Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell Biol Toxicol ; 40(1): 24, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653919

RESUMEN

Elongin B (ELOB), a pivotal element in the ELOB/c-Cullin2/5-SOCS-box E3 ubiquitin-protein ligase complex, plays a significant role in catalyzing the ubiquitination and subsequent degradation of a broad spectrum of target proteins. Notably, it is documented to facilitate these processes. However, the regulatory role of ELOB in breast cancer remains ambiguous. In this study, through bio-informatic analysis of The Cancer Genome Atlas and Fudan University Shanghai Cancer Center database, we demonstrated that ELOB was over-expressed in breast cancer tissues and was related to unfavorable prognosis. Additionally, pathway enrichment analysis illustrated that high expression of ELOB was associated with multiple cancer promoting pathways, like cell cycle, DNA replication, proteasome and PI3K - Akt signaling pathway, indicating ELOB as a potential anticancer target. Then, we confirmed that both in vivo and in vitro, the proliferation of breast cancer cells could be significantly suppressed by the down-regulation of ELOB. Mechanically, immunoprecipitation and in vivo ubiquitination assays prompted that, as the core element of Cullin2-RBX1-ELOB E3 ligase (CRL2) complex, ELOB regulated the ubiquitination and the subsequent degradation of oncoprotein p14/ARF. Moreover, the anticancer efficacy of erasing ELOB could be rescued by simultaneous knockdown of p14/ARF. Finally, through analyzing breast cancer tissue microarrays and western blot of patient samples, we demonstrated that the expression of ELOB in tumor tissues was elevated in compared to adjacent normal tissues. In conclusion, ELOB is identified to be a promising innovative target for the drug development of breast cancer by promoting the ubiquitination and degradation of oncoprotein p14/ARF.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Elonguina , Ubiquitinación , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Femenino , Elonguina/metabolismo , Elonguina/genética , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Progresión de la Enfermedad , Ratones Desnudos , Ratones , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Ratones Endogámicos BALB C , Células MCF-7 , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
2.
Curr Opin Struct Biol ; 84: 102766, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38181687

RESUMEN

RNA polymerase II (Pol II) transcription is regulated by many elongation factors. Among these factors, TFIIF, PAF-RTF1, ELL and Elongin stimulate mRNA chain elongation by Pol II. Cryo-EM structures of Pol II complexes with these elongation factors now reveal some general principles on how elongation factors bind Pol II and how they stimulate transcription. All four elongation factors contact Pol II at domains external 2 and protrusion, whereas TFIIF and ELL additionally bind the Pol II lobe. All factors apparently stabilize cleft-flanking elements, whereas RTF1 and Elongin additionally approach the active site with a latch element and may influence catalysis or translocation. Due to the shared binding sites on Pol II, factor binding is mutually exclusive, and thus it remains to be studied what determines which elongation factors bind at a certain gene and under which condition.


Asunto(s)
ARN Polimerasa II , Factores de Transcripción TFII , ARN Polimerasa II/química , Elonguina/genética , Elonguina/metabolismo , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Factores de Transcripción TFII/química , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo , Sitios de Unión , Transcripción Genética
3.
Nat Struct Mol Biol ; 30(12): 1925-1935, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932450

RESUMEN

Elongin is a heterotrimeric elongation factor for RNA polymerase (Pol) II transcription that is conserved among metazoa. Here, we report three cryo-EM structures of human Elongin bound to transcribing Pol II. The structures show that Elongin subunit ELOA binds the RPB2 side of Pol II and anchors the ELOB-ELOC subunit heterodimer. ELOA contains a 'latch' that binds between the end of the Pol II bridge helix and funnel helices, thereby inducing a conformational change near the polymerase active center. The latch is required for the elongation-stimulatory activity of Elongin, but not for Pol II binding, indicating that Elongin functions by allosterically regulating the conformational mobility of the polymerase active center. Elongin binding to Pol II is incompatible with association of the super elongation complex, PAF1 complex and RTF1, which also contain an elongation-stimulatory latch element.


Asunto(s)
ARN Polimerasa II , Factores de Transcripción , Humanos , Elonguina/genética , Elonguina/metabolismo , Factores de Transcripción/metabolismo , ARN Polimerasa II/metabolismo , Núcleo Celular/metabolismo , Transcripción Genética
4.
Cell Chem Biol ; 30(7): 766-779.e11, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37354906

RESUMEN

Inhibition of protein-protein interactions (PPIs) via designed peptides is an effective strategy to perturb their biological functions. The Elongin BC heterodimer (ELOB/C) binds to a BC-box motif and is essential for cancer cell growth. Here, we report a peptide that mimics the high-affinity BC-box of the PRC2-associated protein EPOP. This peptide tightly binds to the ELOB/C dimer (kD = 0.46 ± 0.02 nM) and blocks the association of ELOB/C with its interaction partners, both in vitro and in the cellular environment. Cancer cells treated with our peptide inhibitor showed decreased cell viability, increased apoptosis, and perturbed gene expression. Therefore, our work proposes that blocking the BC-box-binding pocket of ELOB/C is a feasible strategy to impair its function and inhibit cancer cell growth. Our peptide inhibitor promises novel mechanistic insights into the biological function of the ELOB/C dimer and offers a starting point for therapeutics linked to ELOB/C dysfunction.


Asunto(s)
Neoplasias , Factores de Transcripción , Elonguina/metabolismo , Factores de Transcripción/metabolismo , Unión Proteica , Péptidos/farmacología , Péptidos/metabolismo , Apoptosis , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias/tratamiento farmacológico
5.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835292

RESUMEN

The basic helix-loop-helix factors play a central role in neuronal differentiation and nervous system development, which involve the Notch and signal transducer and activator of transcription (STAT)/small mother against decapentaplegic signaling pathways. Neural stem cells differentiate into three nervous system lineages, and the suppressor of cytokine signaling (SOCS) and von Hippel-Lindau (VHL) proteins are involved in this neuronal differentiation. The SOCS and VHL proteins both contain homologous structures comprising the BC-box motif. SOCSs recruit Elongin C, Elongin B, Cullin5(Cul5), and Rbx2, whereas VHL recruits Elongin C, Elongin B, Cul2, and Rbx1. SOCSs form SBC-Cul5/E3 complexes, and VHL forms a VBC-Cul2/E3 complex. These complexes degrade the target protein and suppress its downstream transduction pathway by acting as E3 ligases via the ubiquitin-proteasome system. The Janus kinase (JAK) is the main target protein of the E3 ligase SBC-Cul5, whereas hypoxia-inducible factor is the primary target protein of the E3 ligase VBC-Cul2; nonetheless, VBC-Cul2 also targets the JAK. SOCSs not only act on the ubiquitin-proteasome system but also act directly on JAKs to suppress the Janus kinase-signal transduction and activator of transcription (JAK-STAT) pathway. Both SOCS and VHL are expressed in the nervous system, predominantly in brain neurons in the embryonic stage. Both SOCS and VHL induce neuronal differentiation. SOCS is involved in differentiation into neurons, whereas VHL is involved in differentiation into neurons and oligodendrocytes; both proteins promote neurite outgrowth. It has also been suggested that the inactivation of these proteins may lead to the development of nervous system malignancies and that these proteins may function as tumor suppressors. The mechanism of action of SOCS and VHL involved in neuronal differentiation and nervous system development is thought to be mediated through the inhibition of downstream signaling pathways, JAK-STAT, and hypoxia-inducible factor-vascular endothelial growth factor pathways. In addition, because SOCS and VHL promote nerve regeneration, they are expected to be applied in neuronal regenerative medicine for traumatic brain injury and stroke.


Asunto(s)
Neurogénesis , Proteínas Supresoras de la Señalización de Citocinas , Factor A de Crecimiento Endotelial Vascular , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau , Humanos , Diferenciación Celular , Proteínas Cullin/metabolismo , Elonguina/metabolismo , Quinasas Janus/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
6.
Biochem Soc Trans ; 51(1): 125-135, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36651856

RESUMEN

Interaction scaffolds that selectively recognize disordered protein strongly shape protein interactomes. An important scaffold of this type that contributes to transcription is the TFIIS N-terminal domain (TND). The TND is a five-helical bundle that has no known enzymatic activity, but instead selectively reads intrinsically disordered sequences of other proteins. Here, we review the structural and functional properties of TNDs and their cognate disordered ligands known as TND-interacting motifs (TIMs). TNDs or TIMs are found in prominent members of the transcription machinery, including TFIIS, super elongation complex, SWI/SNF, Mediator, IWS1, SPT6, PP1-PNUTS phosphatase, elongin, H3K36me3 readers, the transcription factor MYC, and others. We also review how the TND interactome contributes to the regulation of transcription. Because the TND is the most significantly enriched fold among transcription elongation regulators, TND- and TIM-driven interactions have widespread roles in the regulation of many transcriptional processes.


Asunto(s)
Factores de Transcripción , Factores de Elongación Transcripcional , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo , Elonguina/metabolismo , Regulación de la Expresión Génica
7.
Cell Death Differ ; 30(1): 137-151, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35995846

RESUMEN

Radioresistance is a principal culprit for the failure of radiotherapy in hepatocellular carcinoma (HCC). Insights on the regulation genes of radioresistance and underlying mechanisms in HCC are awaiting for profound investigation. In this study, the suppressor of cytokine signaling 2 (SOCS2) were screened out by RNA-seq and bioinformatics analyses as a potential prognosis predictor of HCC radiotherapy and then were determined to promote radiosensitivity in HCC both in vivo or in vitro. Meanwhile, the measurements of ferroptosis negative regulatory proteins of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), intracellular lipid peroxidation and Fe2+ concentration suggested that a high level of ferroptosis contributed to the radiosensitization of HCC. Moreover, SOCS2 and SLC7A11 were expressed oppositely in HCC clinical tissues and tumour xenografts with different radiosensitivities. Mechanistically, the N-terminal domain of SLC7A11 was specifically recognized by the SH2-structural domain of SOCS2. While the L162 and C166 of SOCS2-BOX region could bind elongin B/C compound to co-form a SOCS2/elongin B/C complex to recruit ubiquitin molecules. Herein, SOCS2 served as a bridge to transfer the attached ubiquitin to SLC7A11 and promoted K48-linked polyubiquitination degradation of SLC7A11, which ultimately led to the onset of ferroptosis and radiosensitization of HCC. In conclusion, it was demonstrated for the first time that high-expressed SOCS2 was one of the biomarkers predicting radiosensitivity of HCC by advancing the ubiquitination degradation of SLC7A11 and promoting ferroptosis, which indicates that targeting SOCS2 may enhance the efficiency of HCC radiotherapy and improve the prognosis of patients.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/metabolismo , Elonguina/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo
8.
Mol Cancer ; 21(1): 210, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376892

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) have driven research focused on their effects as oncogenes or tumor suppressors involved in carcinogenesis. However, the functions and mechanisms of most lncRNAs in colorectal cancer (CRC) remain unclear. METHODS: The expression of DLGAP1-AS2 was assessed by quantitative RT-PCR in multiple CRC cohorts. The impacts of DLGAP1-AS2 on CRC growth and metastasis were evaluated by a series of in vitro and in vivo assays. Furthermore, the underlying mechanism of DLGAP1-AS2 in CRC was revealed by RNA pull down, RNA immunoprecipitation, RNA sequencing, luciferase assays, chromatin immunoprecipitation, and rescue experiments. RESULTS: We discovered that DLGAP1-AS2 promoted CRC tumorigenesis and metastasis by physically interacting with Elongin A (ELOA) and inhibiting its protein stability by promoting tripartite motif containing 21 (Trim21)-mediated ubiquitination modification and degradation of ELOA. In particular, we revealed that DLGAP1-AS2 decreases phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) expression by inhibiting ELOA-mediated transcriptional activating of LHPP and thus blocking LHPP-dependent suppression of the AKT signaling pathway. In addition, we also demonstrated that DLGAP1-AS2 was bound and stabilized by cleavage and polyadenylation specificity factor (CPSF2) and cleavage stimulation factor (CSTF3). CONCLUSIONS: The discovery of DLGAP1-AS2, a promising prognostic biomarker, reveals a new dimension into the molecular pathogenesis of CRC and provides a prospective treatment target for this disease.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Humanos , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Transformación Celular Neoplásica/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Neoplasias Colorrectales/patología , Elonguina/genética , Elonguina/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(40): e2207332119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161924

RESUMEN

Rpb1, the largest subunit of RNA polymerase II (RNAPII), is rapidly polyubiquitinated and degraded in response to DNA damage; this process is considered to be a "mechanism of last resort'' employed by cells. The underlying mechanism of this process remains elusive. Here, we uncovered a previously uncharacterized multistep pathway in which the polymerase-associated factor 1 (Paf1) complex (PAF1C, composed of the subunits Ctr9, Paf1, Leo1, Cdc73, and Rtf1) is involved in regulating the RNAPII pool by stimulating Elongin-Cullin E3 ligase complex-mediated Rpb1 polyubiquitination and subsequent degradation by the proteasome following DNA damage. Mechanistically, Spt5 is dephosphorylated following DNA damage, thereby weakening the interaction between the Rtf1 subunit and Spt5, which might be a key step in initiating Rpb1 degradation. Next, Rad26 is loaded onto stalled RNAPII to replace the Spt4/Spt5 complex in an RNAPII-dependent manner and, in turn, recruits more PAF1C to DNA lesions via the binding of Rad26 to the Leo1 subunit. Importantly, the PAF1C, assembled in a Ctr9-mediated manner, coordinates with Rad26 to localize the Elongin-Cullin complex on stalled RNAPII, thereby inducing RNAPII removal, in which the heterodimer Paf1/Leo1 and the subunit Cdc73 play important roles. Together, our results clearly revealed a new role of the intact PAF1C in regulating the RNAPII pool in response to DNA damage.


Asunto(s)
Proteínas Cullin , Daño del ADN , Elonguina , Proteínas Nucleares , ARN Polimerasa II , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/metabolismo , Elonguina/genética , Elonguina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/metabolismo
10.
EMBO J ; 40(23): e108271, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34605059

RESUMEN

Mutations in the gene encoding the CDKL5 kinase are among the most common genetic causes of childhood epilepsy and can also give rise to the severe neurodevelopmental condition CDD (CDKL5 deficiency disorder). Despite its importance for human health, the phosphorylation targets and cellular roles of CDKL5 are poorly understood, especially in the cell nucleus. Here, we report that CDKL5 is recruited to sites of DNA damage in actively transcribed regions of the nucleus. A quantitative phosphoproteomic screen for nuclear CDKL5 substrates reveals a network of transcriptional regulators including Elongin A (ELOA), phosphorylated on a specific CDKL5 consensus motif. Recruitment of CDKL5 and ELOA to damaged DNA, and subsequent phosphorylation of ELOA, requires both active transcription and the synthesis of poly(ADP-ribose) (PAR), to which CDKL5 can bind. Critically, CDKL5 kinase activity is essential for the transcriptional silencing of genes induced by DNA double-strand breaks. Thus, CDKL5 is a DNA damage-sensing, PAR-controlled transcriptional modulator, a finding with implications for understanding the molecular basis of CDKL5-related diseases.


Asunto(s)
Roturas del ADN de Doble Cadena , Daño del ADN , Elonguina/metabolismo , Neuronas/patología , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Activación Transcripcional , Elonguina/genética , Síndromes Epilépticos/genética , Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/patología , Humanos , Mutación , Neuronas/metabolismo , Fosfoproteínas/genética , Fosforilación , Poli Adenosina Difosfato Ribosa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismo , Espasmos Infantiles/patología
11.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34544872

RESUMEN

The bZIP transcription factor ATF6α is a master regulator of endoplasmic reticulum (ER) stress response genes. In this report, we identify the multifunctional RNA polymerase II transcription factor Elongin as a cofactor for ATF6α-dependent transcription activation. Biochemical studies reveal that Elongin functions at least in part by facilitating ATF6α-dependent loading of Mediator at the promoters and enhancers of ER stress response genes. Depletion of Elongin from cells leads to impaired transcription of ER stress response genes and to defects in the recruitment of Mediator and its CDK8 kinase subunit. Taken together, these findings bring to light a role for Elongin as a loading factor for Mediator during the ER stress response.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Elonguina/metabolismo , Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica , Complejo Mediador/metabolismo , ARN Polimerasa II/metabolismo , Factor de Transcripción Activador 6/genética , Animales , Elonguina/genética , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Células HeLa , Humanos , Complejo Mediador/genética , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , Ratas , Transducción de Señal , Activación Transcripcional
12.
Nat Commun ; 12(1): 4961, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34400640

