animales , Ciclina T/deficiencia , Quinasa 9 Dependiente de la Ciclina/deficiencia , Isoxazoles/farmacología , Leflunamida , Morfolinos/farmacología , Factor B de Elongación Transcripcional Positiva/deficiencia , Proteínas Proto-Oncogénicas c-myc/biosíntesis , ARN Polimerasa II/metabolismo , Factores de Transcripción SOXE/biosíntesis , Factores de Transcripción SOXE/genética , Elongación de la Transcripción Genética/efectos de los fármacos , Transcripción Genética , Proteínas de Xenopus/deficiencia , Xenopus laevis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA