Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.881
Filtrar
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38739758

RESUMEN

The complicated process of neuronal development is initiated early in life, with the genetic mechanisms governing this process yet to be fully elucidated. Single-cell RNA sequencing (scRNA-seq) is a potent instrument for pinpointing biomarkers that exhibit differential expression across various cell types and developmental stages. By employing scRNA-seq on human embryonic stem cells, we aim to identify differentially expressed genes (DEGs) crucial for early-stage neuronal development. Our focus extends beyond simply identifying DEGs. We strive to investigate the functional roles of these genes through enrichment analysis and construct gene regulatory networks to understand their interactions. Ultimately, this comprehensive approach aspires to illuminate the molecular mechanisms and transcriptional dynamics governing early human brain development. By uncovering potential links between these DEGs and intelligence, mental disorders, and neurodevelopmental disorders, we hope to shed light on human neurological health and disease. In this study, we have used scRNA-seq to identify DEGs involved in early-stage neuronal development in hESCs. The scRNA-seq data, collected on days 26 (D26) and 54 (D54), of the in vitro differentiation of hESCs to neurons were analyzed. Our analysis identified 539 DEGs between D26 and D54. Functional enrichment of those DEG biomarkers indicated that the up-regulated DEGs participated in neurogenesis, while the down-regulated DEGs were linked to synapse regulation. The Reactome pathway analysis revealed that down-regulated DEGs were involved in the interactions between proteins located in synapse pathways. We also discovered interactions between DEGs and miRNA, transcriptional factors (TFs) and DEGs, and between TF and miRNA. Our study identified 20 significant transcription factors, shedding light on early brain development genetics. The identified DEGs and gene regulatory networks are valuable resources for future research into human brain development and neurodevelopmental disorders.


Asunto(s)
Biomarcadores , Encéfalo , Redes Reguladoras de Genes , Células Madre Embrionarias Humanas , Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Encéfalo/metabolismo , Encéfalo/embriología , Encéfalo/citología , Biomarcadores/metabolismo , Neuronas/metabolismo , Neuronas/citología , Diferenciación Celular/genética , RNA-Seq , Neurogénesis/genética , Regulación del Desarrollo de la Expresión Génica , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN/métodos , Análisis de Expresión Génica de una Sola Célula
2.
Methods Mol Biol ; 2799: 139-150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38727906

RESUMEN

Epilepsy is one of the most represented neurological diseases worldwide. However, in many cases, the precise molecular mechanisms of epileptogenesis and ictiogenesis are unknown. Because of their important role in synaptic function and neuronal excitability, NMDA receptors are implicated in various epileptogenic mechanisms. Most of these are subunit specific and require a precise analysis of the subunit composition of the NMDARs implicated. Here, we describe an express electrophysiological method to analyze the contribution of NMDAR subunits to spontaneous postsynaptic activity in identified cells in brain slices using patch clamp whole cell recordings.


Asunto(s)
Técnicas de Placa-Clamp , Receptores de N-Metil-D-Aspartato , Sinapsis , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Técnicas de Placa-Clamp/métodos , Sinapsis/metabolismo , Sinapsis/fisiología , Encéfalo/metabolismo , Encéfalo/citología , Neuronas/metabolismo , Ratones , Ratas , Subunidades de Proteína/metabolismo
3.
Methods Mol Biol ; 2800: 203-215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709486

RESUMEN

Cell tracking is an essential step in extracting cellular signals from moving cells, which is vital for understanding the mechanisms underlying various biological functions and processes, particularly in organs such as the brain and heart. However, cells in living organisms often exhibit extensive and complex movements caused by organ deformation and whole-body motion. These movements pose a challenge in obtaining high-quality time-lapse cell images and tracking the intricate cell movements in the captured images. Recent advances in deep learning techniques provide powerful tools for detecting cells in low-quality images with densely packed cell populations, as well as estimating cell positions for cells undergoing large nonrigid movements. This chapter introduces the challenges of cell tracking in deforming organs and moving animals, outlines the solutions to these challenges, and presents a detailed protocol for data preparation, as well as for performing cell segmentation and tracking using the latest version of 3DeeCellTracker. This protocol is expected to enable researchers to gain deeper insights into organ dynamics and biological processes.


Asunto(s)
Rastreo Celular , Aprendizaje Profundo , Animales , Rastreo Celular/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento Celular , Encéfalo/citología , Imagen de Lapso de Tiempo/métodos
4.
Cells ; 13(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38667283

RESUMEN

Astrocytes and ependymal cells have been reported to be able to switch from a mature cell identity towards that of a neural stem/progenitor cell. Astrocytes are widely scattered in the brain where they exert multiple functions and are routinely targeted for in vitro and in vivo reprogramming. Ependymal cells serve more specialized functions, lining the ventricles and the central canal, and are multiciliated, epithelial-like cells that, in the spinal cord, act as bi-potent progenitors in response to injury. Here, we isolate or generate ependymal cells and post-mitotic astrocytes, respectively, from the lateral ventricles of the mouse brain and we investigate their capacity to reverse towards a progenitor-like identity in culture. Inhibition of the GSK3 and TGFß pathways facilitates the switch of mature astrocytes to Sox2-expressing, mitotic cells that generate oligodendrocytes. Although this medium allows for the expansion of quiescent NSCs, isolated from live rats by "milking of the brain", it does not fully reverse astrocytes towards the bona fide NSC identity; this is a failure correlated with a concomitant lack of neurogenic activity. Ependymal cells could be induced to enter mitosis either via exposure to neuraminidase-dependent stress or by culturing them in the presence of FGF2 and EGF. Overall, our data confirm that astrocytes and ependymal cells retain a high capacity to reverse to a progenitor identity and set up a simple and highly controlled platform for the elucidation of the molecular mechanisms that regulate this reversal.


Asunto(s)
Astrocitos , Epéndimo , Fenotipo , Animales , Astrocitos/metabolismo , Astrocitos/citología , Epéndimo/citología , Epéndimo/metabolismo , Ratones , Células Cultivadas , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Diferenciación Celular , Encéfalo/citología , Encéfalo/metabolismo , Ratas , Factores de Transcripción SOXB1/metabolismo , Ratones Endogámicos C57BL , Mitosis , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Animales Recién Nacidos
5.
Cell ; 187(9): 2143-2157.e15, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670072

RESUMEN

A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain. Unexpectedly, the mouse niche reprograms the birth dates of rat neurons in the cortex and hippocampus, supporting rat-mouse synaptic activity. When mouse olfactory neurons are genetically silenced or killed, rat neurons restore information flow to odor processing circuits. Moreover, they rescue the primal behavior of food seeking, although less well than mouse neurons. By revealing that a mouse can sense the world using neurons from another species, we establish neural blastocyst complementation as a powerful tool to identify conserved mechanisms of brain development, plasticity, and repair.


Asunto(s)
Neuronas , Animales , Ratones , Ratas , Neuronas/metabolismo , Neuronas/citología , Neuronas/fisiología , Blastocisto/metabolismo , Blastocisto/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Encéfalo/citología , Encéfalo/fisiología , Femenino , Hipocampo/citología , Hipocampo/fisiología , Especificidad de la Especie , Ratones Endogámicos C57BL , Masculino
6.
J Pharmacol Sci ; 155(2): 29-34, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677783

RESUMEN

Microglia are the residential immune cells in the central nervous system. Their roles as innate immune cells and regulators of synaptic remodeling are critical to the development and the maintenance of the brain. Numerous studies have depleted microglia to elucidate their involvement in healthy and pathological conditions. PLX3397, a blocker of colony stimulating factor 1 receptor (CSF1R), is widely used to deplete mouse microglia due to its non-invasiveness and convenience. Recently, other small rodents, including Syrian hamsters (Mesocricetus auratus) and Mongolian gerbils (Meriones unguiculatus), have been recognized as valuable animal models for studying brain functions and diseases. However, whether microglia depletion via PLX3397 is feasible in these species remains unclear. Here, we administered PLX3397 orally via food pellets to hamsters and gerbils. PLX3397 successfully depleted gerbil microglia but had no effect on microglial density in hamsters. Comparative analysis of the CSF1R amino acid sequence in different species hints that amino acid substitutions in the juxtamembrane domain may potentially contribute to the inefficacy of PLX3397 in hamsters.


Asunto(s)
Aminopiridinas , Gerbillinae , Mesocricetus , Microglía , Pirroles , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Animales , Microglía/efectos de los fármacos , Microglía/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Pirroles/farmacología , Masculino , Cricetinae , Pirrolidinas/farmacología , Especificidad de la Especie , Modelos Animales , Administración Oral , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/citología
8.
Genome Biol ; 25(1): 109, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671451

RESUMEN

Single-cell multiplexing techniques (cell hashing and genetic multiplexing) combine multiple samples, optimizing sample processing and reducing costs. Cell hashing conjugates antibody-tags or chemical-oligonucleotides to cell membranes, while genetic multiplexing allows to mix genetically diverse samples and relies on aggregation of RNA reads at known genomic coordinates. We develop hadge (hashing deconvolution combined with genotype information), a Nextflow pipeline that combines 12 methods to perform both hashing- and genotype-based deconvolution. We propose a joint deconvolution strategy combining best-performing methods and demonstrate how this approach leads to the recovery of previously discarded cells in a nuclei hashing of fresh-frozen brain tissue.


Asunto(s)
Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Encéfalo/metabolismo , Encéfalo/citología , Programas Informáticos , Genotipo
9.
Open Biol ; 14(4): 230383, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38629124

RESUMEN

Non-clustered protocadherins (ncPcdhs) are adhesive molecules with spatio-temporally regulated overlapping expression in the developing nervous system. Although their unique role in neurogenesis has been widely studied, their combinatorial role in brain physiology and pathology is poorly understood. Using probabilistic cell typing by in situ sequencing, we demonstrate combinatorial inter- and intra-familial expression of ncPcdhs in the developing mouse cortex and hippocampus, at single-cell resolution. We discovered the combinatorial expression of Protocadherin-19 (Pcdh19), a protein involved in PCDH19-clustering epilepsy, with Pcdh1, Pcdh9 or Cadherin 13 (Cdh13) in excitatory neurons. Using aggregation assays, we demonstrate a code-specific adhesion function of PCDH19; mosaic PCDH19 absence in PCDH19+9 and PCDH19 + CDH13, but not in PCDH19+1 codes, alters cell-cell interaction. Interestingly, we found that PCDH19 as a dominant protein in two heterophilic adhesion codes could promote trans-interaction between them. In addition, we discovered increased CDH13-mediated cell adhesion in the presence of PCDH19, suggesting a potential role of PCDH19 as an adhesion mediator of CDH13. Finally, we demonstrated novel cis-interactions between PCDH19 and PCDH1, PCDH9 and CDH13. These observations suggest that there is a unique combinatorial code with a cell- and region-specific characteristic where a single molecule defines the heterophilic cell-cell adhesion properties of each code.


Asunto(s)
Encéfalo , Adhesión Celular , Protocadherinas , Animales , Ratones , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Epilepsia/metabolismo , Neuronas/metabolismo
10.
PLoS Comput Biol ; 20(4): e1012054, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38648250

RESUMEN

Neural organoids model the development of the human brain and are an indispensable tool for studying neurodevelopment. Whole-organoid lineage tracing has revealed the number of progenies arising from each initial stem cell to be highly diverse, with lineage sizes ranging from one to more than 20,000 cells. This high variability exceeds what can be explained by existing stochastic models of corticogenesis and indicates the existence of an additional source of stochasticity. To explain this variability, we introduce the SAN model which distinguishes Symmetrically diving, Asymmetrically dividing, and Non-proliferating cells. In the SAN model, the additional source of stochasticity is the survival time of a lineage's pool of symmetrically dividing cells. These survival times result from neutral competition within the sub-population of all symmetrically dividing cells. We demonstrate that our model explains the experimentally observed variability of lineage sizes and derive the quantitative relationship between survival time and lineage size. We also show that our model implies the existence of a regulatory mechanism which keeps the size of the symmetrically dividing cell population constant. Our results provide quantitative insight into the clonal composition of neural organoids and how it arises. This is relevant for many applications of neural organoids, and similar processes may occur in other developing tissues both in vitro and in vivo.


Asunto(s)
Organoides , Organoides/citología , Humanos , Linaje de la Célula/fisiología , Biología Computacional , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Procesos Estocásticos , Modelos Biológicos , Neuronas/fisiología , Neuronas/citología , Encéfalo/citología , Encéfalo/fisiología , Proliferación Celular/fisiología , Neurogénesis/fisiología
11.
Nature ; 628(8009): 863-871, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570687

RESUMEN

Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-ß-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.


Asunto(s)
Encéfalo , Neovascularización Fisiológica , Animales , Membrana Basal/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/citología , Encéfalo/citología , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Movimiento Celular , Colágeno Tipo IV/metabolismo , Sistemas CRISPR-Cas/genética , Células Endoteliales/metabolismo , Células Endoteliales/citología , Meninges/citología , Meninges/irrigación sanguínea , Meninges/metabolismo , Especificidad de Órganos , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
12.
Cell ; 187(8): 1936-1954.e24, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38490196

RESUMEN

Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.


Asunto(s)
Encéfalo , Interferón Tipo I , Microglía , Animales , Ratones , Interferón Tipo I/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Pez Cebra , Encéfalo/citología , Encéfalo/crecimiento & desarrollo
13.
Nature ; 628(8007): 381-390, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480888

RESUMEN

Our understanding of the neurobiology of primate behaviour largely derives from artificial tasks in highly controlled laboratory settings, overlooking most natural behaviours that primate brains evolved to produce1-3. How primates navigate the multidimensional social relationships that structure daily life4 and shape survival and reproductive success5 remains largely unclear at the single-neuron level. Here we combine ethological analysis, computer vision and wireless recording technologies to identify neural signatures of natural behaviour in unrestrained, socially interacting pairs of rhesus macaques. Single-neuron and population activity in the prefrontal and temporal cortex robustly encoded 24 species-typical behaviours, as well as social context. Male-female partners demonstrated near-perfect reciprocity in grooming, a key behavioural mechanism supporting friendships and alliances6, and neural activity maintained a running account of these social investments. Confronted with an aggressive intruder, behavioural and neural population responses reflected empathy and were buffered by the presence of a partner. Our findings reveal a highly distributed neurophysiological ledger of social dynamics, a potential computational foundation supporting communal life in primate societies, including our own.


Asunto(s)
Encéfalo , Macaca mulatta , Neuronas , Conducta Social , Animales , Femenino , Masculino , Agresión/fisiología , Encéfalo/citología , Encéfalo/fisiología , Empatía , Aseo Animal , Procesos de Grupo , Macaca mulatta/clasificación , Macaca mulatta/fisiología , Macaca mulatta/psicología , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Lóbulo Temporal/citología , Lóbulo Temporal/fisiología , Neuronas/fisiología
14.
Nat Neurosci ; 27(5): 846-861, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38539013

RESUMEN

The generation of new myelin-forming oligodendrocytes in the adult central nervous system is critical for cognitive function and regeneration following injury. Oligodendrogenesis varies between gray and white matter regions, suggesting that local cues drive regional differences in myelination and the capacity for regeneration. However, the layer- and region-specific regulation of oligodendrocyte populations is unclear due to the inability to monitor deep brain structures in vivo. Here we harnessed the superior imaging depth of three-photon microscopy to permit long-term, longitudinal in vivo three-photon imaging of the entire cortical column and subcortical white matter in adult mice. We find that cortical oligodendrocyte populations expand at a higher rate in the adult brain than those of the white matter. Following demyelination, oligodendrocyte replacement is enhanced in the white matter, while the deep cortical layers show deficits in regenerative oligodendrogenesis and the restoration of transcriptional heterogeneity. Together, our findings demonstrate that regional microenvironments regulate oligodendrocyte population dynamics and heterogeneity in the healthy and diseased brain.


Asunto(s)
Oligodendroglía , Sustancia Blanca , Animales , Oligodendroglía/fisiología , Ratones , Sustancia Blanca/fisiología , Enfermedades Desmielinizantes/patología , Vaina de Mielina/fisiología , Ratones Endogámicos C57BL , Masculino , Ratones Transgénicos , Regeneración Nerviosa/fisiología , Femenino , Encéfalo/fisiología , Encéfalo/citología , Neurogénesis/fisiología
15.
Nature ; 626(8000): 819-826, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326621

RESUMEN

To navigate, we must continuously estimate the direction we are headed in, and we must correct deviations from our goal1. Direction estimation is accomplished by ring attractor networks in the head direction system2,3. However, we do not fully understand how the sense of direction is used to guide action. Drosophila connectome analyses4,5 reveal three cell populations (PFL3R, PFL3L and PFL2) that connect the head direction system to the locomotor system. Here we use imaging, electrophysiology and chemogenetic stimulation during navigation to show how these populations function. Each population receives a shifted copy of the head direction vector, such that their three reference frames are shifted approximately 120° relative to each other. Each cell type then compares its own head direction vector with a common goal vector; specifically, it evaluates the congruence of these vectors via a nonlinear transformation. The output of all three cell populations is then combined to generate locomotor commands. PFL3R cells are recruited when the fly is oriented to the left of its goal, and their activity drives rightward turning; the reverse is true for PFL3L. Meanwhile, PFL2 cells increase steering speed, and are recruited when the fly is oriented far from its goal. PFL2 cells adaptively increase the strength of steering as directional error increases, effectively managing the tradeoff between speed and accuracy. Together, our results show how a map of space in the brain can be combined with an internal goal to generate action commands, via a transformation from world-centric coordinates to body-centric coordinates.


Asunto(s)
Encéfalo , Drosophila melanogaster , Objetivos , Cabeza , Neuronas , Orientación Espacial , Navegación Espacial , Animales , Encéfalo/citología , Encéfalo/fisiología , Conectoma , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Cabeza/fisiología , Locomoción/fisiología , Neuronas/clasificación , Neuronas/fisiología , Orientación Espacial/fisiología , Navegación Espacial/fisiología , Factores de Tiempo
16.
Nature ; 626(8000): 808-818, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326612

RESUMEN

Neuronal signals that are relevant for spatial navigation have been described in many species1-10. However, a circuit-level understanding of how such signals interact to guide navigational behaviour is lacking. Here we characterize a neuronal circuit in the Drosophila central complex that compares internally generated estimates of the heading and goal angles of the fly-both of which are encoded in world-centred (allocentric) coordinates-to generate a body-centred (egocentric) steering signal. Past work has suggested that the activity of EPG neurons represents the fly's moment-to-moment angular orientation, or heading angle, during navigation2,11. An animal's moment-to-moment heading angle, however, is not always aligned with its goal angle-that is, the allocentric direction in which it wishes to progress forward. We describe FC2 cells12, a second set of neurons in the Drosophila brain with activity that correlates with the fly's goal angle. Focal optogenetic activation of FC2 neurons induces flies to orient along experimenter-defined directions as they walk forward. EPG and FC2 neurons connect monosynaptically to a third neuronal class, PFL3 cells12,13. We found that individual PFL3 cells show conjunctive, spike-rate tuning to both the heading angle and the goal angle during goal-directed navigation. Informed by the anatomy and physiology of these three cell classes, we develop a model that explains how this circuit compares allocentric heading and goal angles to build an egocentric steering signal in the PFL3 output terminals. Quantitative analyses and optogenetic manipulations of PFL3 activity support the model. Finally, using a new navigational memory task, we show that flies expressing disruptors of synaptic transmission in subsets of PFL3 cells have a reduced ability to orient along arbitrary goal directions, with an effect size in quantitative accordance with the prediction of our model. The biological circuit described here reveals how two population-level allocentric signals are compared in the brain to produce an egocentric output signal that is appropriate for motor control.


Asunto(s)
Encéfalo , Drosophila melanogaster , Objetivos , Cabeza , Vías Nerviosas , Orientación Espacial , Navegación Espacial , Animales , Potenciales de Acción , Encéfalo/citología , Encéfalo/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Cabeza/fisiología , Locomoción , Neuronas/metabolismo , Optogenética , Orientación Espacial/fisiología , Percepción Espacial/fisiología , Memoria Espacial/fisiología , Navegación Espacial/fisiología , Transmisión Sináptica
17.
Nature ; 627(8002): 149-156, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418876

RESUMEN

The glymphatic movement of fluid through the brain removes metabolic waste1-4. Noninvasive 40 Hz stimulation promotes 40 Hz neural activity in multiple brain regions and attenuates pathology in mouse models of Alzheimer's disease5-8. Here we show that multisensory gamma stimulation promotes the influx of cerebrospinal fluid and the efflux of interstitial fluid in the cortex of the 5XFAD mouse model of Alzheimer's disease. Influx of cerebrospinal fluid was associated with increased aquaporin-4 polarization along astrocytic endfeet and dilated meningeal lymphatic vessels. Inhibiting glymphatic clearance abolished the removal of amyloid by multisensory 40 Hz stimulation. Using chemogenetic manipulation and a genetically encoded sensor for neuropeptide signalling, we found that vasoactive intestinal peptide interneurons facilitate glymphatic clearance by regulating arterial pulsatility. Our findings establish novel mechanisms that recruit the glymphatic system to remove brain amyloid.


Asunto(s)
Enfermedad de Alzheimer , Amiloide , Encéfalo , Líquido Cefalorraquídeo , Líquido Extracelular , Ritmo Gamma , Sistema Glinfático , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/prevención & control , Amiloide/metabolismo , Acuaporina 4/metabolismo , Astrocitos/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Líquido Cefalorraquídeo/metabolismo , Modelos Animales de Enfermedad , Líquido Extracelular/metabolismo , Sistema Glinfático/fisiología , Interneuronas/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Estimulación Eléctrica
18.
Nature ; 627(8002): 157-164, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418877

RESUMEN

The accumulation of metabolic waste is a leading cause of numerous neurological disorders, yet we still have only limited knowledge of how the brain performs self-cleansing. Here we demonstrate that neural networks synchronize individual action potentials to create large-amplitude, rhythmic and self-perpetuating ionic waves in the interstitial fluid of the brain. These waves are a plausible mechanism to explain the correlated potentiation of the glymphatic flow1,2 through the brain parenchyma. Chemogenetic flattening of these high-energy ionic waves largely impeded cerebrospinal fluid infiltration into and clearance of molecules from the brain parenchyma. Notably, synthesized waves generated through transcranial optogenetic stimulation substantially potentiated cerebrospinal fluid-to-interstitial fluid perfusion. Our study demonstrates that neurons serve as master organizers for brain clearance. This fundamental principle introduces a new theoretical framework for the functioning of macroscopic brain waves.


Asunto(s)
Encéfalo , Líquido Cefalorraquídeo , Líquido Extracelular , Neuronas , Potenciales de Acción , Encéfalo/citología , Encéfalo/metabolismo , Ondas Encefálicas/fisiología , Líquido Cefalorraquídeo/metabolismo , Líquido Extracelular/metabolismo , Sistema Glinfático/metabolismo , Cinética , Red Nerviosa/fisiología , Neuronas/metabolismo , Optogenética , Tejido Parenquimatoso/metabolismo , Iones/metabolismo
20.
Cell ; 187(4): 962-980.e19, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309258

RESUMEN

Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.


Asunto(s)
Encéfalo , Microglía , Axones , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Macrófagos/fisiología , Microglía/patología , Morfogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA