Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Ann Biomed Eng ; 52(3): 647-656, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38036895

RESUMEN

The proper formation of the vertebrate embryonic heart relies on various mechanical forces which determine its form and function. Measuring these forces at the microscale of the embryo is a challenge. We propose a new tool utilizing high-resolution optical elastography and stiffness measurements of surrounding tissues to non-invasively track the changes in the pressure exerted by the heart on the neighboring yolk, as well as changes in contractile patterns during early cardiac growth in-vivo, using the zebrafish embryo as a model system. Cardiac development was characterized every three hours from 24 hours post-fertilization (hpf) to 30 hpf and compared between wildtype fish and those treated with MS-222, a commonly used fish anesthetic that decreases cardiac contractility. Wildtype embryos from 24 to 30 hpf showed an average yolk indentation pressure of 0.32 mmHg to 0.41 mmHg, respectively. MS-222 treated embryos showed an average yolk indentation pressure of 0.22 mmHg to 0.29 mmHg. Yolk indentation pressure between control and treated embryos at 24 hpf and 30 hpf showed a significant difference (p < 0.05). Our method allowed for contractility and pressure evaluation at these early developmental stages, which have not been previously reported in published literature, regardless of sample or imaging modality. This research could lead to a better understanding of heart development and improved diagnostic tools for congenital heart disease.


Asunto(s)
Aminobenzoatos , Diagnóstico por Imagen de Elasticidad , Pez Cebra , Animales , Embrión no Mamífero/diagnóstico por imagen , Corazón/diagnóstico por imagen
2.
Nat Commun ; 12(1): 6391, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737278

RESUMEN

Quantitative volumetric fluorescence imaging at high speed across a long term is vital to understand various cellular and subcellular behaviors in living organisms. Light-field microscopy provides a compact computational solution by imaging the entire volume in a tomographic way, while facing severe degradation in scattering tissue or densely-labelled samples. To address this problem, we propose an incoherent multiscale scattering model in a complete space for quantitative 3D reconstruction in complicated environments, which is called computational optical sectioning. Without the requirement of any hardware modifications, our method can be generally applied to different light-field schemes with reduction in background fluorescence, reconstruction artifacts, and computational costs, facilitating more practical applications of LFM in a broad community. We validate the superior performance by imaging various biological dynamics in Drosophila embryos, zebrafish larvae, and mice.


Asunto(s)
Microscopía Fluorescente/métodos , Animales , Embrión no Mamífero/diagnóstico por imagen , Imagenología Tridimensional/métodos , Larva , Ratones , Pez Cebra
3.
STAR Protoc ; 2(4): 100817, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34568842

RESUMEN

How individual cells form precise connections with partners in a complicated environment has been a longstanding question. However, most cell matching studies have used qualitative approaches, which may miss subtle but significant morphological changes. Here, we describe the use of embryonic Drosophila heart formation as a simplified system to quantitatively study cell matching. We provide a step-by-step protocol for large-scale embryo preparation and immunostaining and imaging details. We also describe steps for quantifying cellular mismatch from the batch images. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2018 and 2020).


Asunto(s)
Drosophila/embriología , Embrión no Mamífero , Corazón/embriología , Inmunohistoquímica/métodos , Microscopía/métodos , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/diagnóstico por imagen , Organogénesis
4.
PLoS Comput Biol ; 17(7): e1009175, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34228702

RESUMEN

Biomechanical forces intimately contribute to cardiac morphogenesis. However, volumetric imaging to investigate the cardiac mechanics with high temporal and spatial resolution remains an imaging challenge. We hereby integrated light-field microscopy (LFM) with light-sheet fluorescence microscopy (LSFM), coupled with a retrospective gating method, to simultaneously access myocardial contraction and intracardiac blood flow at 200 volumes per second. While LSFM allows for the reconstruction of the myocardial function, LFM enables instantaneous acquisition of the intracardiac blood cells traversing across the valves. We further adopted deformable image registration to quantify the ventricular wall displacement and particle tracking velocimetry to monitor intracardiac blood flow. The integration of LFM and LSFM enabled the time-dependent tracking of the individual blood cells and the differential rates of segmental wall displacement during a cardiac cycle. Taken together, we demonstrated a hybrid system, coupled with our image analysis pipeline, to simultaneously capture the myocardial wall motion with intracardiac blood flow during cardiac development.


Asunto(s)
Velocidad del Flujo Sanguíneo/fisiología , Corazón , Animales , Biología Computacional , Embrión no Mamífero/diagnóstico por imagen , Embrión no Mamífero/fisiología , Corazón/diagnóstico por imagen , Corazón/crecimiento & desarrollo , Corazón/fisiología , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/fisiología
5.
Appl Opt ; 60(15): 4345-4355, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34143124

RESUMEN

Speckle noises widely exist in optical coherence tomography (OCT) images. We propose an improved double-path parallel convolutional neural network (called DPNet) to reduce speckles. We increase the network width to replace the network depth to extract deeper information from the original OCT images. In addition, we use dilated convolution and residual learning to increase the learning ability of our DPNet. We use 100 pairs of human retinal OCT images as the training dataset. Then we test the DPNet model for denoising speckles on four different types of OCT images, mainly including human retinal OCT images, skin OCT images, colon crypt OCT images, and quail embryo OCT images. We compare the DPNet model with the adaptive complex diffusion method, the curvelet shrinkage method, the shearlet-based total variation method, and the OCTNet method. We qualitatively and quantitatively evaluate these methods in terms of image smoothness, structural information protection, and edge clarity. Our experimental results prove the performance of the DPNet model, and it allows us to batch and quickly process different types of poor-quality OCT images without any parameter fine-tuning under a time-constrained situation.


Asunto(s)
Colon/diagnóstico por imagen , Coturnix/embriología , Embrión no Mamífero/diagnóstico por imagen , Redes Neurales de la Computación , Retina/diagnóstico por imagen , Piel/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Algoritmos , Animales , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Ratones
6.
Sci Rep ; 11(1): 9847, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972575

RESUMEN

Identification of individual cells in tissues, organs, and in various developing systems is a well-studied problem because it is an essential part of objectively analyzing quantitative images in numerous biological contexts. We developed a size-dependent wavelet-based segmentation method that provides robust segmentation without any preprocessing, filtering or fine-tuning steps, and is robust to the signal-to-noise ratio. The wavelet-based method achieves robust segmentation results with respect to True Positive rate, Precision, and segmentation accuracy compared with other commonly used methods. We applied the segmentation program to zebrafish embryonic development IN TOTO for nuclei segmentation, image registration, and nuclei shape analysis. These new approaches to segmentation provide a means to carry out quantitative patterning analysis with single-cell precision throughout three dimensional tissues and embryos and they have a high tolerance for non-uniform and noisy image data sets.


Asunto(s)
Núcleo Celular , Biología Evolutiva/métodos , Imagenología Tridimensional/métodos , Microscopía Intravital/métodos , Algoritmos , Animales , Embrión no Mamífero/diagnóstico por imagen , Modelos Animales , Relación Señal-Ruido , Análisis Espacio-Temporal , Pez Cebra
7.
Food Chem ; 360: 129999, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33989880

RESUMEN

In this study, cherry fruits and petioles from six ancient Italian Prunus avium L. varieties (Ferrovia, Capellina, Morellina, Ciambellana, Napoletana, and Bianca), were compared by chemical and bioinformatic analyses and evaluated for their antiangiogenic activity. The highest levels of total phenols and flavonoids were found in Napoletana petioles, and Morellina and Capellina fruits. HPLC-PDA-MS analyses showed similar phenolic profiles for all fruit extracts, with cyanidin-3-O-rutinoside, flavonols glycosides, and quinic acid derivatives as major components. Flavonoid glycosides were found in all petiole extracts, while proanthocyanidins B type were predominant in Capellina, Napoletana and Bianca. Accordingly to their higher polyphenolic content, petiole extracts exhibited stronger radical scavenging activity compared to the fruits. The best antiangiogenic response was exhibited by Morellina, Ferrovia, and Ciambellana petiole extracts, and by Ferrovia, Morellina, and Capellina fruit extracts; by bioinformatic studies rutin and cyanidin 3-O-rutinoside were recognised as the best candidate bioactive compounds. In conclusion, sweet cherry varietes were confirmed as valuable sources of phenols, showing also potential angiomodulator properties.


Asunto(s)
Inhibidores de la Angiogénesis/análisis , Extractos Vegetales/química , Prunus avium/química , Fosfatasa Alcalina/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Antocianinas/análisis , Antioxidantes/química , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , Embrión no Mamífero/diagnóstico por imagen , Embrión no Mamífero/metabolismo , Flavonoides/análisis , Frutas/química , Frutas/metabolismo , Italia , Fenoles/análisis , Extractos Vegetales/farmacología , Prunus avium/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
8.
Biomech Model Mechanobiol ; 20(2): 733-750, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33481120

RESUMEN

Congenital heart defects (CHDs) are abnormalities in the heart structure present at birth. One important condition is hypoplastic left heart syndrome (HLHS) where severely underdeveloped left ventricle (LV) cannot support systemic circulation. HLHS usually initiates as localized tissue malformations with no underlying genetic cause, suggesting that disturbed hemodynamics contribute to the embryonic development of these defects. Left atrial ligation (LAL) is a surgical procedure on embryonic chick resulting in a phenotype resembling clinical HLHS. In this study, we investigated disturbed hemodynamics and deteriorated cardiac growth following LAL to investigate possible mechanobiological mechanisms for the embryonic development of HLHS. We integrated techniques such as echocardiography, micro-CT and computational fluid dynamics (CFD) for these analyses. Specifically, LAL procedure causes an immediate flow disturbance over atrioventricular (AV) cushions. At later stages after the heart septation, it causes hemodynamic disturbances in LV. As a consequence of the LAL procedure, the left-AV canal and LV volume decrease in size, and in the opposite way, the right-AV canal and right ventricle volume increase. According to our CFD analysis, LAL results in an immediate decrease in the left AV canal WSS levels for 3.5-day (HH21) pre-septated hearts. For 7-day post-septated hearts (HH30), LAL leads to further reduction in WSS levels in the left AV canal, and relatively increased WSS levels in the right AV canal. This study demonstrates the critical importance of the disturbed hemodynamics during the heart valve and ventricle development.


Asunto(s)
Circulación Coronaria/fisiología , Desarrollo Embrionario , Atrios Cardíacos/embriología , Atrios Cardíacos/fisiopatología , Hemodinámica , Síndrome del Corazón Izquierdo Hipoplásico/fisiopatología , Animales , Velocidad del Flujo Sanguíneo/fisiología , Embrión de Pollo , Simulación por Computador , Electrocardiografía , Embrión no Mamífero/diagnóstico por imagen , Femenino , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/cirugía , Pruebas de Función Cardíaca , Humanos , Hidrodinámica , Síndrome del Corazón Izquierdo Hipoplásico/diagnóstico por imagen , Imagenología Tridimensional , Ligadura , Modelos Cardiovasculares , Embarazo , Estrés Mecánico , Microtomografía por Rayos X
9.
Artículo en Inglés | MEDLINE | ID: mdl-31425122

RESUMEN

With the rise of image-based transcriptomics, spatial gene expression data has become increasingly important for understanding gene regulations from the tissue level down to the cell level. Especially, the gene expression images of Drosophila embryos provide a new data source in the study of Drosophila embryogenesis. It is imperative to develop automatic annotation tools since manual annotation is labor-intensive and requires professional knowledge. Although a lot of image annotation methods have been proposed in the computer vision field, they may not work well for gene expression images, due to the great difference between these two annotation tasks. Besides the apparent difference on images, the annotation is performed at the gene level rather than the image level, where the expression patterns of a gene are recorded in multiple images. Moreover, the annotation terms often correspond to local expression patterns of images, yet they are assigned collectively to groups of images and the relations between the terms and single images are unknown. In order to learn the spatial expression patterns comprehensively for genes, we propose a new method, called FlyIT (image annotation based on Image Tiling and convolutional neural networks for fruit Fly). We implement two versions of FlyIT, learning at image-level and gene-level, respectively. The gene-level version employs an image tiling strategy to get a combined image feature representation for each gene. FlyIT uses a pre-trained ResNet model to obtain feature representation and a new loss function to deal with the class imbalance problem. As the annotation of Drosophila images is a multi-label classification problem, the new loss function considers the difficulty levels for recognizing different labels of the same sample and adjusts the sample weights accordingly. The experimental results on the FlyExpress database show that both the image tiling strategy and the deep architecture lead to the great enhancement of the annotation performance. FlyIT outperforms the existing annotators by a large margin (over 9 percent on AUC and 12 percent on macro F1 for predicting the top 10 terms). It also shows advantages over other deep learning models, including both single-instance and multi-instance learning frameworks.


Asunto(s)
Drosophila/embriología , Desarrollo Embrionario/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Algoritmos , Animales , Biología Computacional/métodos , Curaduría de Datos , Embrión no Mamífero/diagnóstico por imagen
10.
Aquat Toxicol ; 229: 105654, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33161306

RESUMEN

Understanding how aquatic organisms respond to complex chemical mixtures remains one of the foremost challenges in modern ecotoxicology. Although oil spills are typically high-profile disasters that release hundreds or thousands of chemicals into the environment, there is growing evidence for a common adverse outcome pathway (AOP) for the vulnerable embryos and larvae of fish species that spawn in oiled habitats. Molecular initiating events involve the disruption of excitation-contraction coupling in individual cardiomyocytes, which then dysregulate the form and function of the embryonic heart. Phenanthrenes and other three-ring (tricyclic) polycyclic aromatic hydrocarbons (PAHs) are key drivers for this developmental cardiotoxicity and are also relatively enriched in land-based urban runoff. Similar to oil spills, stormwater discharged from roadways and other high-traffic impervious surfaces contains myriad contaminants, many of which are uncharacterized in terms of their chemical identity and toxicity to aquatic organisms. Nevertheless, given the exceptional sensitivity of the developing heart to tricyclic PAHs and the ubiquitous presence of these compounds in road runoff, cardiotoxicity may also be a dominant aspect of the stormwater-induced injury phenotype in fish early life stages. Here we assessed the effects of traffic-related runoff on the embryos and early larvae of Pacific herring (Clupea pallasii), a marine forage fish that spawns along the coastline of western North America. We used the well-characterized central features of the oil toxicity AOP for herring embryos as benchmarks for a detailed analysis of embryolarval cardiotoxicity across a dilution gradient ranging from 12 to 50% stormwater diluted in clean seawater. These injury indicators included measures of circulatory function, ventricular area, heart chamber looping, and the contractility of both the atrium and the ventricle. We also determined tissue concentrations of phenanthrenes and other PAHs in herring embryos. We find that tricyclic PAHs are readily bioavailable during cardiogenesis, and that stormwater-induced toxicity is in many respects indistinguishable from canonical crude oil toxicity. Given the chemical complexity of urban runoff, non-tricyclic PAH-mediated mechanisms of developmental toxicity in fish remain likely. However, from the standpoint of managing wild herring populations, our results suggest that stormwater-driven threats to individual survival (both near-term and delayed mortality) can be understood from decades of past research on crude oil toxicity. Moreover, Pacific herring embryos are promising sentinels for water quality monitoring in nearshore marine habitats, as in situand sensitive indicators of both toxic runoff and the effectiveness of pollution reduction efforts such as green stormwater infrastructure.


Asunto(s)
Organismos Acuáticos/fisiología , Peces/embriología , Corazón/embriología , Petróleo/toxicidad , Animales , Organismos Acuáticos/efectos de los fármacos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Embrión no Mamífero/diagnóstico por imagen , Embrión no Mamífero/efectos de los fármacos , Femenino , Peces/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Larva/efectos de los fármacos , Masculino , Peso Molecular , América del Norte , Hidrocarburos Policíclicos Aromáticos/toxicidad , Agua/química , Contaminantes Químicos del Agua/toxicidad
11.
J Vis Exp ; (164)2020 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-33135688

RESUMEN

The Drosophila melanogaster male embryonic gonad is an advantageous model to study various aspects of developmental biology including, but not limited to, germ cell development, piRNA biology, and niche formation. Here, we present a dissection technique to live-image the gonad ex vivo during a period when in vivo live-imaging is highly ineffective. This protocol outlines how to transfer embryos to an imaging dish, choose appropriately-staged male embryos, and dissect the gonad from its surrounding tissue while still maintaining its structural integrity. Following dissection, gonads can be imaged using a confocal microscope to visualize dynamic cellular processes. The dissection procedure requires precise timing and dexterity, but we provide insight on how to prevent common mistakes and how to overcome these challenges. To our knowledge this is the first dissection protocol for the Drosophila embryonic gonad, and will permit live-imaging during an otherwise inaccessible window of time. This technique can be combined with pharmacological or cell-type specific transgenic manipulations to study any dynamic processes occurring within or between the cells in their natural gonadal environment.


Asunto(s)
Disección , Drosophila melanogaster/embriología , Embrión no Mamífero/diagnóstico por imagen , Gónadas/diagnóstico por imagen , Gónadas/embriología , Imagenología Tridimensional , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Drosophila melanogaster/citología , Embrión no Mamífero/citología , Gónadas/citología , Masculino
12.
ACS Appl Mater Interfaces ; 12(47): 52251-52270, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33155802

RESUMEN

Quantum dots (QDs) are semiconductor nanoparticles that exhibit photoluminescent properties useful for applications in the field of diagnostics and medicine. Successful implementation of these QDs for bio-imaging and bio/chemical sensing typically involves conjugation to biologically active molecules for recognition and signal generation. Unfortunately, traditional and widely studied QDs are based upon heavy metals and other toxic elements (e.g., Cd- and Pb-based QDs), which precludes their safe use in actual biological systems. Silicon quantum dots (SiQDs) offer the same advantages as these heavy-metal-based QDs with the added benefits of nontoxicity and abundance. The preparation of functional bio-inorganic hybrids from SiQDs and biomolecules has lagged significantly compared to their traditional toxic counterparts because of the challenges associated with the synthesis of water-soluble SiQDs and their relative instability in aqueous environments. Advances in SiQD synthesis and surface functionalization, however, have made possible the preparation of functional bio-inorganic hybrids from SiQDs and biological molecules through different bioconjugation reactions. In this contribution, we review the various bioconjugate reactions by which SiQDs have been linked to biomolecules and implemented as platforms for bio-imaging and bio/chemical sensing. We also highlight the challenges that need to be addressed and overcome for these materials to reach their full potential. Lastly, we give prospective applications where this unique class of nontoxic and biocompatible materials can be of great utility in the future.


Asunto(s)
ADN/química , Proteínas/química , Puntos Cuánticos/química , Silicio/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Embrión no Mamífero/diagnóstico por imagen , Embrión no Mamífero/metabolismo , Colorantes Fluorescentes/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Humanos , Microscopía Confocal , Puntos Cuánticos/toxicidad , Xenopus laevis/crecimiento & desarrollo
13.
Opt Express ; 28(20): 30234-30247, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33114907

RESUMEN

Though three-dimensional (3D) fluorescence microscopy has been an essential tool for modern life science research, the light scattering by biological specimens fundamentally prevents its more widespread applications in live imaging. We hereby report a deep-learning approach, termed ScatNet, that enables reversion of 3D fluorescence microscopy from high-resolution targets to low-quality, light-scattered measurements, thereby allowing restoration for a blurred and light-scattered 3D image of deep tissue. Our approach can computationally extend the imaging depth for current 3D fluorescence microscopes, without the addition of complicated optics. Combining ScatNet approach with cutting-edge light-sheet fluorescence microscopy (LSFM), we demonstrate the image restoration of cell nuclei in the deep layer of live Drosophilamelanogaster embryos at single-cell resolution. Applying our approach to two-photon excitation microscopy, we could improve the signal-to-noise ratio (SNR) and resolution of neurons in mouse brain beyond the photon ballistic region.


Asunto(s)
Encéfalo/diagnóstico por imagen , Embrión no Mamífero/diagnóstico por imagen , Imagenología Tridimensional/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Microscopía Fluorescente/métodos , Animales , Aprendizaje Profundo , Drosophila melanogaster , Procesamiento de Imagen Asistido por Computador , Ratones , Neuroimagen/métodos , Neuronas/citología , Relación Señal-Ruido
14.
J Vis Exp ; (163)2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32986033

RESUMEN

Light sheet-based fluorescence microscopy offers efficient solutions to study complex processes on multiple biologically relevant scales. Sample chamber-based setups, which are specifically designed to preserve the three-dimensional integrity of the specimen and usually feature sample rotation, are the best choice in developmental biology. For instance, they have been used to document the entire embryonic morphogenesis of the fruit fly Drosophila melanogaster and the red flour beetle Tribolium castaneum. However, many available live imaging protocols provide only experimental frameworks for single embryos. Especially for comparative studies, such approaches are inconvenient, since sequentially imaged specimens are affected by ambient variance. Further, this limits the number of specimens that can be assayed within a given time. We provide an experimental framework for simultaneous live imaging that increases the throughput in sample chamber-based setups and thus ensures similar ambient conditions for all specimens. Firstly, we provide a calibration guideline for light sheet fluorescence microscopes. Secondly, we propose a mounting method for multiple embryos that is compatible with sample rotation. Thirdly, we provide exemplary three-dimensional live imaging datasets of Drosophila, for which we juxtapose three transgenic lines with fluorescently labeled nuclei, as well as of Tribolium, for which we compare the performance of three transgenic sublines that carry the same transgene, but at different genomic locations. Our protocol is specifically designed for comparative studies as it pro-actively addresses ambient variance, which is always present in sequential live imaging. This is especially important for quantitative analyses and characterization of aberrational phenotypes, which result e.g., from knockout experiments. Further, it increases the overall throughput, which is highly convenient when access to light sheet fluorescence microscopes is limited. Finally, the proposed mounting method can be adapted for other insect species and further model organisms, e.g., zebrafish, with basically no optimization effort.


Asunto(s)
Drosophila melanogaster/embriología , Embrión no Mamífero/diagnóstico por imagen , Imagenología Tridimensional , Microscopía Fluorescente/métodos , Tribolium/embriología , Animales , Animales Modificados Genéticamente , Calibración , Análisis de Datos , Desarrollo Embrionario , Hipoclorito de Sodio
15.
Nat Protoc ; 15(10): 3361-3379, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32908315

RESUMEN

RNA fluorescence in situ hybridization (FISH) and antibody staining/immunofluorescence (IF) are widely used to detect distributions of mRNAs and proteins. Here we describe a combined FISH and IF protocol to simultaneously detect multiple mRNAs and proteins in whole-mount zebrafish embryos and larvae. In our approach, FISH is performed before IF to prevent mRNA degradation during the IF procedure. Instead of proteinase K digestion, Triton X-100 treatment and skin removal are used to permeate tissues and preserve antigen epitopes, making this protocol applicable to both whole-mount embryos and larvae. Off-target hybridization and FISH background are reduced by using PCR-amplified DNA templates and stringent buffers. This protocol simultaneously detects multiple mRNAs and proteins with high sensitivity, and enables detection at single-cell resolution. The protocol can be completed within 6 days, overcoming the shortage of reliable antibodies available for zebrafish and exploiting the advantages of zebrafish for studying organ development and regeneration.


Asunto(s)
Embrión no Mamífero/diagnóstico por imagen , Técnica del Anticuerpo Fluorescente/métodos , Hibridación Fluorescente in Situ/métodos , Animales , Anticuerpos/metabolismo , Larva/metabolismo , ARN/metabolismo , ARN Mensajero/genética , Pez Cebra/genética
16.
Tissue Cell ; 67: 101410, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32835943

RESUMEN

The expression of late embryogenesis abundant (LEA) proteins is one mechanism by which anhydrobiotic organisms survive periods of severe water loss. Artemia franciscana is an animal extremophile that uniquely expresses LEA proteins concurrently from Groups 1, 3, and 6. In this study we examine the subcellular localization of AfrLEA6, a Group 6 LEA protein from embryos of A. franciscana. Immunohistochemistry reveals that AfrLEA6 is located in the cytoplasm of diapause embryos and does not co-localize with nuclei or mitochondria. Due to a trace contaminant arising from chitin-based affinity chromatography during AfrLEA6 purification, the primary antiserum displayed affinities for both AfrLEA6 as well as Artemia chitin-binding proteins. This contaminant (fusion protein of intein plus chitin binding domain) co-migrates with AfrLEA6 during SDS-PAGE. Pre-adsorption of the antiserum with dechorionated embryos was required to remove the non-specific fluorescence in the embryonic cuticular membrane. Results of this study are consistent with the apparent importance of distributing multiple types of LEA proteins across many subcellular locations in anhydrobiotic organisms.


Asunto(s)
Artemia/embriología , Artemia/metabolismo , Citoplasma/metabolismo , Diapausa , Embrión no Mamífero/metabolismo , Proteínas/metabolismo , Animales , Embrión no Mamífero/diagnóstico por imagen , Imagenología Tridimensional , Inteínas , Transporte de Proteínas
17.
Sci Rep ; 10(1): 60, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31919454

RESUMEN

Current zoological research may benefit in many ways from the study of old collections of shells. These collections may provide materials for the verification of broad zoogeographical and ecological hypotheses on the reproduction of molluscs, as they include records from many areas where sampling is currently impossible or very difficult due to political circumstances. In the present paper we present data on viviparous and embryo-retention reproductive modes in clausiliid land snails (subfamily Phaedusinae) acquired from specimens collected since the nineteenth century in the Pontic, Hyrcanian, and East and Southeast Asian regions. X-ray imaging (micro-CT) enabled relatively quick screening of more than 1,000 individuals classified within 141 taxa, among which we discovered 205 shells containing embryos or eggs. Gravid individuals were found to belong to 55 species, representing, for some of these species, the first indication of brooding reproductive strategy.


Asunto(s)
Exoesqueleto/fisiología , Caracoles/clasificación , Microtomografía por Rayos X , Exoesqueleto/diagnóstico por imagen , Animales , Biodiversidad , Evolución Biológica , Huevos/análisis , Huevos/historia , Embrión no Mamífero/diagnóstico por imagen , Embrión no Mamífero/fisiología , Historia del Siglo XIX , Caracoles/crecimiento & desarrollo
18.
Eur J Med Genet ; 63(2): 103661, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31051269

RESUMEN

CHARGE syndrome is an autosomal dominant congenital disorder caused primarily by mutations in the CHD7 gene. Using a small molecule screen in a zebrafish model of CHARGE syndrome, we identified 4 compounds that rescue embryos from disease-like phenotypes. Our screen yielded DAPT, a Notch signaling inhibitor that could ameliorate the craniofacial, cranial neuronal and myelination defects in chd7 morphant zebrafish embryos. We discovered that Procainamide, an inhibitor of DNA methyltransferase 1, was able to recover the pattern of expression of isl2a, a cranial neuronal marker while also reducing the effect on craniofacial cartilage and myelination. M344, an inhibitor of Histone deacetylases had a strong recovery effect on craniofacial cartilage defects and could also modestly revert the myelination defects in zebrafish embryos. CHIC-35, a SIRT1 inhibitor partially restored the expression of isl2a in cranial neurons while causing a partial reversion of myelination and craniofacial cartilage defects. Our results suggest that a modular approach to phenotypic rescue in multi-organ syndromes might be a more successful approach to treat these disorders. Our findings also open up the possibility of using these compounds for other disorders with shared phenotypes.


Asunto(s)
Síndrome CHARGE/tratamiento farmacológico , Síndrome CHARGE/fisiopatología , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Dipéptidos/farmacología , Procainamida/farmacología , Vorinostat/farmacología , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Síndrome CHARGE/genética , Cartílago/efectos de los fármacos , Cartílago/patología , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Dipéptidos/uso terapéutico , Modelos Animales de Enfermedad , Embrión no Mamífero/diagnóstico por imagen , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Embrión no Mamífero/fisiopatología , Técnicas de Silenciamiento del Gen , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Fibras Nerviosas Mielínicas/efectos de los fármacos , Fibras Nerviosas Mielínicas/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Procainamida/uso terapéutico , Receptores Notch/antagonistas & inhibidores , Sirtuina 1/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vorinostat/uso terapéutico , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
Nat Commun ; 10(1): 5753, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848345

RESUMEN

The coordination of cell movements across spatio-temporal scales ensures precise positioning of organs during vertebrate gastrulation. Mechanisms governing such morphogenetic movements have been studied only within a local region, a single germlayer or in whole embryos without cell identity. Scale-bridging imaging and automated analysis of cell dynamics are needed for a deeper understanding of tissue formation during gastrulation. Here, we report pan-embryo analyses of formation and dynamics of all three germlayers simultaneously within a developing zebrafish embryo. We show that a distinct distribution of cells in each germlayer is established during early gastrulation via cell movement characteristics that are predominantly determined by their position in the embryo. The differences in initial germlayer distributions are subsequently amplified by a global movement, which organizes the organ precursors along the embryonic body axis, giving rise to the blueprint of organ formation. The tools and data are available as a resource for the community.


Asunto(s)
Movimiento Celular/fisiología , Embrión no Mamífero/embriología , Gastrulación/fisiología , Estratos Germinativos/embriología , Imagen Multimodal/métodos , Pez Cebra/embriología , Animales , Embrión no Mamífero/diagnóstico por imagen , Estratos Germinativos/diagnóstico por imagen , Imagenología Tridimensional/métodos , Microscopía Intravital/métodos , Análisis de la Célula Individual/métodos , Imagen de Lapso de Tiempo/métodos
20.
Development ; 146(23)2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31722883

RESUMEN

Understanding how events at the molecular and cellular scales contribute to tissue form and function is key to uncovering the mechanisms driving animal development, physiology and disease. Elucidating these mechanisms has been enhanced through the study of model organisms and the use of sophisticated genetic, biochemical and imaging tools. Here, we present an accessible method for non-invasive imaging of Drosophila melanogaster at high resolution using micro-computed tomography (µ-CT). We show how rapid processing of intact animals, at any developmental stage, provides precise quantitative assessment of tissue size and morphology, and permits analysis of inter-organ relationships. We then use µ-CT imaging to study growth defects in the Drosophila brain through the characterization of abnormal spindle (asp) and WD repeat domain 62 (Wdr62), orthologs of the two most commonly mutated genes in human microcephaly patients. Our work demonstrates the power of combining µ-CT with traditional genetic, cellular and developmental biology tools available in model organisms to address novel biological mechanisms that control animal development and disease.


Asunto(s)
Proteínas de Drosophila , Embrión no Mamífero , Microcefalia , Mutación , Proteínas del Tejido Nervioso , Microtomografía por Rayos X , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Embrión no Mamífero/diagnóstico por imagen , Embrión no Mamífero/embriología , Humanos , Microcefalia/diagnóstico por imagen , Microcefalia/embriología , Microcefalia/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...