RESUMEN

Esophageal cancer (EC) is a type of aggressive cancer without clinically relevant molecular subtypes, hindering the development of effective strategies for treatment. To define molecular subtypes of EC, we perform mass spectrometry-based proteomic and phosphoproteomics profiling of EC tumors and adjacent non-tumor tissues, revealing a catalog of proteins and phosphosites that are dysregulated in ECs. The EC cohort is stratified into two molecular subtypes-S1 and S2-based on proteomic analysis, with the S2 subtype characterized by the upregulation of spliceosomal and ribosomal proteins, and being more aggressive. Moreover, we identify a subtype signature composed of ELOA and SCAF4, and construct a subtype diagnostic and prognostic model. Potential drugs are predicted for treating patients of S2 subtype, and three candidate drugs are validated to inhibit EC. Taken together, our proteomic analysis define molecular subtypes of EC, thus providing a potential therapeutic outlook for improving disease outcomes in patients with EC.


Asunto(s)
Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Espectrometría de Masas/métodos , Proteómica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Ciclo Celular , Estudios de Cohortes , Elonguina/genética , Elonguina/metabolismo , Humanos , Pronóstico , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo
13.
J Biol Chem ; 296: 100202, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33334895

RESUMEN

Elongin A (EloA) is an essential transcription factor that stimulates the rate of RNA polymerase II (Pol II) transcription elongation in vitro. However, its role as a transcription factor in vivo has remained underexplored. Here we show that in mouse embryonic stem cells, EloA localizes to both thousands of Pol II transcribed genes with preference for transcription start site and promoter regions and a large number of active enhancers across the genome. EloA deletion results in accumulation of transcripts from a subset of enhancers and their adjacent genes. Notably, EloA does not substantially enhance the elongation rate of Pol II in vivo. We also show that EloA localizes to the nucleoli and associates with RNA polymerase I transcribed ribosomal RNA gene, Rn45s. EloA is a highly disordered protein, which we demonstrate forms phase-separated condensates in vitro, and truncation mutations in the intrinsically disordered regions (IDR) of EloA interfere with its targeting and localization to the nucleoli. We conclude that EloA broadly associates with transcribed regions, tunes RNA Pol II transcription levels via impacts on enhancer RNA synthesis, and interacts with the rRNA producing/processing machinery in the nucleolus. Our work opens new avenues for further investigation of the role of this functionally multifaceted transcription factor in enhancer and ribosomal RNA biology.


Asunto(s)
Elonguina/metabolismo , Elementos de Facilitación Genéticos , Células Madre Embrionarias de Ratones/metabolismo , ARN/genética , Activación Transcripcional , Animales , Línea Celular , Elonguina/genética , Eliminación de Gen , Ratones , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Sitio de Iniciación de la Transcripción
14.
Virology ; 554: 17-27, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33333348

RESUMEN

The family of human APOBEC3 (A3) restriction factors is formed by seven different proteins, A3A-D and A3F-H. Among these A3s, A3B harbors strong restriction activity against several retroviruses, such as SIV, and MLV. How lentiviruses and other retroviruses, prevalent in many primate species, counteract A3B is poorly understood. In this study, we found that A3B strongly inhibited SIVmac and HIV-2 infectivity, which was antagonized by their Vif proteins. Both SIVmac and HIV-2 Vifs diminished the protein level of A3B in viral producer cells, and hindered A3B incorporation into viral particles. We observed that HIV-2 Vif binds A3B and induces its degradation by assembly of an A3-Vif-CUL5-ElonginB/C E3-ligase complex. A3B and HIV-2 Vif localize and interact in the nucleus. In addition, we also found that the accessory protein Bet of prototype foamy virus (PFV) significantly antagonized the anti-SIVmac activity of A3B. Like Vif, Bet prevented the incorporation of A3B into viral particles. However, in contrast to Vif Bet did not induce the degradation of A3B. Rather, Bet binds A3B to block formation of high molecular weight A3B complexes and induces A3B cytoplasmic trapping. In summary, these findings indicate that A3B is recognized by diverse retroviruses and counteracted by virus-specific pathways that could be targeted to inhibit A3B mutating activity in cancers.


Asunto(s)
Citidina Desaminasa/antagonistas & inhibidores , Citidina Desaminasa/metabolismo , VIH-2/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Proteínas de los Retroviridae/metabolismo , Spumavirus/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Elonguina/genética , Elonguina/metabolismo , Productos del Gen vif/metabolismo , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Virus de la Inmunodeficiencia de los Simios/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Virión/metabolismo
15.
J Biol Chem ; 296: 100170, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33298525

RESUMEN

Elongin is an RNA polymerase II (RNAPII)-associated factor that has been shown to stimulate transcriptional elongation in vitro. The Elongin complex is thought to be required for transcriptional induction in response to cellular stimuli and to ubiquitinate RNAPII in response to DNA damage. Yet, the impact of the Elongin complex on transcription in vivo has not been well studied. Here, we performed comprehensive studies of the role of Elongin A, the largest subunit of the Elongin complex, on RNAPII transcription genome-wide. Our results suggest that Elongin A localizes to actively transcribed regions and potential enhancers, and the level of recruitment correlated with transcription levels. We also identified a large group of factors involved in transcription as Elongin A-associated factors. In addition, we found that loss of Elongin A leads to dramatically reduced levels of serine2-phosphorylated, but not total, RNAPII, and cells depleted of Elongin A show stronger promoter RNAPII pausing, suggesting that Elongin A may be involved in the release of paused RNAPII. Our RNA-seq studies suggest that loss of Elongin A did not alter global transcription, and unlike prior in vitro studies, we did not observe a dramatic impact on RNAPII elongation rates in our cell-based nascent RNA-seq experiments upon Elongin A depletion. Taken together, our studies provide the first comprehensive analysis of the role of Elongin A in regulating transcription in vivo. Our studies also revealed that unlike prior in vitro findings, depletion of Elongin A has little impact on global transcription profiles and transcription elongation in vivo.


Asunto(s)
Cromatina/metabolismo , Elonguina/genética , ARN Polimerasa II/genética , ARN Mensajero/genética , Elongación de la Transcripción Genética , Línea Celular Tumoral , Cromatina/química , Biología Computacional/métodos , Elonguina/antagonistas & inhibidores , Elonguina/metabolismo , Elementos de Facilitación Genéticos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Fosforilación , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Análisis de Secuencia de ARN , Serina/metabolismo , Transducción de Señal
16.
Science ; 370(6523)2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33184237

RESUMEN

MicroRNAs (miRNAs) associate with Argonaute (AGO) proteins to direct widespread posttranscriptional gene repression. Although association with AGO typically protects miRNAs from nucleases, extensive pairing to some unusual target RNAs can trigger miRNA degradation. We found that this target-directed miRNA degradation (TDMD) required the ZSWIM8 Cullin-RING E3 ubiquitin ligase. This and other findings support a mechanistic model of TDMD in which target-directed proteolysis of AGO by the ubiquitin-proteasome pathway exposes the miRNA for degradation. Moreover, loss-of-function studies indicated that the ZSWIM8 Cullin-RING ligase accelerates degradation of numerous miRNAs in cells of mammals, flies, and nematodes, thereby specifying the half-lives of most short-lived miRNAs. These results elucidate the mechanism of TDMD and expand its inferred role in shaping miRNA levels in bilaterian animals.


Asunto(s)
Proteínas Argonautas/metabolismo , MicroARNs/metabolismo , Estabilidad del ARN , ARN Largo no Codificante/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elonguina/genética , Elonguina/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Células K562 , Ratones , Células 3T3 NIH , Proteolisis , ARN Largo no Codificante/genética , Ubiquitina-Proteína Ligasas/genética
17.
Nat Commun ; 11(1): 2866, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32513959

RESUMEN

The Cullin 5 (CUL5) Ring E3 ligase uses adaptors Elongins B and C (ELOB/C) to bind different SOCS-box-containing substrate receptors, determining the substrate specificity of the ligase. The 18-member ankyrin and SOCS box (ASB) family is the largest substrate receptor family. Here we report cryo-EM data for the substrate, creatine kinase (CKB) bound to ASB9-ELOB/C, and for full-length CUL5 bound to the RING protein, RBX2, which binds various E2s. To date, no full structures are available either for a substrate-bound ASB nor for CUL5. Hydrogen-deuterium exchange (HDX-MS) mapped onto a full structural model of the ligase revealed long-range allostery extending from the substrate through CUL5. We propose a revised allosteric mechanism for how CUL-E3 ligases function. ASB9 and CUL5 behave as rigid rods, connected through a hinge provided by ELOB/C transmitting long-range allosteric crosstalk from the substrate through CUL5 to the RBX2 flexible linker.


Asunto(s)
Creatina Quinasa/metabolismo , Microscopía por Crioelectrón , Elonguina/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/química , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Regulación Alostérica , Creatina Quinasa/ultraestructura , Proteínas Cullin/química , Proteínas Cullin/metabolismo , Elonguina/ultraestructura , Humanos , Modelos Moleculares , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Proteínas Supresoras de la Señalización de Citocinas/ultraestructura , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
18.
Sci Adv ; 6(10): eaay4768, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32181346

RESUMEN

When self-renewing pluripotent cells receive a differentiation signal, ongoing cell duplication needs to be coordinated with entry into a differentiation program. Accordingly, transcriptional activation of lineage specifier genes and cell differentiation is confined to the G1 phase of the cell cycle by unknown mechanisms. We found that Polycomb repressive complex 2 (PRC2) subunits are differentially recruited to lineage specifier gene promoters across cell cycle in mouse embryonic stem cells (mESCs). Jarid2 and the catalytic subunit Ezh2 are markedly accumulated at target promoters during S and G2 phases, while the transcriptionally activating subunits EPOP and EloB are enriched during G1 phase. Fluctuations in the recruitment of PRC2 subunits promote changes in RNA synthesis and RNA polymerase II binding that are compromised in Jarid2 -/- mESCs. Overall, we show that differential recruitment of PRC2 subunits across cell cycle enables the establishment of a chromatin state that facilitates the induction of cell differentiation in G1 phase.


Asunto(s)
Ciclo Celular/genética , Cromatina/química , Proteína Potenciadora del Homólogo Zeste 2/genética , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 2/genética , Animales , Diferenciación Celular , Línea Celular Transformada , Cromatina/metabolismo , Elonguina/genética , Elonguina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Embrionarias de Ratones/citología , Complejo Represivo Polycomb 2/deficiencia , Regiones Promotoras Genéticas , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transducción de Señal , Transcripción Genética
19.
J Virol ; 94(7)2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31941775

RESUMEN

Mosquito-borne La Crosse virus (LACV; genus Orthobunyavirus, family Peribunyaviridae, order Bunyavirales) causes up to 100 annual cases of severe meningoencephalitis in children and young adults in the United States. A major virulence factor of LACV is the nonstructural protein NSs, which inhibits host cell mRNA synthesis to prevent the induction of antiviral type I interferons (IFN-α/ß). To achieve this host transcriptional shutoff, LACV NSs drives the proteasomal degradation of RPB1, the large subunit of mammalian RNA polymerase II. Here, we show that NSs acts in a surprisingly rapid manner, as RPB1 degradation was commencing already at 1 h postinfection. The RPB1 degradation was partially dependent on the cellular E3 ubiquitin ligase subunit Elongin C. Consequently, removal of Elongin C, but also of the subunits Elongin A or B by siRNA transfection partially rescued general RNAP II transcription and IFN-beta mRNA synthesis from the blockade by NSs. In line with these results, LACV NSs was found to trigger the redistribution of Elongin C out of nucleolar speckles, which, however, is an epiphenomenon rather than part of the NSs mechanism. Our study also shows that the molecular phenotype of LACV NSs is different from RNA polymerase II inhibitors like α-amanitin or Rift Valley fever virus NSs, indicating that LACV is unique in involving the Elongin complex to shut off host transcription and IFN response.IMPORTANCE The mosquito-borne La Crosse virus (LACV; genus Orthobunyavirus, family Peribunyaviridae, order Bunyavirales) is prevalent in the United States and can cause severe childhood meningoencephalitis. Its main virulence factor, the nonstructural protein NSs, is a strong inhibitor of the antiviral type I interferon (IFN) system. NSs acts by imposing a global host mRNA synthesis shutoff, mediated by NSs-driven proteasomal degradation of the RPB1 subunit of RNA polymerase II. Here, we show that RPB1 degradation commences as early as 1 h postinfection, and identify the E3 ubiquitin ligase subunit Elongin C (and its binding partners Elongins A and B) as an NSs cofactor involved in RPB1 degradation and in suppression of global as well as IFN-related mRNA synthesis.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Elonguina/metabolismo , Virus La Crosse/enzimología , Proteínas no Estructurales Virales/metabolismo , Células A549 , Alfa-Amanitina/metabolismo , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Humanos , Interferones/metabolismo , Virus La Crosse/genética , Fenotipo , ARN Interferente Pequeño/metabolismo , Virus de la Fiebre del Valle del Rift/metabolismo , Transcripción Genética , Células Vero , Factores de Virulencia/metabolismo
20.
J Virol ; 94(7)2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31941780

RESUMEN

Vif counteracts the host restriction factor APOBEC3G (A3G) and other APOBEC3s by preventing the incorporation of A3G into progeny virions. We previously identified Vif mutants with a dominant-negative (D/N) phenotype that interfered with the function of wild-type Vif, inhibited the degradation of A3G, and reduced the infectivity of viral particles by increased packaging of A3G. However, the mechanism of interference remained unclear, in particular since all D/N Vif mutants were unable to bind Cul5 and some mutants additionally failed to bind A3G, ruling out competitive binding to A3G or the E3 ubiquitin ligase complex as the sole mechanism. The goal of the current study was to revisit the mechanism of D/N interference by Vif mutants and analyze the possible involvement of core binding factor beta (CBFß) in this process. We found a clear correlation of D/N properties of Vif mutants with their ability to engage CBFß. Only mutants that retained the ability to bind CBFß exhibited the D/N phenotype. Competition studies revealed that D/N Vif mutants directly interfered with the association of CBFß and wild-type Vif. Furthermore, overexpression of CBFß counteracted the interference of D/N Vif mutants with A3G degradation by wild-type Vif. Finally, overexpression of Runx1 mimicked the effect of D/N Vif mutants and inhibited the degradation of A3G by wild-type Vif. Taken together, we identified CBFß as the key player involved in D/N interference by Vif.IMPORTANCE Of all the accessory proteins encoded by HIV-1 and other primate lentiviruses, Vif has arguably the strongest potential as a target for antiviral therapy. This conclusion is based on the observation that replication of HIV-1 in vivo is critically dependent on Vif. Thus, inhibiting the function of Vif via small-molecule inhibitors or other approaches has significant therapeutic potential. We previously identified dominant-negative (D/N) Vif variants whose expression interferes with the function of virus-encoded wild-type Vif. We now show that D/N interference involves competitive binding of D/N Vif variants to the transcriptional cofactor core binding factor beta (CBFß), which is expressed in cells in limiting quantities. Overexpression of CBFß neutralized the D/N phenotype of Vif. In contrast, overexpression of Runx1, a cellular binding partner of CBFß, phenocopied the D/N Vif phenotype by sequestering endogenous CBFß. Thus, our results provide proof of principle that D/N Vif variants could have therapeutic potential.


Asunto(s)
Desaminasa APOBEC-3G/metabolismo , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Unión Competitiva , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Proteínas Cullin/metabolismo , Elonguina/metabolismo , Genes Dominantes , Células HEK293 , VIH-1/fisiología , Humanos , Leucocitos Mononucleares/metabolismo , Mutación , Fenotipo , Virión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA